/* * Descent 3 * Copyright (C) 2024 Parallax Software * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "osiris_vector.h" void vm_AverageVector(vector *a, int num) { // Averages a vector. ie divides each component of vector a by num // assert (num!=0); *a /= (scalar)num; } void vm_AddVectors(vector *result, const vector *a, const vector *b) { // Adds two vectors. Either source can equal dest *result = *a + *b; } void vm_SubVectors(vector *result, const vector *a, const vector *b) { // Subtracts second vector from first. Either source can equal dest *result = *a - *b; } scalar vm_VectorDistance(const vector *a, const vector *b) { // Given two vectors, returns the distance between them return (*a - *b).mag(); } scalar vm_VectorDistanceQuick(const vector *a, const vector *b) { // Given two vectors, returns the distance between them return (*a - *b).mag(); } // Calculates the perpendicular vector given three points // Parms: n - the computed perp vector (filled in) // v0,v1,v2 - three clockwise vertices void vm_GetPerp(vector *n, const vector *a, const vector *b, const vector *c) { // Given 3 vertices, return the surface normal in n // IMPORTANT: B must be the 'corner' vertex *n = vector::cross3(*b - *a, *c - *b); } // Calculates the (normalized) surface normal give three points // Parms: n - the computed surface normal (filled in) // v0,v1,v2 - three clockwise vertices // Returns the magnitude of the normal before it was normalized. // The bigger this value, the better the normal. scalar vm_GetNormal(vector *n, const vector *v0, const vector *v1, const vector *v2) { vm_GetPerp(n, v0, v1, v2); return vm_VectorNormalize(n); } // Does a simple dot product calculation scalar vm_DotProduct(const vector *u, const vector *v) { return vector::dot(*u, *v); } // Scales all components of vector v by value s and stores result in vector d // dest can equal source void vm_ScaleVector(vector *d, const vector *v, const scalar s) { *d = *v * s; } void vm_ScaleAddVector(vector *d, const vector *p, const vector *v, const scalar s) { // Scales all components of vector v by value s // adds the result to p and stores result in vector d // dest can equal source *d = *p + *v * s; } void vm_DivVector(vector *dest, const vector *src, const scalar n) { // Divides a vector into n portions // Dest can equal src // assert (n!=0); *dest = *src / n; } void vm_CrossProduct(vector *dest, const vector *u, const vector *v) { // Computes a cross product between u and v, returns the result // in Normal. Dest cannot equal source. *dest = vector::cross3(*u, *v); } // Normalize a vector. // Returns: the magnitude before normalization scalar vm_VectorNormalize(vector *a) { scalar mag = a->mag(); if (mag > 0) *a /= mag; else { *a = vector::id(0); mag = 0.0f; } return mag; } scalar vm_GetMagnitude(const vector *a) { return a->mag(); } void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); } void vm_MakeIdentity(matrix *dest) { *dest = { vector::id(0), vector::id(1), vector::id(2) }; } void vm_MakeInverseMatrix(matrix *dest) { *dest = { -vector::id(0), -vector::id(1), -vector::id(2) }; } void vm_TransposeMatrix(matrix *m) { // Transposes a matrix in place scalar t; t = m->uvec.x(); m->uvec.x() = m->rvec.y(); m->rvec.y() = t; t = m->fvec.x(); m->fvec.x() = m->rvec.z(); m->rvec.z() = t; t = m->fvec.y(); m->fvec.y() = m->uvec.z(); m->uvec.z() = t; } void vm_MatrixMulVector(vector *result, const vector *v, const matrix *m) { // Rotates a vector thru a matrix // assert(result != v); *result = vector{ vector::dot(*v, m->rvec), vector::dot(*v, m->uvec), vector::dot(*v, m->fvec) }; } // Multiply a vector times the transpose of a matrix void vm_VectorMulTMatrix(vector *result, const vector *v, const matrix *m) { // assert(result != v); *result = { vm_Dot3Vector(m->rvec.x(), m->uvec.x(), m->fvec.x(), v), vm_Dot3Vector(m->rvec.y(), m->uvec.y(), m->fvec.y(), v), vm_Dot3Vector(m->rvec.z(), m->uvec.z(), m->fvec.z(), v) }; } void vm_MatrixMul(matrix *dest, const matrix *src0, const matrix *src1) { // For multiplying two 3x3 matrices together // assert((dest != src0) && (dest != src1)); dest->rvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->rvec); dest->uvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->uvec); dest->fvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->fvec); dest->rvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->rvec); dest->uvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->uvec); dest->fvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->fvec); dest->rvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->rvec); dest->uvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->uvec); dest->fvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->fvec); } // Multiply a matrix times the transpose of a matrix void vm_MatrixMulTMatrix(matrix *dest, const matrix *src0, const matrix *src1) { // For multiplying two 3x3 matrices together // assert((dest != src0) && (dest != src1)); dest->rvec.x() = src0->rvec.x() * src1->rvec.x() + src0->uvec.x() * src1->uvec.x() + src0->fvec.x() * src1->fvec.x(); dest->uvec.x() = src0->rvec.x() * src1->rvec.y() + src0->uvec.x() * src1->uvec.y() + src0->fvec.x() * src1->fvec.y(); dest->fvec.x() = src0->rvec.x() * src1->rvec.z() + src0->uvec.x() * src1->uvec.z() + src0->fvec.x() * src1->fvec.z(); dest->rvec.y() = src0->rvec.y() * src1->rvec.x() + src0->uvec.y() * src1->uvec.x() + src0->fvec.y() * src1->fvec.x(); dest->uvec.y() = src0->rvec.y() * src1->rvec.y() + src0->uvec.y() * src1->uvec.y() + src0->fvec.y() * src1->fvec.y(); dest->fvec.y() = src0->rvec.y() * src1->rvec.z() + src0->uvec.y() * src1->uvec.z() + src0->fvec.y() * src1->fvec.z(); dest->rvec.z() = src0->rvec.z() * src1->rvec.x() + src0->uvec.z() * src1->uvec.x() + src0->fvec.z() * src1->fvec.x(); dest->uvec.z() = src0->rvec.z() * src1->rvec.y() + src0->uvec.z() * src1->uvec.y() + src0->fvec.z() * src1->fvec.y(); dest->fvec.z() = src0->rvec.z() * src1->rvec.z() + src0->uvec.z() * src1->uvec.z() + src0->fvec.z() * src1->fvec.z(); } matrix operator*(const matrix &src0, const matrix &src1) { // For multiplying two 3x3 matrices together matrix dest; dest.rvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.rvec); dest.uvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.uvec); dest.fvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.fvec); dest.rvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.rvec); dest.uvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.uvec); dest.fvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.fvec); dest.rvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.rvec); dest.uvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.uvec); dest.fvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.fvec); return dest; } matrix operator*=(matrix &src0, const matrix &src1) { return (src0 = src0 * src1); } // Computes a normalized direction vector between two points // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points scalar vm_GetNormalizedDir(vector *dest, const vector *end, const vector *start) { vm_SubVectors(dest, end, start); return vm_VectorNormalize(dest); } // Returns a normalized direction vector between two points // Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points scalar vm_GetNormalizedDirFast(vector *dest, const vector *end, const vector *start) { vm_SubVectors(dest, end, start); return vm_VectorNormalizeFast(dest); } scalar vm_GetMagnitudeFast(const vector *v) { scalar a, b, c, bc; a = fabs(v->x()); b = fabs(v->y()); c = fabs(v->z()); if (a < b) { scalar t = a; a = b; b = t; } if (b < c) { scalar t = b; b = c; c = t; if (a < b) { scalar t = a; a = b; b = t; } } bc = (b / 4) + (c / 8); return a + bc + (bc / 2); } // Normalize a vector using an approximation of the magnitude // Returns: the magnitude before normalization scalar vm_VectorNormalizeFast(vector *a) { scalar mag; mag = vm_GetMagnitudeFast(a); if (mag == 0.0) { *a = vector{}; return 0; } *a /= mag; return mag; } // Computes the distance from a point to a plane. // Parms: checkp - the point to check // Parms: norm - the (normalized) surface normal of the plane // planep - a point on the plane // Returns: The signed distance from the plane; negative dist is on the back of the plane scalar vm_DistToPlane(const vector *checkp, const vector *norm, const vector *planep) { return vector::dot(*checkp - *planep, *norm); } scalar vm_GetSlope(scalar x1, scalar y1, scalar x2, scalar y2) { // returns the slope of a line scalar r; if (y2 - y1 == 0) return (0.0); r = (x2 - x1) / (y2 - y1); return (r); } void vm_SinCosToMatrix(matrix *m, scalar sinp, scalar cosp, scalar sinb, scalar cosb, scalar sinh, scalar cosh) { scalar sbsh, cbch, cbsh, sbch; sbsh = (sinb * sinh); cbch = (cosb * cosh); cbsh = (cosb * sinh); sbch = (sinb * cosh); m->rvec.x() = cbch + (sinp * sbsh); // m1 m->uvec.z() = sbsh + (sinp * cbch); // m8 m->uvec.x() = (sinp * cbsh) - sbch; // m2 m->rvec.z() = (sinp * sbch) - cbsh; // m7 m->fvec.x() = (sinh * cosp); // m3 m->rvec.y() = (sinb * cosp); // m4 m->uvec.y() = (cosb * cosp); // m5 m->fvec.z() = (cosh * cosp); // m9 m->fvec.y() = -sinp; // m6 } void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) { scalar sinp, cosp, sinb, cosb, sinh, cosh; sinp = FixSin(p); cosp = FixCos(p); sinb = FixSin(b); cosb = FixCos(b); sinh = FixSin(h); cosh = FixCos(h); vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Computes a matrix from a vector and and angle of rotation around that vector // Parameters: m - filled in with the computed matrix // v - the forward vector of the new matrix // a - the angle of rotation around the forward vector void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) { scalar sinb, cosb, sinp, cosp, sinh, cosh; sinb = FixSin(a); cosb = FixCos(a); sinp = -v->y(); cosp = sqrt(1.0 - (sinp * sinp)); if (cosp != 0.0) { sinh = v->x() / cosp; cosh = v->z() / cosp; } else { sinh = 0; cosh = 1.0; } vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Ensure that a matrix is orthogonal void vm_Orthogonalize(matrix *m) { // Normalize forward vector if (vm_VectorNormalize(&m->fvec) == 0) { return; } // Generate right vector from forward and up vectors m->rvec = vector::cross3(m->uvec, m->fvec); // Normaize new right vector if (vm_VectorNormalize(&m->rvec) == 0) { vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only return; } // Recompute up vector, in case it wasn't entirely perpendiclar m->uvec = vector::cross3(m->fvec, m->rvec); } // do the math for vm_VectorToMatrix() void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec; // ASSERT(fvec != NULL); *zvec = *fvec; if (vm_VectorNormalize(zvec) == 0) { return; } if (uvec == NULL) { if (rvec == NULL) { // just forward vec bad_vector2:; if (zvec->x() == 0 && zvec->z() == 0) { // forward vec is straight up or down m->rvec.x() = 1.0; m->uvec.z() = (zvec->y() < 0) ? 1.0 : -1.0; m->rvec.y() = m->rvec.z() = m->uvec.x() = m->uvec.y() = 0; } else { // not straight up or down *xvec = { zvec->z(),0, -zvec->x() }; vm_VectorNormalize(xvec); *yvec = vector::cross3(*zvec, *xvec); } } else { // use right vec *xvec = *rvec; if (vm_VectorNormalize(xvec) == 0) goto bad_vector2; *yvec = vector::cross3(*zvec, *xvec); // normalize new perpendicular vector if (vm_VectorNormalize(yvec) == 0) goto bad_vector2; // now recompute right vector, in case it wasn't entirely perpendiclar *xvec = vector::cross3(*yvec, *zvec); } } else { // use up vec *yvec = *uvec; if (vm_VectorNormalize(yvec) == 0) goto bad_vector2; *xvec = vector::cross3(*yvec, *zvec); // normalize new perpendicular vector if (vm_VectorNormalize(xvec) == 0) goto bad_vector2; // now recompute up vector, in case it wasn't entirely perpendiclar *yvec = vector::cross3(*zvec, *xvec); } } // Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified. // Parameters: m - filled in with the orienation matrix // fvec,uvec,rvec - pointers to vectors that determine the matrix. // One or two of these must be specified, with the other(s) set to NULL. void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { if (!fvec) { // no forward vector. Use up and/or right vectors. matrix tmatrix; if (uvec) { // got up vector. use up and, if specified, right vectors. DoVectorToMatrix(&tmatrix, uvec, NULL, rvec); m->fvec = -tmatrix.uvec; m->uvec = tmatrix.fvec; m->rvec = tmatrix.rvec; return; } else { // no up vector. Use right vector only. // ASSERT(rvec); DoVectorToMatrix(&tmatrix, rvec, NULL, NULL); m->fvec = -tmatrix.rvec; m->uvec = tmatrix.uvec; m->rvec = tmatrix.fvec; return; } } else { // ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified DoVectorToMatrix(m, fvec, uvec, rvec); } } void vm_SinCos(uint16_t a, scalar *s, scalar *c) { if (s) *s = FixSin(a); if (c) *c = FixCos(a); } // extract angles from a matrix angvec *vm_ExtractAnglesFromMatrix(angvec *a, const matrix *m) { scalar sinh, cosh, cosp; if (m->fvec.x() == 0 && m->fvec.z() == 0) // zero head a->h() = 0; else a->h() = FixAtan2(m->fvec.z(), m->fvec.x()); sinh = FixSin(a->h()); cosh = FixCos(a->h()); if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it cosp = (m->fvec.x() / sinh); else // cosine is larger, so use it cosp = (m->fvec.z() / cosh); if (cosp == 0 && m->fvec.y() == 0) a->p() = 0; else a->p() = FixAtan2(cosp, -m->fvec.y()); if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank a->b() = 0; else { scalar sinb, cosb; sinb = (m->rvec.y() / cosp); cosb = (m->uvec.y() / cosp); if (sinb == 0 && cosb == 0) a->b() = 0; else a->b() = FixAtan2(cosb, sinb); } return a; } // returns the value of a determinant scalar calc_det_value(const matrix *det) { return det->rvec.x() * det->uvec.y() * det->fvec.z() - det->rvec.x() * det->uvec.z() * det->fvec.y() - det->rvec.y() * det->uvec.x() * det->fvec.z() + det->rvec.y() * det->uvec.z() * det->fvec.x() + det->rvec.z() * det->uvec.x() * det->fvec.y() - det->rvec.z() * det->uvec.y() * det->fvec.x(); } // computes the delta angle between two vectors. // vectors need not be normalized. if they are, call vm_vec_delta_ang_norm() // the forward vector (third parameter) can be NULL, in which case the absolute // value of the angle in returned. Otherwise the angle around that vector is // returned. angle vm_DeltaAngVec(const vector *v0, const vector *v1, const vector *fvec) { vector t0, t1; t0 = *v0; t1 = *v1; vm_VectorNormalize(&t0); vm_VectorNormalize(&t1); return vm_DeltaAngVecNorm(&t0, &t1, fvec); } // computes the delta angle between two normalized vectors. angle vm_DeltaAngVecNorm(const vector *v0, const vector *v1, const vector *fvec) { angle a; a = FixAcos(vm_DotProduct(v0, v1)); if (fvec) { vector t; vm_CrossProduct(&t, v0, v1); if (vm_DotProduct(&t, fvec) < 0) a = -a; } return a; } // Gets the real center of a polygon // Returns the size of the passed in stuff scalar vm_GetCentroid(vector *centroid, const vector *src, int nv) { // ASSERT (nv>2); vector normal; scalar area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitude(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitude(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // Gets the real center of a polygon, but uses fast magnitude calculation // Returns the size of the passed in stuff float vm_GetCentroidFast(vector *centroid, const vector *src, int nv) { // ASSERT (nv>2); vector normal; float area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitudeFast(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitudeFast(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values) void vm_MakeRandomVector(vector *vec) { vec->x() = rand(); vec->y() = rand(); vec->z() = rand(); *vec -= RAND_MAX / 2; } // Given a set of points, computes the minimum bounding sphere of those points scalar vm_ComputeBoundingSphere(vector *center, const vector *vecs, int num_verts) { // This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that // we should probably implement sometime. const vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp; scalar dx, dy, dz; scalar rad, rad2; int i; // Initialize min, max vars min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0]; // First, find the points with the min & max x,y, & z coordinates for (i = 0, vp = vecs; i < num_verts; i++, vp++) { if (vp->x() < min_x->x()) min_x = vp; if (vp->x() > max_x->x()) max_x = vp; if (vp->y() < min_y->y()) min_y = vp; if (vp->y() > max_y->y()) max_y = vp; if (vp->z() < min_z->z()) min_z = vp; if (vp->z() > max_z->z()) max_z = vp; } // Calculate initial sphere dx = vm_VectorDistance(min_x, max_x); dy = vm_VectorDistance(min_y, max_y); dz = vm_VectorDistance(min_z, max_z); if (dx > dy) if (dx > dz) { *center = (*min_x + *max_x) / 2; rad = dx / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } else if (dy > dz) { *center = (*min_y + *max_y) / 2; rad = dy / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } // Go through all points and look for ones that don't fit rad2 = rad * rad; for (i = 0, vp = vecs; i < num_verts; i++, vp++) { vector delta; scalar t2; delta = *vp - *center; t2 = delta.x() * delta.x() + delta.y() * delta.y() + delta.z() * delta.z(); // If point outside, make the sphere bigger if (t2 > rad2) { scalar t; t = sqrt(t2); rad = (rad + t) / 2; rad2 = rad * rad; *center += delta * (t - rad) / t; } } // We're done return rad; }