mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-21 10:05:09 -05:00
update samples from Release-53 as a part of 1.19.0 SDK stable release
This commit is contained in:
@@ -3,11 +3,11 @@ from azureml.core import Environment
|
||||
from azureml.core.conda_dependencies import CondaDependencies
|
||||
from azureml.train.estimator import Estimator
|
||||
from azureml.core.run import Run
|
||||
from azureml.automl.core.shared import constants
|
||||
|
||||
|
||||
def split_fraction_by_grain(df, fraction, time_column_name,
|
||||
grain_column_names=None):
|
||||
|
||||
if not grain_column_names:
|
||||
df['tmp_grain_column'] = 'grain'
|
||||
grain_column_names = ['tmp_grain_column']
|
||||
@@ -17,10 +17,10 @@ def split_fraction_by_grain(df, fraction, time_column_name,
|
||||
.groupby(grain_column_names, group_keys=False))
|
||||
|
||||
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-int(len(dfg) *
|
||||
fraction)] if fraction > 0 else dfg)
|
||||
fraction)] if fraction > 0 else dfg)
|
||||
|
||||
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-int(len(dfg) *
|
||||
fraction):] if fraction > 0 else dfg[:0])
|
||||
fraction):] if fraction > 0 else dfg[:0])
|
||||
|
||||
if 'tmp_grain_column' in grain_column_names:
|
||||
for df2 in (df, df_head, df_tail):
|
||||
@@ -59,11 +59,13 @@ def get_result_df(remote_run):
|
||||
'primary_metric', 'Score'])
|
||||
goal_minimize = False
|
||||
for run in children:
|
||||
if('run_algorithm' in run.properties and 'score' in run.properties):
|
||||
if run.get_status().lower() == constants.RunState.COMPLETE_RUN \
|
||||
and 'run_algorithm' in run.properties and 'score' in run.properties:
|
||||
# We only count in the completed child runs.
|
||||
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
|
||||
run.properties['primary_metric'],
|
||||
float(run.properties['score'])]
|
||||
if('goal' in run.properties):
|
||||
if ('goal' in run.properties):
|
||||
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
|
||||
|
||||
summary_df = summary_df.T.sort_values(
|
||||
@@ -118,7 +120,6 @@ def run_multiple_inferences(summary_df, train_experiment, test_experiment,
|
||||
compute_target, script_folder, test_dataset,
|
||||
lookback_dataset, max_horizon, target_column_name,
|
||||
time_column_name, freq):
|
||||
|
||||
for run_name, run_summary in summary_df.iterrows():
|
||||
print(run_name)
|
||||
print(run_summary)
|
||||
|
||||
Reference in New Issue
Block a user