diff --git a/how-to-use-azureml/automated-machine-learning/README.md b/how-to-use-azureml/automated-machine-learning/README.md
index 3bbf53d8..77c78292 100644
--- a/how-to-use-azureml/automated-machine-learning/README.md
+++ b/how-to-use-azureml/automated-machine-learning/README.md
@@ -25,7 +25,7 @@ Below are the three execution environments supported by AutoML.
1. [](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
-1. Follow the instructions in the [configuration](configuration.ipynb) notebook to create and connect to a workspace.
+1. Follow the instructions in the [configuration](../../configuration.ipynb) notebook to create and connect to a workspace.
1. Open one of the sample notebooks.
@@ -90,7 +90,7 @@ bash automl_setup_linux.sh
```
### 4. Running configuration.ipynb
-- Before running any samples you next need to run the configuration notebook. Click on configuration.ipynb notebook
+- Before running any samples you next need to run the configuration notebook. Click on [configuration](../../configuration.ipynb) notebook
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
### 5. Running Samples
@@ -99,9 +99,6 @@ bash automl_setup_linux.sh
# Automated ML SDK Sample Notebooks
-- [configuration.ipynb](configuration.ipynb)
- - Create new Azure ML Workspace
- - Save Workspace configuration file
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
@@ -169,6 +166,9 @@ bash automl_setup_linux.sh
- How to specifying sample_weight
- The difference that it makes to test results
+- [auto-ml-subsampling-local.ipynb](subsampling/auto-ml-subsampling-local.ipynb)
+ - How to enable subsampling
+
- [auto-ml-dataprep.ipynb](dataprep/auto-ml-dataprep.ipynb)
- Using DataPrep for reading data