mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
Add files via upload
This commit is contained in:
@@ -0,0 +1,238 @@
|
||||
# Copyright (c) 2017 Facebook, Inc. All rights reserved.
|
||||
# BSD 3-Clause License
|
||||
#
|
||||
# Script adapted from:
|
||||
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
|
||||
# ==============================================================================
|
||||
|
||||
# imports
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
# define network architecture
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 32, 3)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(32, 64, 3)
|
||||
self.conv3 = nn.Conv2d(64, 128, 3)
|
||||
self.fc1 = nn.Linear(128 * 6 * 6, 120)
|
||||
self.dropout = nn.Dropout(p=0.2)
|
||||
self.fc2 = nn.Linear(120, 84)
|
||||
self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = self.pool(F.relu(self.conv3(x)))
|
||||
x = x.view(-1, 128 * 6 * 6)
|
||||
x = self.dropout(F.relu(self.fc1(x)))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(train_loader, model, criterion, optimizer, epoch, device, print_freq, rank):
|
||||
running_loss = 0.0
|
||||
for i, data in enumerate(train_loader, 0):
|
||||
# get the inputs; data is a list of [inputs, labels]
|
||||
inputs, labels = data[0].to(device), data[1].to(device)
|
||||
|
||||
# zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# forward + backward + optimize
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# print statistics
|
||||
running_loss += loss.item()
|
||||
if i % print_freq == 0: # print every print_freq mini-batches
|
||||
print(
|
||||
"Rank %d: [%d, %5d] loss: %.3f"
|
||||
% (rank, epoch + 1, i + 1, running_loss / print_freq)
|
||||
)
|
||||
running_loss = 0.0
|
||||
|
||||
|
||||
def evaluate(test_loader, model, device):
|
||||
classes = (
|
||||
"plane",
|
||||
"car",
|
||||
"bird",
|
||||
"cat",
|
||||
"deer",
|
||||
"dog",
|
||||
"frog",
|
||||
"horse",
|
||||
"ship",
|
||||
"truck",
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
class_correct = list(0.0 for i in range(10))
|
||||
class_total = list(0.0 for i in range(10))
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
images, labels = data[0].to(device), data[1].to(device)
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
c = (predicted == labels).squeeze()
|
||||
for i in range(10):
|
||||
label = labels[i]
|
||||
class_correct[label] += c[i].item()
|
||||
class_total[label] += 1
|
||||
|
||||
# print total test set accuracy
|
||||
print(
|
||||
"Accuracy of the network on the 10000 test images: %d %%"
|
||||
% (100 * correct / total)
|
||||
)
|
||||
|
||||
# print test accuracy for each of the classes
|
||||
for i in range(10):
|
||||
print(
|
||||
"Accuracy of %5s : %2d %%"
|
||||
% (classes[i], 100 * class_correct[i] / class_total[i])
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
# get PyTorch environment variables
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
rank = int(os.environ["RANK"])
|
||||
local_rank = int(os.environ["LOCAL_RANK"])
|
||||
|
||||
distributed = world_size > 1
|
||||
|
||||
# set device
|
||||
if distributed:
|
||||
device = torch.device("cuda", local_rank)
|
||||
else:
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# initialize distributed process group using default env:// method
|
||||
if distributed:
|
||||
torch.distributed.init_process_group(backend="nccl")
|
||||
|
||||
# define train and test dataset DataLoaders
|
||||
transform = transforms.Compose(
|
||||
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
||||
)
|
||||
|
||||
train_set = torchvision.datasets.CIFAR10(
|
||||
root=args.data_dir, train=True, download=False, transform=transform
|
||||
)
|
||||
|
||||
if distributed:
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
|
||||
else:
|
||||
train_sampler = None
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
train_set,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=(train_sampler is None),
|
||||
num_workers=args.workers,
|
||||
sampler=train_sampler,
|
||||
)
|
||||
|
||||
test_set = torchvision.datasets.CIFAR10(
|
||||
root=args.data_dir, train=False, download=False, transform=transform
|
||||
)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers
|
||||
)
|
||||
|
||||
model = Net().to(device)
|
||||
|
||||
# wrap model with DDP
|
||||
if distributed:
|
||||
model = nn.parallel.DistributedDataParallel(
|
||||
model, device_ids=[local_rank], output_device=local_rank
|
||||
)
|
||||
|
||||
# define loss function and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(), lr=args.learning_rate, momentum=args.momentum
|
||||
)
|
||||
|
||||
# train the model
|
||||
for epoch in range(args.epochs):
|
||||
print("Rank %d: Starting epoch %d" % (rank, epoch))
|
||||
if distributed:
|
||||
train_sampler.set_epoch(epoch)
|
||||
model.train()
|
||||
train(
|
||||
train_loader,
|
||||
model,
|
||||
criterion,
|
||||
optimizer,
|
||||
epoch,
|
||||
device,
|
||||
args.print_freq,
|
||||
rank,
|
||||
)
|
||||
|
||||
print("Rank %d: Finished Training" % (rank))
|
||||
|
||||
if not distributed or rank == 0:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
model_path = os.path.join(args.output_dir, "cifar_net.pt")
|
||||
torch.save(model.state_dict(), model_path)
|
||||
|
||||
# evaluate on full test dataset
|
||||
evaluate(test_loader, model, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# setup argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--data-dir", type=str, help="directory containing CIFAR-10 dataset"
|
||||
)
|
||||
parser.add_argument("--epochs", default=10, type=int, help="number of epochs")
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
default=16,
|
||||
type=int,
|
||||
help="mini batch size for each gpu/process",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
default=2,
|
||||
type=int,
|
||||
help="number of data loading workers for each gpu/process",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning-rate", default=0.001, type=float, help="learning rate"
|
||||
)
|
||||
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
|
||||
parser.add_argument(
|
||||
"--output-dir", default="outputs", type=str, help="directory to save model to"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--print-freq",
|
||||
default=200,
|
||||
type=int,
|
||||
help="frequency of printing training statistics",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
Reference in New Issue
Block a user