mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 10:35:12 -05:00
1
training/03.train-hyperparameter-tune-deploy-with-tensorflow/.gitignore
vendored
Normal file
1
training/03.train-hyperparameter-tune-deploy-with-tensorflow/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/data/
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
After Width: | Height: | Size: 119 KiB |
@@ -0,0 +1,106 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import os
|
||||
import tensorflow as tf
|
||||
|
||||
from azureml.core import Run
|
||||
from utils import load_data
|
||||
|
||||
print("TensorFlow version:", tf.VERSION)
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
|
||||
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
|
||||
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
|
||||
help='# of neurons in the first layer')
|
||||
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
|
||||
help='# of neurons in the second layer')
|
||||
parser.add_argument('--learning-rate', type=float, dest='learning_rate', default=0.01, help='learning rate')
|
||||
args = parser.parse_args()
|
||||
|
||||
data_folder = os.path.join(args.data_folder, 'mnist')
|
||||
|
||||
print('training dataset is stored here:', data_folder)
|
||||
|
||||
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
|
||||
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
|
||||
|
||||
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
|
||||
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
|
||||
|
||||
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
|
||||
training_set_size = X_train.shape[0]
|
||||
|
||||
n_inputs = 28 * 28
|
||||
n_h1 = args.n_hidden_1
|
||||
n_h2 = args.n_hidden_2
|
||||
n_outputs = 10
|
||||
learning_rate = args.learning_rate
|
||||
n_epochs = 50
|
||||
batch_size = args.batch_size
|
||||
|
||||
with tf.name_scope('network'):
|
||||
# construct the DNN
|
||||
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
|
||||
y = tf.placeholder(tf.int64, shape=(None), name='y')
|
||||
h1 = tf.layers.dense(X, n_h1, activation=tf.nn.relu, name='h1')
|
||||
h2 = tf.layers.dense(h1, n_h2, activation=tf.nn.relu, name='h2')
|
||||
output = tf.layers.dense(h2, n_outputs, name='output')
|
||||
|
||||
with tf.name_scope('train'):
|
||||
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=output)
|
||||
loss = tf.reduce_mean(cross_entropy, name='loss')
|
||||
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
|
||||
train_op = optimizer.minimize(loss)
|
||||
|
||||
with tf.name_scope('eval'):
|
||||
correct = tf.nn.in_top_k(output, y, 1)
|
||||
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
|
||||
|
||||
init = tf.global_variables_initializer()
|
||||
saver = tf.train.Saver()
|
||||
|
||||
# start an Azure ML run
|
||||
run = Run.get_context()
|
||||
|
||||
with tf.Session() as sess:
|
||||
init.run()
|
||||
for epoch in range(n_epochs):
|
||||
|
||||
# randomly shuffle training set
|
||||
indices = np.random.permutation(training_set_size)
|
||||
X_train = X_train[indices]
|
||||
y_train = y_train[indices]
|
||||
|
||||
# batch index
|
||||
b_start = 0
|
||||
b_end = b_start + batch_size
|
||||
for _ in range(training_set_size // batch_size):
|
||||
# get a batch
|
||||
X_batch, y_batch = X_train[b_start: b_end], y_train[b_start: b_end]
|
||||
|
||||
# update batch index for the next batch
|
||||
b_start = b_start + batch_size
|
||||
b_end = min(b_start + batch_size, training_set_size)
|
||||
|
||||
# train
|
||||
sess.run(train_op, feed_dict={X: X_batch, y: y_batch})
|
||||
# evaluate training set
|
||||
acc_train = acc_op.eval(feed_dict={X: X_batch, y: y_batch})
|
||||
# evaluate validation set
|
||||
acc_val = acc_op.eval(feed_dict={X: X_test, y: y_test})
|
||||
|
||||
# log accuracies
|
||||
run.log('training_acc', np.float(acc_train))
|
||||
run.log('validation_acc', np.float(acc_val))
|
||||
print(epoch, '-- Training accuracy:', acc_train, '\b Validation accuracy:', acc_val)
|
||||
y_hat = np.argmax(output.eval(feed_dict={X: X_test}), axis=1)
|
||||
|
||||
run.log('final_acc', np.float(acc_val))
|
||||
|
||||
os.makedirs('./outputs/model', exist_ok=True)
|
||||
# files saved in the "./outputs" folder are automatically uploaded into run history
|
||||
saver.save(sess, './outputs/model/mnist-tf.model')
|
||||
@@ -0,0 +1,27 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import gzip
|
||||
import numpy as np
|
||||
import struct
|
||||
|
||||
|
||||
# load compressed MNIST gz files and return numpy arrays
|
||||
def load_data(filename, label=False):
|
||||
with gzip.open(filename) as gz:
|
||||
struct.unpack('I', gz.read(4))
|
||||
n_items = struct.unpack('>I', gz.read(4))
|
||||
if not label:
|
||||
n_rows = struct.unpack('>I', gz.read(4))[0]
|
||||
n_cols = struct.unpack('>I', gz.read(4))[0]
|
||||
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], n_rows * n_cols)
|
||||
else:
|
||||
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], 1)
|
||||
return res
|
||||
|
||||
|
||||
# one-hot encode a 1-D array
|
||||
def one_hot_encode(array, num_of_classes):
|
||||
return np.eye(num_of_classes)[array.reshape(-1)]
|
||||
Reference in New Issue
Block a user