mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
update samples from Release-73 as a part of SDK release
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -10,7 +11,12 @@ from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
from azureml.automl.runtime.shared.score import scoring, constants
|
||||
from azureml.core import Run
|
||||
|
||||
import torch
|
||||
try:
|
||||
import torch
|
||||
|
||||
_torch_present = True
|
||||
except ImportError:
|
||||
_torch_present = False
|
||||
|
||||
|
||||
def align_outputs(y_predicted, X_trans, X_test, y_test,
|
||||
@@ -50,7 +56,7 @@ def align_outputs(y_predicted, X_trans, X_test, y_test,
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = together[together[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
return (clean)
|
||||
|
||||
|
||||
def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
@@ -85,8 +91,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
if origin_time != X[time_column_name].min():
|
||||
# Set the context by including actuals up-to the origin time
|
||||
test_context_expand_wind = (X[time_column_name] < origin_time)
|
||||
context_expand_wind = (
|
||||
X_test_expand[time_column_name] < origin_time)
|
||||
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
|
||||
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
|
||||
|
||||
# Print some debug info
|
||||
@@ -117,8 +122,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
# Align forecast with test set for dates within
|
||||
# the current rolling window
|
||||
trans_tindex = X_trans.index.get_level_values(time_column_name)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (
|
||||
trans_tindex < horizon_time)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
|
||||
df_list.append(align_outputs(
|
||||
y_fcst[trans_roll_wind], X_trans[trans_roll_wind],
|
||||
@@ -157,8 +161,7 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
|
||||
if origin_time != X_test[time_column_name].min():
|
||||
# Set the context by including actuals up-to the origin time
|
||||
test_context_expand_wind = (X_test[time_column_name] < origin_time)
|
||||
context_expand_wind = (
|
||||
X_test_expand[time_column_name] < origin_time)
|
||||
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
|
||||
y_query_expand[context_expand_wind] = y_test[
|
||||
test_context_expand_wind]
|
||||
|
||||
@@ -188,10 +191,8 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
|
||||
# Align forecast with test set for dates within the
|
||||
# current rolling window
|
||||
trans_tindex = X_trans.index.get_level_values(time_column_name)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (
|
||||
trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (
|
||||
X_test[time_column_name] >= origin_time)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
|
||||
df_list.append(align_outputs(y_fcst[trans_roll_wind],
|
||||
X_trans[trans_roll_wind],
|
||||
X_test[test_roll_wind],
|
||||
@@ -244,7 +245,6 @@ parser.add_argument(
|
||||
'--model_path', type=str, dest='model_path',
|
||||
default='model.pkl', help='Filename of model to be loaded')
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
max_horizon = args.max_horizon
|
||||
target_column_name = args.target_column_name
|
||||
@@ -252,7 +252,6 @@ time_column_name = args.time_column_name
|
||||
freq = args.freq
|
||||
model_path = args.model_path
|
||||
|
||||
|
||||
print('args passed are: ')
|
||||
print(max_horizon)
|
||||
print(target_column_name)
|
||||
@@ -280,13 +279,19 @@ X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
|
||||
y_lookback_df = lookback_dataset.with_timestamp_columns(
|
||||
None).keep_columns(columns=[target_column_name])
|
||||
|
||||
# Load the trained model with torch.
|
||||
if torch.cuda.is_available():
|
||||
map_location = map_location_cuda
|
||||
_, ext = os.path.splitext(model_path)
|
||||
if ext == '.pt':
|
||||
# Load the fc-tcn torch model.
|
||||
assert _torch_present
|
||||
if torch.cuda.is_available():
|
||||
map_location = map_location_cuda
|
||||
else:
|
||||
map_location = 'cpu'
|
||||
with open(model_path, 'rb') as fh:
|
||||
fitted_model = torch.load(fh, map_location=map_location)
|
||||
else:
|
||||
map_location = 'cpu'
|
||||
with open(model_path, 'rb') as fh:
|
||||
fitted_model = torch.load(fh, map_location=map_location)
|
||||
# Load the sklearn pipeline.
|
||||
fitted_model = joblib.load(model_path)
|
||||
|
||||
if hasattr(fitted_model, 'get_lookback'):
|
||||
lookback = fitted_model.get_lookback()
|
||||
|
||||
Reference in New Issue
Block a user