Merge pull request #1353 from Azure/release_update/Release-88

update samples from Release-88 as a part of  SDK release 1.23.0
This commit is contained in:
Harneet Virk
2021-02-22 11:49:02 -08:00
committed by GitHub
36 changed files with 76 additions and 158 deletions

View File

@@ -103,7 +103,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -21,9 +21,9 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.22.0 - azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.22.0/validated_win32_requirements.txt [--no-deps] - -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_win32_requirements.txt [--no-deps]
- PyJWT < 2.0.0 - PyJWT < 2.0.0

View File

@@ -21,10 +21,10 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.22.0 - azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.22.0/validated_linux_requirements.txt [--no-deps] - -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_linux_requirements.txt [--no-deps]
- PyJWT < 2.0.0 - PyJWT < 2.0.0

View File

@@ -22,9 +22,9 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.22.0 - azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.22.0/validated_darwin_requirements.txt [--no-deps] - -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_darwin_requirements.txt [--no-deps]
- PyJWT < 2.0.0 - PyJWT < 2.0.0

View File

@@ -105,7 +105,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -93,7 +93,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -81,7 +81,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -5,17 +5,13 @@ dependencies:
- pip<=19.3.1 - pip<=19.3.1
- python>=3.5.2,<3.8 - python>=3.5.2,<3.8
- nb_conda - nb_conda
- matplotlib==2.1.0
- numpy~=1.18.0
- cython - cython
- urllib3<1.24 - urllib3<1.24
- scikit-learn==0.22.1
- pandas==0.25.1
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-defaults - azureml-defaults
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- azureml-explain-model - pandas
- PyJWT < 2.0.0 - PyJWT < 2.0.0

View File

@@ -6,17 +6,13 @@ dependencies:
- nomkl - nomkl
- python>=3.5.2,<3.8 - python>=3.5.2,<3.8
- nb_conda - nb_conda
- matplotlib==2.1.0
- numpy~=1.18.0
- cython - cython
- urllib3<1.24 - urllib3<1.24
- scikit-learn==0.22.1
- pandas==0.25.1
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-defaults - azureml-defaults
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- azureml-explain-model - pandas
- PyJWT < 2.0.0 - PyJWT < 2.0.0

View File

@@ -67,11 +67,8 @@
"source": [ "source": [
"import logging\n", "import logging\n",
"\n", "\n",
"from matplotlib import pyplot as plt\n",
"import json\n", "import json\n",
"import numpy as np\n", "\n",
"import pandas as pd\n",
" \n",
"\n", "\n",
"import azureml.core\n", "import azureml.core\n",
"from azureml.core.experiment import Experiment\n", "from azureml.core.experiment import Experiment\n",
@@ -93,7 +90,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -116,9 +113,7 @@
"output['Resource Group'] = ws.resource_group\n", "output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n", "output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n", "output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n", "output"
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
] ]
}, },
{ {
@@ -276,34 +271,13 @@
"## Results" "## Results"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.widgets import RunDetails\n", "remote_run.wait_for_completion(show_output=True)"
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
] ]
}, },
{ {
@@ -368,18 +342,12 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# preview the first 3 rows of the dataset\n", "y_test = test_data.keep_columns('ERP')\n",
"\n", "test_data = test_data.drop_columns('ERP')\n",
"test_data = test_data.to_pandas_dataframe()\n",
"y_test = test_data['ERP'].fillna(0)\n",
"test_data = test_data.drop('ERP', 1)\n",
"test_data = test_data.fillna(0)\n",
"\n", "\n",
"\n", "\n",
"train_data = train_data.to_pandas_dataframe()\n", "y_train = train_data.keep_columns('ERP')\n",
"y_train = train_data['ERP'].fillna(0)\n", "train_data = train_data.drop_columns('ERP')\n"
"train_data = train_data.drop('ERP', 1)\n",
"train_data = train_data.fillna(0)\n"
] ]
}, },
{ {
@@ -397,7 +365,16 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.train.automl.model_proxy import ModelProxy\n", "from azureml.train.automl.model_proxy import ModelProxy\n",
"best_model_proxy = ModelProxy(best_run)" "best_model_proxy = ModelProxy(best_run)\n",
"y_pred_train = best_model_proxy.predict(train_data)\n",
"y_pred_test = best_model_proxy.predict(test_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Exploring results"
] ]
}, },
{ {
@@ -406,60 +383,15 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"y_pred_train = best_model_proxy.predict(train_data).to_pandas_dataframe().values.flatten()\n", "y_pred_train = y_pred_train.to_pandas_dataframe().values.flatten()\n",
"y_train = y_train.to_pandas_dataframe().values.flatten()\n",
"y_residual_train = y_train - y_pred_train\n", "y_residual_train = y_train - y_pred_train\n",
"\n", "\n",
"y_pred_test = best_model_proxy.predict(test_data).to_pandas_dataframe().values.flatten()\n", "y_pred_test = y_pred_test.to_pandas_dataframe().values.flatten()\n",
"y_residual_test = y_test - y_pred_test" "y_test = y_test.to_pandas_dataframe().values.flatten()\n",
] "y_residual_test = y_test - y_pred_test\n",
}, "print(y_residual_train)\n",
{ "print(y_residual_test)"
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"# Set up a multi-plot chart.\n",
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
"f.set_figheight(6)\n",
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -100, 100])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)),fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -100, 100])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)),fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"test_pred = plt.scatter(y_test, y_pred_test, color='')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
] ]
}, },
{ {

View File

@@ -113,7 +113,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -87,7 +87,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -97,7 +97,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -94,7 +94,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -82,7 +82,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },

View File

@@ -92,7 +92,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -375,18 +375,12 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# preview the first 3 rows of the dataset\n", "y_test = test_data.keep_columns('ERP').to_pandas_dataframe()\n",
"\n", "test_data = test_data.drop_columns('ERP').to_pandas_dataframe()\n",
"test_data = test_data.to_pandas_dataframe()\n",
"y_test = test_data['ERP'].fillna(0)\n",
"test_data = test_data.drop('ERP', 1)\n",
"test_data = test_data.fillna(0)\n",
"\n", "\n",
"\n", "\n",
"train_data = train_data.to_pandas_dataframe()\n", "y_train = train_data.keep_columns('ERP').to_pandas_dataframe()\n",
"y_train = train_data['ERP'].fillna(0)\n", "train_data = train_data.drop_columns('ERP').to_pandas_dataframe()\n"
"train_data = train_data.drop('ERP', 1)\n",
"train_data = train_data.fillna(0)\n"
] ]
}, },
{ {
@@ -396,10 +390,10 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"y_pred_train = fitted_model.predict(train_data)\n", "y_pred_train = fitted_model.predict(train_data)\n",
"y_residual_train = y_train - y_pred_train\n", "y_residual_train = y_train.values - y_pred_train\n",
"\n", "\n",
"y_pred_test = fitted_model.predict(test_data)\n", "y_pred_test = fitted_model.predict(test_data)\n",
"y_residual_test = y_test - y_pred_test" "y_residual_test = y_test.values - y_pred_test"
] ]
}, },
{ {

View File

@@ -259,7 +259,7 @@
"run_config.environment.docker.enabled = True\n", "run_config.environment.docker.enabled = True\n",
"\n", "\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n", " 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n", "]\n",
"\n", "\n",
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n", "# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",

View File

@@ -57,7 +57,7 @@
"Problem: IBM employee attrition classification with scikit-learn (run model explainer locally and upload explanation to the Azure Machine Learning Run History)\n", "Problem: IBM employee attrition classification with scikit-learn (run model explainer locally and upload explanation to the Azure Machine Learning Run History)\n",
"\n", "\n",
"1. Train a SVM classification model using Scikit-learn\n", "1. Train a SVM classification model using Scikit-learn\n",
"2. Run 'explain_model' with AML Run History, which leverages run history service to store and manage the explanation data\n", "2. Run 'explain-model-sample' with AML Run History, which leverages run history service to store and manage the explanation data\n",
"---\n", "---\n",
"\n", "\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n", "Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
@@ -475,7 +475,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"experiment_name = 'explain_model'\n", "experiment_name = 'explain-model-sample'\n",
"experiment = Experiment(ws, experiment_name)\n", "experiment = Experiment(ws, experiment_name)\n",
"run = experiment.start_logging()\n", "run = experiment.start_logging()\n",
"client = ExplanationClient.from_run(run)" "client = ExplanationClient.from_run(run)"

View File

@@ -323,7 +323,7 @@
"\n", "\n",
"# azureml-defaults is required to host the model as a web service.\n", "# azureml-defaults is required to host the model as a web service.\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n", " 'azureml-defaults', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret'\n", " 'azureml-interpret'\n",
"]\n", "]\n",
" \n", " \n",

View File

@@ -267,7 +267,7 @@
"run_config.environment.python.user_managed_dependencies = False\n", "run_config.environment.python.user_managed_dependencies = False\n",
"\n", "\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n", " 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n", "]\n",
" \n", " \n",
"\n", "\n",
@@ -431,7 +431,7 @@
"\n", "\n",
"# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n", "# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n", " 'azureml-defaults', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret'\n", " 'azureml-interpret'\n",
"]\n", "]\n",
" \n", " \n",

View File

@@ -341,7 +341,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"pipeline = Pipeline(workspace=ws, steps=[step])\n", "pipeline = Pipeline(workspace=ws, steps=[step])\n",
"pipeline_run = Experiment(ws, 'azurebatch_experiment').submit(pipeline)" "pipeline_run = Experiment(ws, 'azurebatch_sample').submit(pipeline)"
] ]
}, },
{ {

View File

@@ -130,7 +130,7 @@
"\n", "\n",
"pipeline_draft = PipelineDraft.create(ws, name=\"TestPipelineDraft\",\n", "pipeline_draft = PipelineDraft.create(ws, name=\"TestPipelineDraft\",\n",
" description=\"draft description\",\n", " description=\"draft description\",\n",
" experiment_name=\"helloworld\",\n", " experiment_name=\"pipeline_draft_sample\",\n",
" pipeline=pipeline,\n", " pipeline=pipeline,\n",
" continue_on_step_failure=True,\n", " continue_on_step_failure=True,\n",
" tags={'dev': 'true'},\n", " tags={'dev': 'true'},\n",

View File

@@ -325,7 +325,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# submit a pipeline run\n", "# submit a pipeline run\n",
"pipeline_run1 = Experiment(ws, 'Pipeline_experiment').submit(pipeline1)\n", "pipeline_run1 = Experiment(ws, 'Pipeline_experiment_sample').submit(pipeline1)\n",
"# publish a pipeline from the submitted pipeline run\n", "# publish a pipeline from the submitted pipeline run\n",
"published_pipeline2 = pipeline_run1.publish_pipeline(name=\"My_New_Pipeline2\", description=\"My Published Pipeline Description\", version=\"0.1\", continue_on_step_failure=True)\n", "published_pipeline2 = pipeline_run1.publish_pipeline(name=\"My_New_Pipeline2\", description=\"My Published Pipeline Description\", version=\"0.1\", continue_on_step_failure=True)\n",
"published_pipeline2" "published_pipeline2"

View File

@@ -259,7 +259,7 @@
"\n", "\n",
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n", "schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
" pipeline_id=pub_pipeline_id, \n", " pipeline_id=pub_pipeline_id, \n",
" experiment_name='Schedule_Run',\n", " experiment_name='Schedule-run-sample',\n",
" recurrence=recurrence,\n", " recurrence=recurrence,\n",
" wait_for_provisioning=True,\n", " wait_for_provisioning=True,\n",
" description=\"Schedule Run\")\n", " description=\"Schedule Run\")\n",
@@ -445,7 +445,7 @@
"\n", "\n",
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n", "schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
" pipeline_id=pub_pipeline_id, \n", " pipeline_id=pub_pipeline_id, \n",
" experiment_name='Schedule_Run',\n", " experiment_name='Schedule-run-sample',\n",
" datastore=datastore,\n", " datastore=datastore,\n",
" wait_for_provisioning=True,\n", " wait_for_provisioning=True,\n",
" description=\"Schedule Run\")\n", " description=\"Schedule Run\")\n",
@@ -516,7 +516,7 @@
"\n", "\n",
"schedule = Schedule.create_for_pipeline_endpoint(workspace=ws, name=\"My_Endpoint_Schedule\",\n", "schedule = Schedule.create_for_pipeline_endpoint(workspace=ws, name=\"My_Endpoint_Schedule\",\n",
" pipeline_endpoint_id=published_pipeline_endpoint_id,\n", " pipeline_endpoint_id=published_pipeline_endpoint_id,\n",
" experiment_name='Schedule_Run',\n", " experiment_name='Schedule-run-sample',\n",
" recurrence=recurrence, description=\"Schedule_Run\",\n", " recurrence=recurrence, description=\"Schedule_Run\",\n",
" wait_for_provisioning=True)\n", " wait_for_provisioning=True)\n",
"\n", "\n",

View File

@@ -553,7 +553,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.core import Experiment\n", "from azureml.core import Experiment\n",
"pipeline_run = Experiment(ws, name=\"submit_from_endpoint\").submit(pipeline_endpoint_by_name, tags={'endpoint_tag': \"1\"}, pipeline_version=\"0\")" "pipeline_run = Experiment(ws, name=\"submit_endpoint_sample\").submit(pipeline_endpoint_by_name, tags={'endpoint_tag': \"1\"}, pipeline_version=\"0\")"
] ]
} }
], ],

View File

@@ -101,7 +101,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create an Azure ML experiment\n", "## Create an Azure ML experiment\n",
"Let's create an experiment named \"automlstep-classification\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure.\n", "Let's create an experiment named \"automlstep-sample\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure.\n",
"\n", "\n",
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step." "The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step."
] ]
@@ -113,7 +113,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# Choose a name for the run history container in the workspace.\n", "# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automlstep-classification'\n", "experiment_name = 'automlstep-sample'\n",
"project_folder = './project'\n", "project_folder = './project'\n",
"\n", "\n",
"experiment = Experiment(ws, experiment_name)\n", "experiment = Experiment(ws, experiment_name)\n",

View File

@@ -428,7 +428,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"pipeline_run1 = Experiment(ws, 'Data_dependency').submit(pipeline1)\n", "pipeline_run1 = Experiment(ws, 'Data_dependency_sample').submit(pipeline1)\n",
"print(\"Pipeline is submitted for execution\")" "print(\"Pipeline is submitted for execution\")"
] ]
}, },

View File

@@ -147,7 +147,7 @@
"\n", "\n",
"To do this, you first must install the Azure Networking API.\n", "To do this, you first must install the Azure Networking API.\n",
"\n", "\n",
"`pip install --upgrade azure-mgmt-network`" "`pip install --upgrade azure-mgmt-network==12.0.0`"
] ]
}, },
{ {
@@ -157,7 +157,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# If you need to install the Azure Networking SDK, uncomment the following line.\n", "# If you need to install the Azure Networking SDK, uncomment the following line.\n",
"#!pip install --upgrade azure-mgmt-network" "#!pip install --upgrade azure-mgmt-network==12.0.0"
] ]
}, },
{ {

View File

@@ -167,7 +167,7 @@
"\n", "\n",
"To do this, you first must install the Azure Networking API.\n", "To do this, you first must install the Azure Networking API.\n",
"\n", "\n",
"`pip install --upgrade azure-mgmt-network`" "`pip install --upgrade azure-mgmt-network==12.0.0`"
] ]
}, },
{ {
@@ -177,7 +177,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# If you need to install the Azure Networking SDK, uncomment the following line.\n", "# If you need to install the Azure Networking SDK, uncomment the following line.\n",
"#!pip install --upgrade azure-mgmt-network" "#!pip install --upgrade azure-mgmt-network==12.0.0"
] ]
}, },
{ {

View File

@@ -100,7 +100,7 @@
"\n", "\n",
"# Check core SDK version number\n", "# Check core SDK version number\n",
"\n", "\n",
"print(\"This notebook was created using SDK version 1.22.0, you are currently running version\", azureml.core.VERSION)" "print(\"This notebook was created using SDK version 1.23.0, you are currently running version\", azureml.core.VERSION)"
] ]
}, },
{ {

View File

@@ -98,7 +98,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"experiment_name = \"experiment-with-mlflow\"\n", "experiment_name = \"LocalTrain-with-mlflow-sample\"\n",
"mlflow.set_experiment(experiment_name)" "mlflow.set_experiment(experiment_name)"
] ]
}, },

View File

@@ -123,7 +123,7 @@
"source": [ "source": [
"from azureml.core import Experiment\n", "from azureml.core import Experiment\n",
"\n", "\n",
"experiment_name = \"experiment-with-mlflow\"\n", "experiment_name = \"RemoteTrain-with-mlflow-sample\"\n",
"exp = Experiment(workspace=ws, name=experiment_name)" "exp = Experiment(workspace=ws, name=experiment_name)"
] ]
}, },

View File

@@ -102,7 +102,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.22.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },