mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
update samples from Release-61 as a part of SDK release
This commit is contained in:
@@ -1,37 +1,21 @@
|
||||
import argparse
|
||||
import azureml.train.automl
|
||||
from azureml.automl.runtime.shared import forecasting_models
|
||||
from azureml.core import Run
|
||||
from sklearn.externals import joblib
|
||||
import forecasting_helper
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--max_horizon', type=int, dest='max_horizon',
|
||||
default=10, help='Max Horizon for forecasting')
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--time_column_name', type=str, dest='time_column_name',
|
||||
help='Time Column Name')
|
||||
parser.add_argument(
|
||||
'--frequency', type=str, dest='freq',
|
||||
help='Frequency of prediction')
|
||||
|
||||
args = parser.parse_args()
|
||||
max_horizon = args.max_horizon
|
||||
target_column_name = args.target_column_name
|
||||
time_column_name = args.time_column_name
|
||||
freq = args.freq
|
||||
|
||||
run = Run.get_context()
|
||||
# get input dataset by name
|
||||
test_dataset = run.input_datasets['test_data']
|
||||
|
||||
grain_column_names = []
|
||||
|
||||
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
|
||||
|
||||
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
|
||||
@@ -39,14 +23,12 @@ y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[targ
|
||||
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
|
||||
df_all = forecasting_helper.do_rolling_forecast(
|
||||
fitted_model,
|
||||
X_test_df,
|
||||
y_test_df.values.T[0],
|
||||
target_column_name,
|
||||
time_column_name,
|
||||
max_horizon,
|
||||
freq)
|
||||
y_pred, X_trans = fitted_model.rolling_evaluation(X_test_df, y_test_df.values)
|
||||
|
||||
# Add predictions, actuals, and horizon relative to rolling origin to the test feature data
|
||||
assign_dict = {'horizon_origin': X_trans['horizon_origin'].values, 'predicted': y_pred,
|
||||
target_column_name: y_test_df[target_column_name].values}
|
||||
df_all = X_test_df.assign(**assign_dict)
|
||||
|
||||
file_name = 'outputs/predictions.csv'
|
||||
export_csv = df_all.to_csv(file_name, header=True)
|
||||
|
||||
Reference in New Issue
Block a user