diff --git a/how-to-use-azureml/automated-machine-learning/continuous-retraining/upload_weather_data.py b/how-to-use-azureml/automated-machine-learning/continuous-retraining/upload_weather_data.py index 0dd882e9..d5861de5 100644 --- a/how-to-use-azureml/automated-machine-learning/continuous-retraining/upload_weather_data.py +++ b/how-to-use-azureml/automated-machine-learning/continuous-retraining/upload_weather_data.py @@ -54,17 +54,17 @@ try: end_time_last_slice = ds.data_changed_time.replace(tzinfo=None) print("Dataset {0} last updated on {1}".format(args.ds_name, end_time_last_slice)) -except Exception as e: +except Exception: print(traceback.format_exc()) print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name)) register_dataset = True - end_time_last_slice = datetime.today() - relativedelta(weeks=2) + end_time_last_slice = datetime.today() - relativedelta(weeks=4) end_time = datetime.utcnow() train_df = get_noaa_data(end_time_last_slice, end_time) if train_df.size > 0: - print("Received {0} rows of new data after {0}.".format( + print("Received {0} rows of new data after {1}.".format( train_df.shape[0], end_time_last_slice)) folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year, end_time.month, end_time.day,