mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-23 11:02:39 -05:00
Merged notebook changes from release 1.0.45
This commit is contained in:
@@ -36,22 +36,6 @@
|
||||
"4. Visualize the global and local explanations with the visualization dashboard."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This example needs sklearn-pandas. If it is not installed, uncomment and run the following line."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install sklearn-pandas"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -63,7 +47,6 @@
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
|
||||
"from sklearn_pandas import DataFrameMapper\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
@@ -113,6 +96,13 @@
|
||||
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"sklearn imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -121,7 +111,51 @@
|
||||
"source": [
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can explain raw features by either using a `sklearn.compose.ColumnTransformer` or a list of fitted transformer tuples. The cell below uses `sklearn.compose.ColumnTransformer`. In case you want to run the example with the list of fitted transformer tuples, comment the cell below and uncomment the cell that follows after. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"\n",
|
||||
"transformations = ColumnTransformer([\n",
|
||||
" (\"age_fare\", Pipeline(steps=[\n",
|
||||
" ('imputer', SimpleImputer(strategy='median')),\n",
|
||||
" ('scaler', StandardScaler())\n",
|
||||
" ]), [\"age\", \"fare\"]),\n",
|
||||
" (\"embarked\", Pipeline(steps=[\n",
|
||||
" (\"imputer\", SimpleImputer(strategy='constant', fill_value='missing')), \n",
|
||||
" (\"encoder\", OneHotEncoder(sparse=False))]), [\"embarked\"]),\n",
|
||||
" (\"sex_pclass\", OneHotEncoder(sparse=False), [\"sex\", \"pclass\"]) \n",
|
||||
"])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Append classifier to preprocessing pipeline.\n",
|
||||
"# Now we have a full prediction pipeline.\n",
|
||||
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
|
||||
" ('classifier', LogisticRegression(solver='lbfgs'))])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'''\n",
|
||||
"# Uncomment below if sklearn-pandas is not installed\n",
|
||||
"#!pip install sklearn-pandas\n",
|
||||
"from sklearn_pandas import DataFrameMapper\n",
|
||||
"\n",
|
||||
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
|
||||
@@ -141,7 +175,8 @@
|
||||
"# Append classifier to preprocessing pipeline.\n",
|
||||
"# Now we have a full prediction pipeline.\n",
|
||||
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n",
|
||||
" ('classifier', LogisticRegression(solver='lbfgs'))])"
|
||||
" ('classifier', LogisticRegression(solver='lbfgs'))])\n",
|
||||
"'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user