/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include "osiris_vector.h"
void vm_AverageVector(vector *a, int num) {
// Averages a vector. ie divides each component of vector a by num
// assert (num!=0);
*a /= (scalar)num;
}
void vm_AddVectors(vector *result, const vector *a, const vector *b) {
// Adds two vectors. Either source can equal dest
*result = *a + *b;
}
void vm_SubVectors(vector *result, const vector *a, const vector *b) {
// Subtracts second vector from first. Either source can equal dest
*result = *a - *b;
}
scalar vm_VectorDistance(const vector *a, const vector *b) {
// Given two vectors, returns the distance between them
return (*a - *b).mag();
}
scalar vm_VectorDistanceQuick(const vector *a, const vector *b) {
// Given two vectors, returns the distance between them
return (*a - *b).mag();
}
// Calculates the perpendicular vector given three points
// Parms: n - the computed perp vector (filled in)
// v0,v1,v2 - three clockwise vertices
void vm_GetPerp(vector *n, const vector *a, const vector *b, const vector *c) {
// Given 3 vertices, return the surface normal in n
// IMPORTANT: B must be the 'corner' vertex
*n = vector::cross3(*b - *a, *c - *b);
}
// Calculates the (normalized) surface normal give three points
// Parms: n - the computed surface normal (filled in)
// v0,v1,v2 - three clockwise vertices
// Returns the magnitude of the normal before it was normalized.
// The bigger this value, the better the normal.
scalar vm_GetNormal(vector *n, const vector *v0, const vector *v1, const vector *v2) {
vm_GetPerp(n, v0, v1, v2);
return vm_VectorNormalize(n);
}
// Does a simple dot product calculation
scalar vm_DotProduct(const vector *u, const vector *v) { return vector::dot(*u, *v); }
// Scales all components of vector v by value s and stores result in vector d
// dest can equal source
void vm_ScaleVector(vector *d, const vector *v, const scalar s) {
*d = *v * s;
}
void vm_ScaleAddVector(vector *d, const vector *p, const vector *v, const scalar s) {
// Scales all components of vector v by value s
// adds the result to p and stores result in vector d
// dest can equal source
*d = *p + *v * s;
}
void vm_DivVector(vector *dest, vector *src, const scalar n) {
// Divides a vector into n portions
// Dest can equal src
// assert (n!=0);
*dest = *src / n;
}
void vm_CrossProduct(vector *dest, const vector *u, const vector *v) {
// Computes a cross product between u and v, returns the result
// in Normal. Dest cannot equal source.
*dest = vector::cross3(*u, *v);
}
// Normalize a vector.
// Returns: the magnitude before normalization
scalar vm_VectorNormalize(vector *a) {
scalar mag = a->mag();
if (mag > 0)
*a /= mag;
else {
*a = vector::id(0);
mag = 0.0f;
}
return mag;
}
scalar vm_GetMagnitude(const vector *a) {
return a->mag();
}
void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); }
void vm_MakeIdentity(matrix *dest) {
*dest = { vector::id(0), vector::id(1), vector::id(2) };
}
void vm_MakeInverseMatrix(matrix *dest) {
*dest = { -vector::id(0), -vector::id(1), -vector::id(2) };
}
void vm_TransposeMatrix(matrix *m) {
// Transposes a matrix in place
scalar t;
t = m->uvec.x();
m->uvec.x() = m->rvec.y();
m->rvec.y() = t;
t = m->fvec.x();
m->fvec.x() = m->rvec.z();
m->rvec.z() = t;
t = m->fvec.y();
m->fvec.y() = m->uvec.z();
m->uvec.z() = t;
}
void vm_MatrixMulVector(vector *result, const vector *v, const matrix *m) {
// Rotates a vector thru a matrix
// assert(result != v);
*result = vector{ vector::dot(*v, m->rvec), vector::dot(*v, m->uvec), vector::dot(*v, m->fvec) };
}
// Multiply a vector times the transpose of a matrix
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) {
// assert(result != v);
*result = { vm_Dot3Vector(m->rvec.x(), m->uvec.x(), m->fvec.x(), v),
vm_Dot3Vector(m->rvec.y(), m->uvec.y(), m->fvec.y(), v),
vm_Dot3Vector(m->rvec.z(), m->uvec.z(), m->fvec.z(), v) };
}
void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
// assert((dest != src0) && (dest != src1));
dest->rvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->rvec);
dest->uvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->uvec);
dest->fvec.x() = vm_Dot3Vector(src0->rvec.x(), src0->uvec.x(), src0->fvec.x(), &src1->fvec);
dest->rvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->rvec);
dest->uvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->uvec);
dest->fvec.y() = vm_Dot3Vector(src0->rvec.y(), src0->uvec.y(), src0->fvec.y(), &src1->fvec);
dest->rvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->rvec);
dest->uvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->uvec);
dest->fvec.z() = vm_Dot3Vector(src0->rvec.z(), src0->uvec.z(), src0->fvec.z(), &src1->fvec);
}
// Multiply a matrix times the transpose of a matrix
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
// assert((dest != src0) && (dest != src1));
dest->rvec.x() = src0->rvec.x() * src1->rvec.x() + src0->uvec.x() * src1->uvec.x() + src0->fvec.x() * src1->fvec.x();
dest->uvec.x() = src0->rvec.x() * src1->rvec.y() + src0->uvec.x() * src1->uvec.y() + src0->fvec.x() * src1->fvec.y();
dest->fvec.x() = src0->rvec.x() * src1->rvec.z() + src0->uvec.x() * src1->uvec.z() + src0->fvec.x() * src1->fvec.z();
dest->rvec.y() = src0->rvec.y() * src1->rvec.x() + src0->uvec.y() * src1->uvec.x() + src0->fvec.y() * src1->fvec.x();
dest->uvec.y() = src0->rvec.y() * src1->rvec.y() + src0->uvec.y() * src1->uvec.y() + src0->fvec.y() * src1->fvec.y();
dest->fvec.y() = src0->rvec.y() * src1->rvec.z() + src0->uvec.y() * src1->uvec.z() + src0->fvec.y() * src1->fvec.z();
dest->rvec.z() = src0->rvec.z() * src1->rvec.x() + src0->uvec.z() * src1->uvec.x() + src0->fvec.z() * src1->fvec.x();
dest->uvec.z() = src0->rvec.z() * src1->rvec.y() + src0->uvec.z() * src1->uvec.y() + src0->fvec.z() * src1->fvec.y();
dest->fvec.z() = src0->rvec.z() * src1->rvec.z() + src0->uvec.z() * src1->uvec.z() + src0->fvec.z() * src1->fvec.z();
}
matrix operator*(matrix src0, matrix src1) {
// For multiplying two 3x3 matrices together
matrix dest;
dest.rvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.rvec);
dest.uvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.uvec);
dest.fvec.x() = vm_Dot3Vector(src0.rvec.x(), src0.uvec.x(), src0.fvec.x(), &src1.fvec);
dest.rvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.rvec);
dest.uvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.uvec);
dest.fvec.y() = vm_Dot3Vector(src0.rvec.y(), src0.uvec.y(), src0.fvec.y(), &src1.fvec);
dest.rvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.rvec);
dest.uvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.uvec);
dest.fvec.z() = vm_Dot3Vector(src0.rvec.z(), src0.uvec.z(), src0.fvec.z(), &src1.fvec);
return dest;
}
matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); }
// Computes a normalized direction vector between two points
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
scalar vm_GetNormalizedDir(vector *dest, const vector *end, const vector *start) {
vm_SubVectors(dest, end, start);
return vm_VectorNormalize(dest);
}
// Returns a normalized direction vector between two points
// Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
scalar vm_GetNormalizedDirFast(vector *dest, const vector *end, const vector *start) {
vm_SubVectors(dest, end, start);
return vm_VectorNormalizeFast(dest);
}
scalar vm_GetMagnitudeFast(const vector *v) {
scalar a, b, c, bc;
a = fabs(v->x());
b = fabs(v->y());
c = fabs(v->z());
if (a < b) {
scalar t = a;
a = b;
b = t;
}
if (b < c) {
scalar t = b;
b = c;
c = t;
if (a < b) {
scalar t = a;
a = b;
b = t;
}
}
bc = (b / 4) + (c / 8);
return a + bc + (bc / 2);
}
// Normalize a vector using an approximation of the magnitude
// Returns: the magnitude before normalization
scalar vm_VectorNormalizeFast(vector *a) {
scalar mag;
mag = vm_GetMagnitudeFast(a);
if (mag == 0.0) {
*a = Zero_vector;
return 0;
}
*a /= mag;
return mag;
}
// Computes the distance from a point to a plane.
// Parms: checkp - the point to check
// Parms: norm - the (normalized) surface normal of the plane
// planep - a point on the plane
// Returns: The signed distance from the plane; negative dist is on the back of the plane
scalar vm_DistToPlane(const vector *checkp, const vector *norm, const vector *planep) {
return vector::dot(*checkp - *planep, *norm);
}
scalar vm_GetSlope(scalar x1, scalar y1, scalar x2, scalar y2) {
// returns the slope of a line
scalar r;
if (y2 - y1 == 0)
return (0.0);
r = (x2 - x1) / (y2 - y1);
return (r);
}
void vm_SinCosToMatrix(matrix *m, scalar sinp, scalar cosp, scalar sinb, scalar cosb, scalar sinh, scalar cosh) {
scalar sbsh, cbch, cbsh, sbch;
sbsh = (sinb * sinh);
cbch = (cosb * cosh);
cbsh = (cosb * sinh);
sbch = (sinb * cosh);
m->rvec.x() = cbch + (sinp * sbsh); // m1
m->uvec.z() = sbsh + (sinp * cbch); // m8
m->uvec.x() = (sinp * cbsh) - sbch; // m2
m->rvec.z() = (sinp * sbch) - cbsh; // m7
m->fvec.x() = (sinh * cosp); // m3
m->rvec.y() = (sinb * cosp); // m4
m->uvec.y() = (cosb * cosp); // m5
m->fvec.z() = (cosh * cosp); // m9
m->fvec.y() = -sinp; // m6
}
void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) {
scalar sinp, cosp, sinb, cosb, sinh, cosh;
sinp = FixSin(p);
cosp = FixCos(p);
sinb = FixSin(b);
cosb = FixCos(b);
sinh = FixSin(h);
cosh = FixCos(h);
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Computes a matrix from a vector and and angle of rotation around that vector
// Parameters: m - filled in with the computed matrix
// v - the forward vector of the new matrix
// a - the angle of rotation around the forward vector
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) {
scalar sinb, cosb, sinp, cosp, sinh, cosh;
sinb = FixSin(a);
cosb = FixCos(a);
sinp = -v->y();
cosp = sqrt(1.0 - (sinp * sinp));
if (cosp != 0.0) {
sinh = v->x() / cosp;
cosh = v->z() / cosp;
} else {
sinh = 0;
cosh = 1.0;
}
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Ensure that a matrix is orthogonal
void vm_Orthogonalize(matrix *m) {
// Normalize forward vector
if (vm_VectorNormalize(&m->fvec) == 0) {
return;
}
// Generate right vector from forward and up vectors
m->rvec = vector::cross3(m->uvec, m->fvec);
// Normaize new right vector
if (vm_VectorNormalize(&m->rvec) == 0) {
vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only
return;
}
// Recompute up vector, in case it wasn't entirely perpendiclar
m->uvec = vector::cross3(m->fvec, m->rvec);
}
// do the math for vm_VectorToMatrix()
void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec;
// ASSERT(fvec != NULL);
*zvec = *fvec;
if (vm_VectorNormalize(zvec) == 0) {
return;
}
if (uvec == NULL) {
if (rvec == NULL) { // just forward vec
bad_vector2:;
if (zvec->x() == 0 && zvec->z() == 0) { // forward vec is straight up or down
m->rvec.x() = 1.0;
m->uvec.z() = (zvec->y() < 0) ? 1.0 : -1.0;
m->rvec.y() = m->rvec.z() = m->uvec.x() = m->uvec.y() = 0;
} else { // not straight up or down
*xvec = { zvec->z(),0, -zvec->x() };
vm_VectorNormalize(xvec);
*yvec = vector::cross3(*zvec, *xvec);
}
} else { // use right vec
*xvec = *rvec;
if (vm_VectorNormalize(xvec) == 0)
goto bad_vector2;
*yvec = vector::cross3(*zvec, *xvec);
// normalize new perpendicular vector
if (vm_VectorNormalize(yvec) == 0)
goto bad_vector2;
// now recompute right vector, in case it wasn't entirely perpendiclar
*xvec = vector::cross3(*yvec, *zvec);
}
} else { // use up vec
*yvec = *uvec;
if (vm_VectorNormalize(yvec) == 0)
goto bad_vector2;
*xvec = vector::cross3(*yvec, *zvec);
// normalize new perpendicular vector
if (vm_VectorNormalize(xvec) == 0)
goto bad_vector2;
// now recompute up vector, in case it wasn't entirely perpendiclar
*yvec = vector::cross3(*zvec, *xvec);
}
}
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
// Parameters: m - filled in with the orienation matrix
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
// One or two of these must be specified, with the other(s) set to NULL.
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
if (!fvec) { // no forward vector. Use up and/or right vectors.
matrix tmatrix;
if (uvec) { // got up vector. use up and, if specified, right vectors.
DoVectorToMatrix(&tmatrix, uvec, NULL, rvec);
m->fvec = -tmatrix.uvec;
m->uvec = tmatrix.fvec;
m->rvec = tmatrix.rvec;
return;
} else { // no up vector. Use right vector only.
// ASSERT(rvec);
DoVectorToMatrix(&tmatrix, rvec, NULL, NULL);
m->fvec = -tmatrix.rvec;
m->uvec = tmatrix.uvec;
m->rvec = tmatrix.fvec;
return;
}
} else {
// ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified
DoVectorToMatrix(m, fvec, uvec, rvec);
}
}
void vm_SinCos(uint16_t a, scalar *s, scalar *c) {
if (s)
*s = FixSin(a);
if (c)
*c = FixCos(a);
}
// extract angles from a matrix
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) {
scalar sinh, cosh, cosp;
if (m->fvec.x() == 0 && m->fvec.z() == 0) // zero head
a->h() = 0;
else
a->h() = FixAtan2(m->fvec.z(), m->fvec.x());
sinh = FixSin(a->h());
cosh = FixCos(a->h());
if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it
cosp = (m->fvec.x() / sinh);
else // cosine is larger, so use it
cosp = (m->fvec.z() / cosh);
if (cosp == 0 && m->fvec.y() == 0)
a->p() = 0;
else
a->p() = FixAtan2(cosp, -m->fvec.y());
if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank
a->b() = 0;
else {
scalar sinb, cosb;
sinb = (m->rvec.y() / cosp);
cosb = (m->uvec.y() / cosp);
if (sinb == 0 && cosb == 0)
a->b() = 0;
else
a->b() = FixAtan2(cosb, sinb);
}
return a;
}
// returns the value of a determinant
scalar calc_det_value(matrix *det) {
return det->rvec.x() * det->uvec.y() * det->fvec.z() - det->rvec.x() * det->uvec.z() * det->fvec.y() -
det->rvec.y() * det->uvec.x() * det->fvec.z() + det->rvec.y() * det->uvec.z() * det->fvec.x() +
det->rvec.z() * det->uvec.x() * det->fvec.y() - det->rvec.z() * det->uvec.y() * det->fvec.x();
}
// computes the delta angle between two vectors.
// vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
// the forward vector (third parameter) can be NULL, in which case the absolute
// value of the angle in returned. Otherwise the angle around that vector is
// returned.
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) {
vector t0, t1;
t0 = *v0;
t1 = *v1;
vm_VectorNormalize(&t0);
vm_VectorNormalize(&t1);
return vm_DeltaAngVecNorm(&t0, &t1, fvec);
}
// computes the delta angle between two normalized vectors.
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) {
angle a;
a = FixAcos(vm_DotProduct(v0, v1));
if (fvec) {
vector t;
vm_CrossProduct(&t, v0, v1);
if (vm_DotProduct(&t, fvec) < 0)
a = -a;
}
return a;
}
// Gets the real center of a polygon
// Returns the size of the passed in stuff
scalar vm_GetCentroid(vector *centroid, vector *src, int nv) {
// ASSERT (nv>2);
vector normal;
scalar area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitude(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitude(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// Gets the real center of a polygon, but uses fast magnitude calculation
// Returns the size of the passed in stuff
float vm_GetCentroidFast(vector *centroid, vector *src, int nv) {
// ASSERT (nv>2);
vector normal;
float area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitudeFast(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitudeFast(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values)
void vm_MakeRandomVector(vector *vec) {
vec->x() = rand();
vec->y() = rand();
vec->z() = rand();
*vec -= RAND_MAX / 2;
}
// Given a set of points, computes the minimum bounding sphere of those points
scalar vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) {
// This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that
// we should probably implement sometime.
vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp;
scalar dx, dy, dz;
scalar rad, rad2;
int i;
// Initialize min, max vars
min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0];
// First, find the points with the min & max x,y, & z coordinates
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
if (vp->x() < min_x->x())
min_x = vp;
if (vp->x() > max_x->x())
max_x = vp;
if (vp->y() < min_y->y())
min_y = vp;
if (vp->y() > max_y->y())
max_y = vp;
if (vp->z() < min_z->z())
min_z = vp;
if (vp->z() > max_z->z())
max_z = vp;
}
// Calculate initial sphere
dx = vm_VectorDistance(min_x, max_x);
dy = vm_VectorDistance(min_y, max_y);
dz = vm_VectorDistance(min_z, max_z);
if (dx > dy)
if (dx > dz) {
*center = (*min_x + *max_x) / 2;
rad = dx / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
else if (dy > dz) {
*center = (*min_y + *max_y) / 2;
rad = dy / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
// Go through all points and look for ones that don't fit
rad2 = rad * rad;
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
vector delta;
scalar t2;
delta = *vp - *center;
t2 = delta.x() * delta.x() + delta.y() * delta.y() + delta.z() * delta.z();
// If point outside, make the sphere bigger
if (t2 > rad2) {
scalar t;
t = sqrt(t2);
rad = (rad + t) / 2;
rad2 = rad * rad;
*center += delta * (t - rad) / t;
}
}
// We're done
return rad;
}