diff --git a/tutorials/machine-learning-pipelines-advanced/scripts/batch_scoring.py b/tutorials/machine-learning-pipelines-advanced/scripts/batch_scoring.py index f4058ff6..f580a144 100644 --- a/tutorials/machine-learning-pipelines-advanced/scripts/batch_scoring.py +++ b/tutorials/machine-learning-pipelines-advanced/scripts/batch_scoring.py @@ -16,6 +16,7 @@ import tf_slim from azureml.core import Run from azureml.core.model import Model from azureml.core.dataset import Dataset +from tf_slim import nets slim = tf_slim @@ -41,15 +42,14 @@ def init(): parser.add_argument('--model_name', dest="model_name", required=True) parser.add_argument('--labels_dir', dest="labels_dir", required=True) args, _ = parser.parse_known_args() - from nets import inception_v3, inception_utils label_dict = get_class_label_dict(args.labels_dir) classes_num = len(label_dict) tf.disable_v2_behavior() - with slim.arg_scope(inception_utils.inception_arg_scope()): + with slim.arg_scope(nets.inception.inception_v3_arg_scope()): input_images = tf.placeholder(tf.float32, [1, image_size, image_size, num_channel]) - logits, _ = inception_v3.inception_v3(input_images, - num_classes=classes_num, - is_training=False) + logits, _ = nets.inception.inception_v3(input_images, + num_classes=classes_num, + is_training=False) probabilities = tf.argmax(logits, 1) config = tf.ConfigProto()