mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
update samples from Release-66 as a part of SDK release
This commit is contained in:
@@ -0,0 +1,150 @@
|
||||
# Copyright (c) 2017, PyTorch Team
|
||||
# All rights reserved
|
||||
# Licensed under BSD 3-Clause License.
|
||||
|
||||
# This example is based on PyTorch MNIST example:
|
||||
# https://github.com/pytorch/examples/blob/master/mnist/main.py
|
||||
|
||||
import mlflow
|
||||
import mlflow.pytorch
|
||||
from mlflow.utils.environment import _mlflow_conda_env
|
||||
import warnings
|
||||
import cloudpickle
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
from torchvision import datasets, transforms
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
||||
self.fc1 = nn.Linear(4 * 4 * 50, 500)
|
||||
self.fc2 = nn.Linear(500, 10)
|
||||
|
||||
def forward(self, x):
|
||||
# Added the view for reshaping score requests
|
||||
x = x.view(-1, 1, 28, 28)
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = x.view(-1, 4 * 4 * 50)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
def train(args, model, device, train_loader, optimizer, epoch):
|
||||
model.train()
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
data, target = data.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx % args.log_interval == 0:
|
||||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
||||
epoch, batch_idx * len(data), len(train_loader.dataset),
|
||||
100. * batch_idx / len(train_loader), loss.item()))
|
||||
# Use MLflow logging
|
||||
mlflow.log_metric("epoch_loss", loss.item())
|
||||
|
||||
|
||||
def test(args, model, device, test_loader):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
output = model(data)
|
||||
# sum up batch loss
|
||||
test_loss += F.nll_loss(output, target, reduction="sum").item()
|
||||
# get the index of the max log-probability
|
||||
pred = output.argmax(dim=1, keepdim=True)
|
||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||
|
||||
test_loss /= len(test_loader.dataset)
|
||||
print("\n")
|
||||
print("Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
|
||||
test_loss, correct, len(test_loader.dataset),
|
||||
100. * correct / len(test_loader.dataset)))
|
||||
# Use MLflow logging
|
||||
mlflow.log_metric("average_loss", test_loss)
|
||||
|
||||
|
||||
class Args(object):
|
||||
pass
|
||||
|
||||
|
||||
# Training settings
|
||||
args = Args()
|
||||
setattr(args, 'batch_size', 64)
|
||||
setattr(args, 'test_batch_size', 1000)
|
||||
setattr(args, 'epochs', 3) # Higher number for better convergence
|
||||
setattr(args, 'lr', 0.01)
|
||||
setattr(args, 'momentum', 0.5)
|
||||
setattr(args, 'no_cuda', True)
|
||||
setattr(args, 'seed', 1)
|
||||
setattr(args, 'log_interval', 10)
|
||||
setattr(args, 'save_model', True)
|
||||
|
||||
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST('../data', train=True, download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args.batch_size, shuffle=True, **kwargs)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST(
|
||||
'../data',
|
||||
train=False,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))])),
|
||||
batch_size=args.test_batch_size, shuffle=True, **kwargs)
|
||||
|
||||
|
||||
def driver():
|
||||
warnings.filterwarnings("ignore")
|
||||
# Dependencies for deploying the model
|
||||
pytorch_index = "https://download.pytorch.org/whl/"
|
||||
pytorch_version = "cpu/torch-1.1.0-cp36-cp36m-linux_x86_64.whl"
|
||||
deps = [
|
||||
"cloudpickle=={}".format(cloudpickle.__version__),
|
||||
pytorch_index + pytorch_version,
|
||||
"torchvision=={}".format(torchvision.__version__),
|
||||
"Pillow=={}".format("6.0.0")
|
||||
]
|
||||
with mlflow.start_run() as run:
|
||||
model = Net().to(device)
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(),
|
||||
lr=args.lr,
|
||||
momentum=args.momentum)
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
train(args, model, device, train_loader, optimizer, epoch)
|
||||
test(args, model, device, test_loader)
|
||||
# Log model to run history using MLflow
|
||||
if args.save_model:
|
||||
model_env = _mlflow_conda_env(additional_pip_deps=deps)
|
||||
mlflow.pytorch.log_model(model, "model", conda_env=model_env)
|
||||
return run
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
driver()
|
||||
Reference in New Issue
Block a user