quickstart added

This commit is contained in:
Sam Kemp
2020-09-29 21:09:55 +01:00
parent a039166b90
commit 9903e56882
24 changed files with 1478 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
print("hello world!")

View File

@@ -0,0 +1,22 @@
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

View File

@@ -0,0 +1,62 @@
import torch
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import Net
from azureml.core import Run
# ADDITIONAL CODE: get AML run from the current context
run = Run.get_context()
# download CIFAR 10 data
trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=torchvision.transforms.ToTensor()
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)
if __name__ == "__main__":
# define convolutional network
net = Net()
# set up pytorch loss / optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# train the network
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# unpack the data
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999:
loss = running_loss / 2000
# ADDITIONAL CODE: log loss metric to AML
run.log('loss', loss)
print(f'epoch={epoch + 1}, batch={i + 1:5}: loss {loss:.2f}')
running_loss = 0.0
print('Finished Training')

View File

@@ -0,0 +1,22 @@
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

View File

@@ -0,0 +1,52 @@
import torch
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import Net
# download CIFAR 10 data
trainset = torchvision.datasets.CIFAR10(
root="./data",
train=True,
download=True,
transform=torchvision.transforms.ToTensor(),
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=4, shuffle=True, num_workers=2
)
if __name__ == "__main__":
# define convolutional network
net = Net()
# set up pytorch loss / optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# train the network
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# unpack the data
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999:
loss = running_loss / 2000
print(f"epoch={epoch + 1}, batch={i + 1:5}: loss {loss:.2f}")
running_loss = 0.0
print("Finished Training")

View File

@@ -0,0 +1,22 @@
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

View File

@@ -0,0 +1,96 @@
import os
import argparse
import torch
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import Net
from azureml.core import Run
run = Run.get_context()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_path',
type=str,
help='Path to the training data'
)
parser.add_argument(
'--learning_rate',
type=float,
default=0.001,
help='Learning rate for SGD'
)
parser.add_argument(
'--momentum',
type=float,
default=0.9,
help='Momentum for SGD'
)
args = parser.parse_args()
print("===== DATA =====")
print("DATA PATH: " + args.data_path)
print("LIST FILES IN DATA PATH...")
print(os.listdir(args.data_path))
print("================")
# prepare DataLoader for CIFAR10 data
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(
root=args.data_path,
train=True,
download=False,
transform=transform,
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)
# define convolutional network
net = Net()
# set up pytorch loss / optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
)
# train the network
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# unpack the data
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999:
loss = running_loss / 2000
run.log('loss', loss) # log loss metric to AML
print(f'epoch={epoch + 1}, batch={i + 1:5}: loss {loss:.2f}')
running_loss = 0.0
print('Finished Training')