update samples from Release-96 as a part of SDK release

This commit is contained in:
amlrelsa-ms
2021-05-10 18:38:34 +00:00
parent 441a5b0141
commit eac6b69bae
117 changed files with 451 additions and 2252 deletions

View File

@@ -0,0 +1,82 @@
import argparse
import os
import numpy as np
import glob
from sklearn.linear_model import LogisticRegression
import joblib
from azureml.core import Run
from utils import load_data
# let user feed in 2 parameters, the dataset to mount or download,
# and the regularization rate of the logistic regression model
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-folder", type=str, dest="data_folder", help="data folder mounting point"
)
parser.add_argument(
"--regularization", type=float, dest="reg", default=0.01, help="regularization rate"
)
args = parser.parse_args()
data_folder = args.data_folder
print("Data folder:", data_folder)
# load train and test set into numpy arrays
# note we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can converge faster.
X_train = (
load_data(
glob.glob(
os.path.join(data_folder, "**/train-images-idx3-ubyte.gz"), recursive=True
)[0],
False,
) /
255.0
)
X_test = (
load_data(
glob.glob(
os.path.join(data_folder, "**/t10k-images-idx3-ubyte.gz"), recursive=True
)[0],
False,
) /
255.0
)
y_train = load_data(
glob.glob(
os.path.join(data_folder, "**/train-labels-idx1-ubyte.gz"), recursive=True
)[0],
True,
).reshape(-1)
y_test = load_data(
glob.glob(
os.path.join(data_folder, "**/t10k-labels-idx1-ubyte.gz"), recursive=True
)[0],
True,
).reshape(-1)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep="\n")
# get hold of the current run
run = Run.get_context()
print("Train a logistic regression model with regularization rate of", args.reg)
clf = LogisticRegression(
C=1.0 / args.reg, solver="liblinear", multi_class="auto", random_state=42
)
clf.fit(X_train, y_train)
print("Predict the test set")
y_hat = clf.predict(X_test)
# calculate accuracy on the prediction
acc = np.average(y_hat == y_test)
print("Accuracy is", acc)
run.log("regularization rate", np.float(args.reg))
run.log("accuracy", np.float(acc))
os.makedirs("outputs", exist_ok=True)
# note file saved in the outputs folder is automatically uploaded into experiment record
joblib.dump(value=clf, filename="outputs/sklearn_mnist_model.pkl")