diff --git a/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/keras-mnist-fashion/train.py b/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/keras-mnist-fashion/train.py index b0215ad1..7cb8d72a 100644 --- a/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/keras-mnist-fashion/train.py +++ b/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/keras-mnist-fashion/train.py @@ -1,10 +1,11 @@ -import keras -from keras.models import Sequential -from keras.layers import Dense, Dropout, Flatten -from keras.layers import Conv2D, MaxPooling2D -from keras.layers.normalization import BatchNormalization -from keras.utils import to_categorical -from keras.callbacks import Callback +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Dense, Dropout, Flatten +from tensorflow.keras.layers import Conv2D, MaxPooling2D +from tensorflow.keras.layers import BatchNormalization +from tensorflow.keras.losses import categorical_crossentropy +from tensorflow.keras.optimizers import Adam +from tensorflow.keras.utils import to_categorical +from tensorflow.keras.callbacks import Callback import numpy as np import pandas as pd @@ -64,8 +65,8 @@ model.add(Dense(128, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(num_classes, activation='softmax')) -model.compile(loss=keras.losses.categorical_crossentropy, - optimizer=keras.optimizers.Adam(), +model.compile(loss=categorical_crossentropy, + optimizer=Adam(), metrics=['accuracy']) # start an Azure ML run diff --git a/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb b/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb index 648dfce4..14044ce4 100644 --- a/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb +++ b/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb @@ -270,16 +270,19 @@ "%%writefile conda_dependencies.yml\n", "\n", "dependencies:\n", - "- python=3.6.2\n", + "- python=3.8\n", + "- pip==20.2.4\n", "- pip:\n", " - azureml-core\n", " - azureml-dataset-runtime\n", - " - keras==2.4.3\n", - " - tensorflow==2.4.3\n", + " - keras==2.6\n", + " - tensorflow-gpu==2.6\n", " - numpy\n", " - scikit-learn\n", " - pandas\n", - " - matplotlib" + " - matplotlib\n", + " - protobuf==3.20.1\n", + " - typing-extensions==4.3.0" ] }, {