Files
Descent3/scripts/osiris_vector.h
Jan Engelhardt a7398dd65e Replace Zero_vector by vector{}
As far as the set of .cpp files which are using vecmat.h are
concerned, `Zero_vector` is out of reach for the compiler optimizer,
because it is extern / lives in a separate translation unit. An
expression like `x == Zero_vector` or `v = Zero_vector` thus has to
perform memory loads (for Zero_vector's x,y,z parts) before
comparison or copying, respectively. By using an immediate zero
vector `vector{}` instead, the unnecessary extra loads should go
away.

I present exhibit A:

```
void copyxx(vector *x) { *x = Zero_vector; }

4905e0: 48 8b 05 41 c0 56 00  movq 0x56c041(%rip),%rax  # 9fc628 <Zero_vector>
4905e7: 48 89 07              movq %rax,(%rdi)
4905ea: 8b 05 40 c0 56 00     movl 0x56c040(%rip),%eax  # 9fc630 <Zero_vector+0x8>
4905f0: 89 47 08              movl %eax,0x8(%rdi)
4905f3: c3                    ret
```

vs.

```
void copyxx(vector *x) { *x = vector{}; }

4905c0: 48 c7 07 00 00 00 00  movq $0x0,(%rdi)
4905c7: c7 47 08 00 00 00 00  movl $0x0,0x8(%rdi)
4905ce: c3                    ret
```
2025-06-03 12:01:17 +02:00

196 lines
7.8 KiB
C

/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OSIRIS_VECTOR_H
#define OSIRIS_VECTOR_H
#include "fix.h"
#include "vecmat_external.h"
// Disable the "possible loss of data" warning
#pragma warning(disable : 4244)
// Used for debugging. It is used in printf's so we do not have to write out the structure 3 times
// to print all the coordinates.
#define XYZ(v) (v)->x(), (v)->y(), (v)->z()
#define HPB(v) (v)->h(), (v)->p(), (v)->b()
extern const matrix Identity_matrix;
// Given a matrix, makes it an identity matrix
extern void vm_MakeIdentity(matrix *);
// Set a vector to {0,0,0}
extern void vm_MakeZero(vector *v);
// Set an angvec to {0,0,0}
extern void vm_MakeZero(angvec *a);
// Rotates a vector thru a matrix
extern void vm_MatrixMulVector(vector *, const vector *, const matrix *);
// Multiply a vector times the transpose of a matrix
void vm_VectorMulTMatrix(vector *result, const vector *v, const matrix *m);
// Multiplies 2 3x3 matrixes, returning the result in first argument
extern void vm_MatrixMul(matrix *, const matrix *, const matrix *);
// Multiply a matrix times the transpose of a matrix
void vm_MatrixMulTMatrix(matrix *dest, const matrix *src0, const matrix *src1);
// Given a vector, returns the magnitude. Uses sqrt so it's slow
extern scalar vm_GetMagnitude(const vector *);
// Given a vector, returns an approximation of the magnitude
extern scalar vm_GetMagnitudeFast(const vector *);
// Returns the dot product of the two given vectors
extern scalar vm_DotProduct(const vector *, const vector *);
// Returns a perpendicular vector to the two given vectors
extern void vm_CrossProduct(vector *, const vector *, const vector *);
// Returns the difference between two vectors
extern void vm_SubVectors(vector *, const vector *, const vector *);
// Returns adds two vectors, returns result in first arg
extern void vm_AddVectors(vector *, const vector *, const vector *);
// Inits vector to 0,0,0
extern void vm_CenterVector(vector *);
// Given a vector, divides second arg by vector components
extern void vm_AverageVector(vector *, int);
// Normalizes a vector
// Returns the magnitude before normalization
extern scalar vm_VectorNormalize(vector *);
// Scales second arg vector by 3rd arg, placing result in first arg
extern void vm_ScaleVector(vector *, const vector *, const scalar);
// Scales all components of vector v by value s adds the result to p and stores result in vector d
extern void vm_ScaleAddVector(vector *d, const vector *p, const vector *v, const scalar s);
// Divides second vector components by 3rd arg, placing result in first arg. Useful for parametric lines
extern void vm_DivVector(vector *, const vector *, const scalar);
// Same as VectorNormalize, but uses approximation
extern scalar vm_VectorNormalizeFast(vector *);
// Clears a matrix to zero
extern void vm_ClearMatrix(matrix *);
// Transposes a matrix in place
extern void vm_TransposeMatrix(matrix *);
// Given 3 angles (p,h,b), makes a rotation matrix out of them
extern void vm_AnglesToMatrix(matrix *, const angle p, const angle h, const angle b);
// Ensure that a matrix is orthogonal
void vm_Orthogonalize(matrix *m);
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
// Parameters: m - filled in with the orienation matrix
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
// One or two of these must be specified, with the other(s) set to NULL.
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec = NULL, vector *rvec = NULL);
// Computes a matrix from a vector and and angle of rotation around that vector
// Parameters: m - filled in with the computed matrix
// v - the forward vector of the new matrix
// a - the angle of rotation around the forward vector
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a);
// Given an angle, places sin in 2nd arg, cos in 3rd. Either can be null
extern void vm_SinCos(angle, scalar *, scalar *);
// Given x1,y1,x2,y2, returns the slope
extern scalar vm_GetSlope(scalar, scalar, scalar, scalar);
// Calculates the perpendicular vector given three points
// Parms: n - the computed perp vector (filled in)
// v0,v1,v2 - three clockwise vertices
void vm_GetPerp(vector *n, const vector *a, const vector *b, const vector *c);
// Calculates the (normalized) surface normal give three points
// Parms: n - the computed surface normal (filled in)
// v0,v1,v2 - three clockwise vertices
// Returns the magnitude of the normal before it was normalized.
// The bigger this value, the better the normal.
scalar vm_GetNormal(vector *n, const vector *v0, const vector *v1, const vector *v2);
#define vm_GetSurfaceNormal vm_GetNormal
// Gets the distances (magnitude) between two vectors. Slow.
extern scalar vm_VectorDistance(const vector *a, const vector *b);
// Gets the approx distances (magnitude) between two vectors. Faster.
extern scalar vm_VectorDistanceQuick(const vector *a, const vector *b);
// Computes a normalized direction vector between two points
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
scalar vm_GetNormalizedDir(vector *dest, const vector *end, const vector *start);
// Returns a normalized direction vector between two points
// Uses sloppier magnitude, less precise
scalar vm_GetNormalizedDirFast(vector *dest, const vector *end, const vector *start);
// extract angles from a matrix
angvec *vm_ExtractAnglesFromMatrix(angvec *a, const matrix *m);
// returns the angle between two vectors and a forward vector
angle vm_DeltaAngVec(const vector *v0, const vector *v1, const vector *fvec);
// returns the angle between two normalized vectors and a forward vector
angle vm_DeltaAngVecNorm(const vector *v0, const vector *v1, const vector *fvec);
// Computes the distance from a point to a plane.
// Parms: checkp - the point to check
// Parms: norm - the (normalized) surface normal of the plane
// planep - a point on the plane
// Returns: The signed distance from the plane; negative dist is on the back of the plane
scalar vm_DistToPlane(const vector *checkp, const vector *norm, const vector *planep);
// returns the value of a determinant
scalar calc_det_value(const matrix *det);
void vm_MakeInverseMatrix(matrix *dest);
void vm_SinCosToMatrix(matrix *m, scalar sinp, scalar cosp, scalar sinb, scalar cosb, scalar sinh, scalar cosh);
// Gets the real center of a polygon
scalar vm_GetCentroid(vector *centroid, const vector *src, int nv);
// retrieves a random vector in values -RAND_MAX/2 to RAND_MAX/2
void vm_MakeRandomVector(vector *vec);
// Given a set of points, computes the minimum bounding sphere of those points
scalar vm_ComputeBoundingSphere(vector *center, const vector *vecs, int num_verts);
// Gets the real center of a polygon, but uses fast magnitude calculation
// Returns the size of the passed in stuff
scalar vm_GetCentroidFast(vector *centroid, const vector *src, int nv);
// Here are the C++ operator overloads -- they do as expected
extern matrix operator*(const matrix &src0, const matrix &src1);
extern matrix operator*=(matrix &src0, const matrix &src1);
#endif