mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 10:35:12 -05:00
update samples from Release-108 as a part of 1.35.0 SDK stable release
This commit is contained in:
@@ -5,55 +5,10 @@ compute instance.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from azureml.core import Dataset, Run
|
||||
from azureml.automl.core.shared.constants import TimeSeriesInternal
|
||||
from sklearn.externals import joblib
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
|
||||
predicted_column_name='predicted',
|
||||
horizon_colname='horizon_origin'):
|
||||
"""
|
||||
Demonstrates how to get the output aligned to the inputs
|
||||
using pandas indexes. Helps understand what happened if
|
||||
the output's shape differs from the input shape, or if
|
||||
the data got re-sorted by time and grain during forecasting.
|
||||
|
||||
Typical causes of misalignment are:
|
||||
* we predicted some periods that were missing in actuals -> drop from eval
|
||||
* model was asked to predict past max_horizon -> increase max horizon
|
||||
* data at start of X_test was needed for lags -> provide previous periods
|
||||
"""
|
||||
|
||||
if (horizon_colname in X_trans):
|
||||
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
|
||||
horizon_colname: X_trans[horizon_colname]})
|
||||
else:
|
||||
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
|
||||
|
||||
# y and X outputs are aligned by forecast() function contract
|
||||
df_fcst.index = X_trans.index
|
||||
|
||||
# align original X_test to y_test
|
||||
X_test_full = X_test.copy()
|
||||
X_test_full[target_column_name] = y_test
|
||||
|
||||
# X_test_full's index does not include origin, so reset for merge
|
||||
df_fcst.reset_index(inplace=True)
|
||||
X_test_full = X_test_full.reset_index().drop(columns='index')
|
||||
together = df_fcst.merge(X_test_full, how='right')
|
||||
|
||||
# drop rows where prediction or actuals are nan
|
||||
# happens because of missing actuals
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = together[together[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
@@ -77,13 +32,25 @@ y_test = X_test.pop(target_column_name).values
|
||||
|
||||
# generate forecast
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
y_predictions, X_trans = fitted_model.forecast(X_test)
|
||||
|
||||
# align output
|
||||
df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)
|
||||
# We have default quantiles values set as below(95th percentile)
|
||||
quantiles = [0.025, 0.5, 0.975]
|
||||
predicted_column_name = 'predicted'
|
||||
PI = 'prediction_interval'
|
||||
fitted_model.quantiles = quantiles
|
||||
pred_quantiles = fitted_model.forecast_quantiles(X_test)
|
||||
pred_quantiles[PI] = pred_quantiles[[min(quantiles), max(quantiles)]].apply(lambda x: '[{}, {}]'.format(x[0],
|
||||
x[1]), axis=1)
|
||||
X_test[target_column_name] = y_test
|
||||
X_test[PI] = pred_quantiles[PI]
|
||||
X_test[predicted_column_name] = pred_quantiles[0.5]
|
||||
# drop rows where prediction or actuals are nan
|
||||
# happens because of missing actuals
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = X_test[X_test[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
|
||||
file_name = 'outputs/predictions.csv'
|
||||
export_csv = df_all.to_csv(file_name, header=True, index=False) # added Index
|
||||
export_csv = clean.to_csv(file_name, header=True, index=False) # added Index
|
||||
|
||||
# Upload the predictions into artifacts
|
||||
run.upload_file(name=file_name, path_or_stream=file_name)
|
||||
|
||||
Reference in New Issue
Block a user