Delete train_diabetes.py

This commit is contained in:
Shané Winner
2019-08-29 10:21:59 -07:00
committed by GitHub
parent cd35ca30d4
commit 18d7afb707

View File

@@ -1,46 +0,0 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import numpy as np
from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import mlflow
import mlflow.sklearn
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
with mlflow.start_run():
X, y = load_diabetes(return_X_y=True)
columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
data = {
"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}
mlflow.log_metric("Training samples", len(data['train']['X']))
mlflow.log_metric("Test samples", len(data['test']['X']))
# Log the algorithm parameter alpha to the run
mlflow.log_metric('alpha', 0.03)
# Create, fit, and test the scikit-learn Ridge regression model
regression_model = Ridge(alpha=0.03)
regression_model.fit(data['train']['X'], data['train']['y'])
preds = regression_model.predict(data['test']['X'])
# Log mean squared error
print('Mean Squared Error is', mean_squared_error(data['test']['y'], preds))
mlflow.log_metric('mse', mean_squared_error(data['test']['y'], preds))
# Save the model to the outputs directory for capture
mlflow.sklearn.log_model(regression_model, "model")
# Plot actuals vs predictions and save the plot within the run
fig = plt.figure(1)
idx = np.argsort(data['test']['y'])
plt.plot(data['test']['y'][idx], preds[idx])
fig.savefig("actuals_vs_predictions.png")
mlflow.log_artifact("actuals_vs_predictions.png")