mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-21 18:15:13 -05:00
Update notebooks
This commit is contained in:
286
automl/10.auto-ml-multi-output-example.ipynb
Normal file
286
automl/10.auto-ml-multi-output-example.ipynb
Normal file
@@ -0,0 +1,286 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 10: Multi output Example for AutoML"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook shows an example to use AutoML to train the multi output problems by leveraging the correlation between the outputs using indicator vectors."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import seaborn as sns\n",
|
||||
"from sklearn import datasets\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Transformer functions\n",
|
||||
"The transformation of the input are happening for input X and Y as following, e.g. Y = {y_1, y_2}, then X becomes\n",
|
||||
" \n",
|
||||
"X 1 0\n",
|
||||
" \n",
|
||||
"X 0 1\n",
|
||||
"\n",
|
||||
"and Y becomes,\n",
|
||||
"\n",
|
||||
"y_1\n",
|
||||
"\n",
|
||||
"y_2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from scipy import sparse\n",
|
||||
"from scipy import linalg\n",
|
||||
"\n",
|
||||
"#Transformer functions\n",
|
||||
"def multi_output_transform_x_y(X, Y):\n",
|
||||
" X_new = multi_output_transformer_x(X, Y.shape[1])\n",
|
||||
" y_new = multi_output_transform_y(Y)\n",
|
||||
" return X_new, y_new\n",
|
||||
"\n",
|
||||
"def multi_output_transformer_x(X, number_of_columns_Y):\n",
|
||||
" indicator_vecs = linalg.block_diag(*([np.ones((X.shape[0], 1))] * number_of_columns_Y))\n",
|
||||
" if sparse.issparse(X):\n",
|
||||
" X_new = sparse.vstack(np.tile(X, number_of_columns_Y))\n",
|
||||
" indicator_vecs = sparse.coo_matrix(indicator_vecs)\n",
|
||||
" X_new = sparse.hstack((X_new, indicator_vecs))\n",
|
||||
" else:\n",
|
||||
" X_new = np.tile(X, (number_of_columns_Y, 1))\n",
|
||||
" X_new = np.hstack((X_new, indicator_vecs))\n",
|
||||
" return X_new\n",
|
||||
"\n",
|
||||
"def multi_output_transform_y(Y):\n",
|
||||
" return Y.reshape(-1, order=\"F\")\n",
|
||||
" \n",
|
||||
"def multi_output_inverse_transform_y(y, number_of_columns_y):\n",
|
||||
" return y.reshape((-1, number_of_columns_y), order=\"F\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## AutoML experiment set up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-local-classification'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-classification'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data=output, index=['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a random dataset for the test purpose "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rng = np.random.RandomState(1)\n",
|
||||
"X_train = np.sort(200 * rng.rand(600, 1) - 100, axis=0)\n",
|
||||
"Y_train = np.array([np.pi * np.sin(X_train).ravel(), np.pi * np.cos(X_train).ravel()]).T\n",
|
||||
"Y_train += (0.5 - rng.rand(*Y_train.shape))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Perform X and Y transformation using transformer function"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train_transformed, y_train_transformed = multi_output_transform_x_y(X_train, Y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log='automl_errors_multi.log',\n",
|
||||
" primary_metric='r2_score',\n",
|
||||
" iterations=10,\n",
|
||||
" n_cross_validations=2,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" X=X_train_transformed,\n",
|
||||
" y=y_train_transformed,\n",
|
||||
" path=project_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fit the transformed data "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the best fit model\n",
|
||||
"best_run, fitted_model = local_run.get_output()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generate random data set for predicting\n",
|
||||
"X_predict = np.sort(200 * rng.rand(200, 1) - 100, axis=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Transform predict data\n",
|
||||
"X_predict_transformed = multi_output_transformer_x(X_predict, Y_train.shape[1])\n",
|
||||
"# Predict and inverse transform the prediction\n",
|
||||
"y_predict = fitted_model.predict(X_predict_transformed)\n",
|
||||
"Y_predict = multi_output_inverse_transform_y(y_predict, Y_train.shape[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(Y_predict)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python [default]",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
Reference in New Issue
Block a user