mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-21 01:55:07 -05:00
Updated notebook folders
This commit is contained in:
@@ -1,176 +0,0 @@
|
||||
# Copyright (c) 2017, PyTorch contributors
|
||||
# Modifications copyright (C) Microsoft Corporation
|
||||
# Licensed under the BSD license
|
||||
# Adapted from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
|
||||
|
||||
from __future__ import print_function, division
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.optim import lr_scheduler
|
||||
from torchvision import datasets, models, transforms
|
||||
import numpy as np
|
||||
import time
|
||||
import os
|
||||
import copy
|
||||
import argparse
|
||||
|
||||
from azureml.core.run import Run
|
||||
# get the Azure ML run object
|
||||
run = Run.get_context()
|
||||
|
||||
|
||||
def load_data(data_dir):
|
||||
"""Load the train/val data."""
|
||||
|
||||
# Data augmentation and normalization for training
|
||||
# Just normalization for validation
|
||||
data_transforms = {
|
||||
'train': transforms.Compose([
|
||||
transforms.RandomResizedCrop(224),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
'val': transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
}
|
||||
|
||||
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
|
||||
data_transforms[x])
|
||||
for x in ['train', 'val']}
|
||||
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
|
||||
shuffle=True, num_workers=0)
|
||||
for x in ['train', 'val']}
|
||||
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
|
||||
class_names = image_datasets['train'].classes
|
||||
|
||||
return dataloaders, dataset_sizes, class_names
|
||||
|
||||
|
||||
def train_model(model, criterion, optimizer, scheduler, num_epochs, data_dir):
|
||||
"""Train the model."""
|
||||
|
||||
# load training/validation data
|
||||
dataloaders, dataset_sizes, class_names = load_data(data_dir)
|
||||
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
since = time.time()
|
||||
|
||||
best_model_wts = copy.deepcopy(model.state_dict())
|
||||
best_acc = 0.0
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
||||
print('-' * 10)
|
||||
|
||||
# Each epoch has a training and validation phase
|
||||
for phase in ['train', 'val']:
|
||||
if phase == 'train':
|
||||
scheduler.step()
|
||||
model.train() # Set model to training mode
|
||||
else:
|
||||
model.eval() # Set model to evaluate mode
|
||||
|
||||
running_loss = 0.0
|
||||
running_corrects = 0
|
||||
|
||||
# Iterate over data.
|
||||
for inputs, labels in dataloaders[phase]:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
# zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# forward
|
||||
# track history if only in train
|
||||
with torch.set_grad_enabled(phase == 'train'):
|
||||
outputs = model(inputs)
|
||||
_, preds = torch.max(outputs, 1)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# backward + optimize only if in training phase
|
||||
if phase == 'train':
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# statistics
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_corrects += torch.sum(preds == labels.data)
|
||||
|
||||
epoch_loss = running_loss / dataset_sizes[phase]
|
||||
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
||||
|
||||
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
|
||||
phase, epoch_loss, epoch_acc))
|
||||
|
||||
# deep copy the model
|
||||
if phase == 'val' and epoch_acc > best_acc:
|
||||
best_acc = epoch_acc
|
||||
best_model_wts = copy.deepcopy(model.state_dict())
|
||||
|
||||
# log the best val accuracy to AML run
|
||||
run.log('best_val_acc', np.float(best_acc))
|
||||
|
||||
print()
|
||||
|
||||
time_elapsed = time.time() - since
|
||||
print('Training complete in {:.0f}m {:.0f}s'.format(
|
||||
time_elapsed // 60, time_elapsed % 60))
|
||||
print('Best val Acc: {:4f}'.format(best_acc))
|
||||
|
||||
# load best model weights
|
||||
model.load_state_dict(best_model_wts)
|
||||
return model
|
||||
|
||||
|
||||
def fine_tune_model(num_epochs, data_dir, learning_rate, momentum):
|
||||
"""Load a pretrained model and reset the final fully connected layer."""
|
||||
|
||||
# log the hyperparameter metrics to the AML run
|
||||
run.log('lr', np.float(learning_rate))
|
||||
run.log('momentum', np.float(momentum))
|
||||
|
||||
model_ft = models.resnet18(pretrained=True)
|
||||
num_ftrs = model_ft.fc.in_features
|
||||
model_ft.fc = nn.Linear(num_ftrs, 2) # only 2 classes to predict
|
||||
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
model_ft = model_ft.to(device)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
# Observe that all parameters are being optimized
|
||||
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=momentum)
|
||||
|
||||
# Decay LR by a factor of 0.1 every 7 epochs
|
||||
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
|
||||
|
||||
model = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs, data_dir)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
# get command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data_dir', type=str, help='directory of training data')
|
||||
parser.add_argument('--num_epochs', type=int, default=25, help='number of epochs to train')
|
||||
parser.add_argument('--output_dir', type=str, help='output directory')
|
||||
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
|
||||
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
|
||||
args = parser.parse_args()
|
||||
|
||||
print("data directory is: " + args.data_dir)
|
||||
model = fine_tune_model(args.num_epochs, args.data_dir, args.learning_rate, args.momentum)
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
torch.save(model, os.path.join(args.output_dir, 'model.pt'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user