Merge pull request #459 from datashinobi/yassine/datadrift2

fix link to config nb & settingwithcopywarning
This commit is contained in:
Roope Astala
2019-07-03 12:41:31 -04:00
committed by GitHub

View File

@@ -82,7 +82,7 @@
"source": [
"## Set up Configuraton and Create Azure ML Workspace\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace."
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace."
]
},
{
@@ -140,26 +140,26 @@
"\n",
"columns = ['usaf', 'wban', 'datetime', 'latitude', 'longitude', 'elevation', 'windAngle', 'windSpeed', 'temperature', 'stationName', 'p_k']\n",
"\n",
"\n",
"def enrich_weather_noaa_data(noaa_df):\n",
" hours_in_day = 23\n",
" week_in_year = 52\n",
" \n",
" noaa_df[\"hour\"] = noaa_df[\"datetime\"].dt.hour\n",
" noaa_df[\"weekofyear\"] = noaa_df[\"datetime\"].dt.week\n",
" \n",
" noaa_df[\"sine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.sin((2*np.pi*x.dt.week-1)/week_in_year))\n",
" noaa_df[\"cosine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.cos((2*np.pi*x.dt.week-1)/week_in_year))\n",
"\n",
" noaa_df[\"sine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.sin(2*np.pi*x.dt.hour/hours_in_day))\n",
" noaa_df[\"cosine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.cos(2*np.pi*x.dt.hour/hours_in_day))\n",
" noaa_df = noaa_df.assign(hour=noaa_df[\"datetime\"].dt.hour,\n",
" weekofyear=noaa_df[\"datetime\"].dt.week,\n",
" sine_weekofyear=noaa_df['datetime'].transform(lambda x: np.sin((2*np.pi*x.dt.week-1)/week_in_year)),\n",
" cosine_weekofyear=noaa_df['datetime'].transform(lambda x: np.cos((2*np.pi*x.dt.week-1)/week_in_year)),\n",
" sine_hourofday=noaa_df['datetime'].transform(lambda x: np.sin(2*np.pi*x.dt.hour/hours_in_day)),\n",
" cosine_hourofday=noaa_df['datetime'].transform(lambda x: np.cos(2*np.pi*x.dt.hour/hours_in_day))\n",
" )\n",
" \n",
" return noaa_df\n",
"\n",
"\n",
"def add_window_col(input_df):\n",
" shift_interval = pd.Timedelta('-7 days') # your X days interval\n",
" df_shifted = input_df.copy()\n",
" df_shifted['datetime'] = df_shifted['datetime'] - shift_interval\n",
" df_shifted.loc[:,'datetime'] = df_shifted['datetime'] - shift_interval\n",
" df_shifted.drop(list(input_df.columns.difference(['datetime', 'usaf', 'wban', 'sine_hourofday', 'temperature'])), axis=1, inplace=True)\n",
"\n",
" # merge, keeping only observations where -1 lag is present\n",