update samples from Release-55 as a part of SDK release

This commit is contained in:
amlrelsa-ms
2020-06-08 22:28:25 +00:00
parent 34898828be
commit 34a67c1f8b
40 changed files with 1388 additions and 145 deletions

View File

@@ -1,8 +1,11 @@
import numpy as np
import argparse
from azureml.core import Run
import numpy as np
from sklearn.externals import joblib
from azureml.automl.core.shared import constants, metrics
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
from azureml.core.model import Model
@@ -29,22 +32,26 @@ model = joblib.load(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
train_dataset = run.input_datasets['train_data']
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
y_test_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
y_train_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
predicted = model.predict_proba(X_test_df)
# use automl metrics module
scores = metrics.compute_metrics_classification(
np.array(predicted),
np.array(y_test_df),
class_labels=model.classes_,
metrics=list(constants.Metric.SCALAR_CLASSIFICATION_SET)
)
# Use the AutoML scoring module
class_labels = np.unique(np.concatenate((y_train_df.values, y_test_df.values)))
train_labels = model.classes_
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
scores = scoring.score_classification(y_test_df.values, predicted,
classification_metrics,
class_labels, train_labels)
print("scores:")
print(scores)