Update notebooks

This commit is contained in:
Roope Astala
2018-10-12 14:39:33 -04:00
parent 216aa8b6a1
commit a4792d95ac
67 changed files with 6470 additions and 1610 deletions

View File

@@ -15,7 +15,7 @@
"source": [
"# AutoML 08: Remote Execution with DataStore\n",
"\n",
"In this sample accesses a data file on a remote DSVM through DataStore. Advantagets of using data store\n",
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
"1. DataStore secures the access details.\n",
"2. DataStore supports read, write to blob and file store\n",
"3. AutoML natively supports copying data from DataStore to DSVM\n",
@@ -23,8 +23,8 @@
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Configuring the DSVM to allow files to be access directly by the get_data method.\n",
"2. get_data returning data from a local file.\n",
"1. Storing data in DataStore.\n",
"2. get_data returning data from DataStore.\n",
"\n"
]
},
@@ -285,11 +285,11 @@
" le = LabelEncoder()\n",
" le.fit(df[\"Label\"].values)\n",
" y = le.transform(df[\"Label\"].values)\n",
" df = df.drop([\"Label\"], axis=1)\n",
" X = df.drop([\"Label\"], axis=1)\n",
"\n",
" df_train, _, y_train, _ = train_test_split(df, y, test_size=0.1, random_state=42)\n",
" X_train, _, y_train, _ = train_test_split(X, y, test_size=0.1, random_state=42)\n",
"\n",
" return { \"X\" : df.values, \"y\" : y }"
" return { \"X\" : X_train.values, \"y\" : y_train }"
]
},
{
@@ -300,7 +300,7 @@
"\n",
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
"\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to the fit method.</i>\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to AutoMLConfig.</i>\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
@@ -342,7 +342,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training the Model <a class=\"anchor\" id=\"Training-the-model-Remote-DSVM\"></a>\n",
"## Training the Models <a class=\"anchor\" id=\"Training-the-model-Remote-DSVM\"></a>\n",
"\n",
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
]
@@ -410,7 +410,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Canceling runs\n",
"## Canceling Runs\n",
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
]
},
@@ -433,7 +433,7 @@
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method on automl_classifier returns the best run and the fitted model for the last *fit* invocation. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
"Below we select the best pipeline from our iterations. The *get_output* method returns the best run and the fitted model. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
@@ -483,26 +483,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register fitted model for deployment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#description = 'AutoML Model'\n",
"#tags = None\n",
"#remote_run.register_model(description=description, tags=tags)\n",
"#remote_run.model_id # Use this id to deploy the model as a web service in Azure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Testing the Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n"
"### Testing the Best Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n"
]
},
{
@@ -523,11 +504,11 @@
"le = LabelEncoder()\n",
"le.fit(df[\"Label\"].values)\n",
"y = le.transform(df[\"Label\"].values)\n",
"df = df.drop([\"Label\"], axis=1)\n",
"X = df.drop([\"Label\"], axis=1)\n",
"\n",
"_, df_test, _, y_test = train_test_split(df, y, test_size=0.1, random_state=42)\n",
"_, X_test, _, y_test = train_test_split(X, y, test_size=0.1, random_state=42)\n",
"\n",
"ypred = fitted_model.predict(df_test.values)\n",
"ypred = fitted_model.predict(X_test.values)\n",
"\n",
"ypred_strings = le.inverse_transform(ypred)\n",
"ytest_strings = le.inverse_transform(y_test)\n",
@@ -541,6 +522,11 @@
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",