update samples from Release-130 as a part of SDK release

This commit is contained in:
amlrelsa-ms
2022-03-29 22:33:38 +00:00
parent 796798cb49
commit 95b0392ed2
534 changed files with 151904 additions and 27048 deletions

View File

@@ -0,0 +1,80 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import os
import argparse
import datetime
import time
import tensorflow as tf
from math import ceil
import numpy as np
import shutil
from tensorflow.contrib.slim.python.slim.nets import inception_v3
from azureml.core import Run
from azureml.core.model import Model
from azureml.core.dataset import Dataset
slim = tf.contrib.slim
image_size = 299
num_channel = 3
def get_class_label_dict(labels_dir):
label = []
labels_path = os.path.join(labels_dir, 'labels.txt')
proto_as_ascii_lines = tf.gfile.GFile(labels_path).readlines()
for temp in proto_as_ascii_lines:
label.append(temp.rstrip())
return label
def init():
global g_tf_sess, probabilities, label_dict, input_images
parser = argparse.ArgumentParser(description="Start a tensorflow model serving")
parser.add_argument('--model_name', dest="model_name", required=True)
parser.add_argument('--labels_dir', dest="labels_dir", required=True)
args, _ = parser.parse_known_args()
label_dict = get_class_label_dict(args.labels_dir)
classes_num = len(label_dict)
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
input_images = tf.placeholder(tf.float32, [1, image_size, image_size, num_channel])
logits, _ = inception_v3.inception_v3(input_images,
num_classes=classes_num,
is_training=False)
probabilities = tf.argmax(logits, 1)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
g_tf_sess = tf.Session(config=config)
g_tf_sess.run(tf.global_variables_initializer())
g_tf_sess.run(tf.local_variables_initializer())
model_path = Model.get_model_path(args.model_name)
saver = tf.train.Saver()
saver.restore(g_tf_sess, model_path)
def file_to_tensor(file_path):
image_string = tf.read_file(file_path)
image = tf.image.decode_image(image_string, channels=3)
image.set_shape([None, None, None])
image = tf.image.resize_images(image, [image_size, image_size])
image = tf.divide(tf.subtract(image, [0]), [255])
image.set_shape([image_size, image_size, num_channel])
return image
def run(mini_batch):
result_list = []
for file_path in mini_batch:
test_image = file_to_tensor(file_path)
out = g_tf_sess.run(test_image)
result = g_tf_sess.run(probabilities, feed_dict={input_images: [out]})
result_list.append(os.path.basename(file_path) + ": " + label_dict[result[0]])
return result_list