mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
update samples from Release-18 as a part of 1.1.0rc0 SDK experimental release (#760)
Co-authored-by: vizhur <vizhur@live.com>
This commit is contained in:
27
tutorials/image-classification-mnist-data/utils.py
Normal file
27
tutorials/image-classification-mnist-data/utils.py
Normal file
@@ -0,0 +1,27 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import gzip
|
||||
import numpy as np
|
||||
import struct
|
||||
|
||||
|
||||
# load compressed MNIST gz files and return numpy arrays
|
||||
def load_data(filename, label=False):
|
||||
with gzip.open(filename) as gz:
|
||||
struct.unpack('I', gz.read(4))
|
||||
n_items = struct.unpack('>I', gz.read(4))
|
||||
if not label:
|
||||
n_rows = struct.unpack('>I', gz.read(4))[0]
|
||||
n_cols = struct.unpack('>I', gz.read(4))[0]
|
||||
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], n_rows * n_cols)
|
||||
else:
|
||||
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], 1)
|
||||
return res
|
||||
|
||||
|
||||
# one-hot encode a 1-D array
|
||||
def one_hot_encode(array, num_of_classes):
|
||||
return np.eye(num_of_classes)[array.reshape(-1)]
|
||||
Reference in New Issue
Block a user