update samples from Release-130 as a part of SDK release

This commit is contained in:
amlrelsa-ms
2022-03-29 22:33:38 +00:00
parent 796798cb49
commit 95b0392ed2
534 changed files with 151904 additions and 27048 deletions

View File

@@ -0,0 +1,68 @@
import argparse
import pandas as pd
import numpy as np
from sklearn.externals import joblib
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
from azureml.core.model import Model
parser = argparse.ArgumentParser()
parser.add_argument(
"--target_column_name",
type=str,
dest="target_column_name",
help="Target Column Name",
)
parser.add_argument(
"--model_name", type=str, dest="model_name", help="Name of registered model"
)
args = parser.parse_args()
target_column_name = args.target_column_name
model_name = args.model_name
print("args passed are: ")
print("Target column name: ", target_column_name)
print("Name of registered model: ", model_name)
model_path = Model.get_model_path(model_name)
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets["test_data"]
X_test_df = test_dataset.drop_columns(
columns=[target_column_name]
).to_pandas_dataframe()
y_test_df = (
test_dataset.with_timestamp_columns(None)
.keep_columns(columns=[target_column_name])
.to_pandas_dataframe()
)
predicted = model.predict_proba(X_test_df)
if isinstance(predicted, pd.DataFrame):
predicted = predicted.values
# Use the AutoML scoring module
train_labels = model.classes_
class_labels = np.unique(
np.concatenate((y_test_df.values, np.reshape(train_labels, (-1, 1))))
)
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
scores = scoring.score_classification(
y_test_df.values, predicted, classification_metrics, class_labels, train_labels
)
print("scores:")
print(scores)
for key, value in scores.items():
run.log(key, value)