Compare commits

...

230 Commits

Author SHA1 Message Date
Roope Astala
e9a7b95716 Merge pull request #421 from csteegz/csteegz-add-warning
Add warning for using prediction client on azure notebooks
2019-06-13 20:27:34 -04:00
Roope Astala
789ee26357 Merge pull request #431 from jeff-shepherd/master
Fixed path for auto-ml-remote-amlcompute notebook
2019-06-13 16:56:25 -04:00
Jeff Shepherd
fc541706e7 Fixed path for auto-ml-remote-amlcompute 2019-06-13 13:12:32 -07:00
Roope Astala
64b8aa2a55 Merge pull request #429 from jeff-shepherd/master
Removed deprecated notebooks from readme
2019-06-13 14:40:57 -04:00
Jeff Shepherd
d3dc35dbb6 Removed deprecated notebooks from readme 2019-06-13 11:03:25 -07:00
Roope Astala
b55ac368e7 Merge pull request #428 from rastala/master
update cluster creation
2019-06-13 12:16:30 -04:00
Roope Astala
de162316d7 update cluster creation 2019-06-13 12:14:58 -04:00
Roope Astala
4ecc58dfe2 Merge pull request #427 from rastala/master
dockerfile
2019-06-12 10:24:34 -04:00
Roope Astala
daf27a76e4 dockerfile 2019-06-12 10:23:34 -04:00
Roope Astala
a05444845b Merge pull request #426 from rastala/master
version 1.0.43
2019-06-12 10:09:08 -04:00
Roope Astala
79c9f50c15 version 1.0.43 2019-06-12 10:08:35 -04:00
Roope Astala
67e10e0f6b Merge pull request #417 from lan-tang/patch-1
Create readme.md in data-drift
2019-06-11 13:47:55 -04:00
Roope Astala
1ef0331a0f Merge pull request #423 from rastala/master
add sklearn estimator
2019-06-11 11:30:37 -04:00
Roope Astala
5e91c836b9 add sklearn estimator 2019-06-11 11:29:56 -04:00
Colin Versteeg
661762854a add warning to training 2019-06-10 16:51:33 -07:00
Colin Versteeg
fbc90ba74f add to quickstart 2019-06-10 16:50:59 -07:00
Colin Versteeg
0d9c83d0a8 Update accelerated-models-object-detection.ipynb 2019-06-10 16:48:17 -07:00
Colin Versteeg
ca4cab1de9 Merge pull request #1 from Azure/master
pull from master
2019-06-10 16:45:12 -07:00
Roope Astala
ddbb3c45f6 Merge pull request #420 from rastala/master
mlflow integration preview
2019-06-10 15:12:36 -04:00
rastala
8eed4e39d0 mlflow integration preview 2019-06-10 15:10:57 -04:00
Lan Tang
b37c0297db Create readme.md 2019-06-07 12:32:32 -07:00
Roope Astala
968cc798d0 Update README.md 2019-06-05 12:15:33 -04:00
Roope Astala
5c9ca452fb Create README.md 2019-06-05 12:15:19 -04:00
Shané Winner
5e82680272 Update README.md 2019-05-31 10:58:39 -07:00
Roope Astala
41841fc8c0 Update README.md 2019-05-31 13:00:41 -04:00
Roope Astala
896bf63736 Merge pull request #397 from rastala/master
dockerfile
2019-05-29 11:05:18 -04:00
Roope Astala
d4751bf6ec dockerfile 2019-05-29 11:04:19 -04:00
Roope Astala
3531fe8a21 Merge pull request #396 from rastala/master
version 1.0.41
2019-05-29 11:01:15 -04:00
Roope Astala
db6ae67940 version 1.0.41 2019-05-29 10:59:59 -04:00
Shané Winner
2a479bb01e Merge pull request #395 from imatiach-msft/ilmat/fix-typo
fix typo
2019-05-28 14:02:33 -07:00
Ilya Matiach
d05eec92af fix typo 2019-05-28 16:59:59 -04:00
Josée Martens
70fdab0a28 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:45:04 -05:00
Josée Martens
7ce5a43b58 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:44:35 -05:00
Josée Martens
d2a9dbb582 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:43:38 -05:00
Roope Astala
a5d774683d Merge pull request #390 from rastala/master
fix default cluster creation in config notebook
2019-05-23 12:30:09 -04:00
Roope Astala
0e850f0917 fix default cluster creation in config notebook 2019-05-23 12:27:53 -04:00
Shané Winner
59f34b7179 Delete configtest.ipynb 2019-05-22 10:47:50 -07:00
Shané Winner
2a3cb69004 Create configtest.ipynb 2019-05-22 10:41:16 -07:00
Shané Winner
42894ff81a Delete LICENSE.txt 2019-05-22 10:22:05 -07:00
Shané Winner
2163cab50b Delete LICENSE.txt 2019-05-22 10:21:42 -07:00
Shané Winner
255edb04c0 Rename LICENSE.txt to LICENSE 2019-05-22 10:13:08 -07:00
Shané Winner
cfce079278 Rename LICENSES to LICENSE.txt 2019-05-22 10:06:31 -07:00
Shané Winner
ae6f067c81 Deleted index.html
cleaning up root directory
2019-05-22 10:04:23 -07:00
Shané Winner
1b7ff724f3 Deleted pr.md
Contents of this file moved to the README in the root directory.
2019-05-22 10:03:40 -07:00
Shané Winner
8bba850db1 moved the content in the pr.md file
moved the content in the pr.md file to under 'Projects using Azure Machine Learning'
2019-05-21 07:51:28 -07:00
Shané Winner
b9e35ea0cb Create LICENSE 2019-05-21 07:44:10 -07:00
Shané Winner
ffa28aa89c Delete sdk 2019-05-21 07:43:06 -07:00
Shané Winner
6ab85a20e3 Create LICENSES 2019-05-21 07:42:07 -07:00
Shané Winner
486c44d157 Create sdk 2019-05-21 07:39:43 -07:00
Shané Winner
cd80040dd8 Delete Licenses 2019-05-21 07:39:03 -07:00
Shané Winner
465a5b13b1 Create Licenses 2019-05-21 07:38:52 -07:00
Shané Winner
dcd2d58880 Added notice on the data/telemetry 2019-05-20 14:44:43 -07:00
Roope Astala
93bf4393f2 Merge pull request #381 from jeff-shepherd/master
Revert change to default amlcompute cluster
2019-05-16 15:35:43 -04:00
Jeff Shepherd
d6ebb484a6 Revert change to default amlcomputecluster to support existing resource
groups
2019-05-16 12:27:23 -07:00
Roope Astala
35afd43193 Merge pull request #372 from rogerhe/master
adding macOS specific yml. Install nomkl to workaround openmp issue
2019-05-14 19:07:42 -04:00
Roope Astala
2d68535de2 Merge pull request #376 from rastala/master
version 1.0.39
2019-05-14 16:04:09 -04:00
Roope Astala
0d448892a3 version check 2019-05-14 16:03:39 -04:00
Roope Astala
2d41c00488 version 1.0.39 2019-05-14 16:01:14 -04:00
Roger He
22597ac684 adding macOS specific yml. Install nomkl to workaround openmp issue 2019-05-09 16:51:51 -07:00
Josée Martens
8b1bffc200 Update README.md 2019-05-08 12:36:49 -05:00
Josée Martens
a240ac319f Update README.md 2019-05-08 12:27:57 -05:00
Josée Martens
83cfe3b9b3 Update README.md 2019-05-08 12:25:41 -05:00
Paula Ledgerwood
dcce6f227f Merge pull request #360 from Azure/paledger/update-readme
Update readme/cluster location from PM's instructions
2019-05-06 10:08:22 -07:00
Paula Ledgerwood
5328186d68 Update python kernel version 2019-05-06 09:45:20 -07:00
Paula Ledgerwood
7ccaa2cf57 Update readme from PM's instructions 2019-05-06 09:41:54 -07:00
Shané Winner
56b0664b6b Update img-classification-part1-training.ipynb 2019-05-05 17:47:31 -07:00
Shané Winner
4c1167edc4 Update img-classification-part1-training.ipynb 2019-05-05 17:45:48 -07:00
Shané Winner
eb643fe213 Update README.md 2019-05-05 17:26:29 -07:00
Shané Winner
5faa9d293c Update README.md 2019-05-05 15:34:27 -07:00
Shané Winner
32e2b5f647 Update train-hyperparameter-tune-deploy-with-tensorflow.ipynb 2019-05-05 15:32:19 -07:00
Shané Winner
ae25654882 Update train-hyperparameter-tune-deploy-with-pytorch.ipynb 2019-05-05 15:29:42 -07:00
Shané Winner
0ca05093bd Update train-hyperparameter-tune-deploy-with-keras.ipynb 2019-05-05 15:28:16 -07:00
Shané Winner
5e39582de3 Update train-hyperparameter-tune-deploy-with-chainer.ipynb 2019-05-05 15:24:14 -07:00
Shané Winner
6b6a6da9dc Update tensorboard.ipynb 2019-05-05 15:22:28 -07:00
Shané Winner
cba2c6b9e2 Update how-to-use-estimator.ipynb 2019-05-05 15:20:50 -07:00
Shané Winner
58557abd20 Update export-run-history-to-tensorboard.ipynb 2019-05-05 15:18:48 -07:00
Shané Winner
59452a3141 Update distributed-tensorflow-with-parameter-server.ipynb 2019-05-05 15:17:15 -07:00
Shané Winner
463718e26b Update distributed-tensorflow-with-horovod.ipynb 2019-05-05 15:15:13 -07:00
Shané Winner
9ea0ba5131 Update distributed-pytorch-with-horovod.ipynb 2019-05-05 15:13:28 -07:00
Shané Winner
2804a8d859 Update distributed-cntk-with-custom-docker.ipynb 2019-05-05 15:11:51 -07:00
Shané Winner
4761b668ff Update distributed-chainer.ipynb 2019-05-05 15:09:28 -07:00
Shané Winner
c4163017c2 Update using-environments.ipynb 2019-05-05 00:11:40 -07:00
Shané Winner
71e8e9bd23 Update train-within-notebook.ipynb 2019-05-05 00:09:26 -07:00
Shané Winner
6ff06dd137 Update train-on-remote-vm.ipynb 2019-05-05 00:06:23 -07:00
Shané Winner
73db8ae04d Update train-on-local.ipynb 2019-05-04 23:52:01 -07:00
Shané Winner
3637dce58a Update train-on-amlcompute.ipynb 2019-05-04 23:48:16 -07:00
Shané Winner
23771fc599 added tracking pixel and edited config text 2019-05-04 21:08:10 -07:00
Shané Winner
5f04a467b7 added tracking pixel 2019-05-04 21:03:08 -07:00
Shané Winner
532f65c998 added tracking pixel and edited config text 2019-05-04 20:59:50 -07:00
Shané Winner
f36dda0c2d added tracking pixel and edited the config text 2019-05-04 20:54:32 -07:00
Shané Winner
c7b56929bc added tracking pixel and edited config text 2019-05-04 20:50:57 -07:00
Shané Winner
5f19d75a42 added tracking pixel and edited the config text 2019-05-04 20:48:04 -07:00
Shané Winner
a1968aafa2 updated config text and added tracking pixel 2019-05-04 20:43:54 -07:00
Shané Winner
6b82991017 edited config text and added tracking pixel 2019-05-04 20:40:23 -07:00
Shané Winner
725013511e added tracking pixel 2019-05-04 20:34:58 -07:00
Shané Winner
6a20160173 added tracking pixel 2019-05-04 20:02:01 -07:00
Shané Winner
137db8aec0 added tracking pixel 2019-05-04 19:49:50 -07:00
Shané Winner
b7b10c394b added tracking pixel 2019-05-04 19:47:28 -07:00
Shané Winner
46206716a4 added tracking pixel 2019-05-04 19:44:23 -07:00
Shané Winner
92bb98ac62 added tracking pixel 2019-05-04 19:41:33 -07:00
Shané Winner
b398c24262 added tracking pixel 2019-05-04 19:38:28 -07:00
Shané Winner
e0618302e3 added tracking pixel 2019-05-04 19:35:57 -07:00
Shané Winner
b6cddafa3e edited config text and added the pixel tracker 2019-05-04 19:31:59 -07:00
Shané Winner
4188bd2474 updated the config text and added the tracking pixel 2019-05-04 19:25:26 -07:00
Shané Winner
69126edfcb update config text and added tracking pixel 2019-05-04 19:20:46 -07:00
Shané Winner
4e14c35b9b added pixel tracker 2019-05-04 16:31:07 -07:00
Shané Winner
1608c19aa6 updated tracking pixel and and config text 2019-05-04 15:12:53 -07:00
Shané Winner
46b8611b74 tracking pixel and edited config text 2019-05-04 15:08:57 -07:00
Shané Winner
fbb01bde70 update the config text and added pixel tracker server 2019-05-04 15:01:35 -07:00
Shané Winner
cefe2f0811 updated the config text and added the tracking pixel 2019-05-04 14:58:45 -07:00
Shané Winner
42e0a31f88 updated the config text and the tracking pixel 2019-05-04 14:54:37 -07:00
Shané Winner
8b0998ac9f updated the config text and the tracking pixel 2019-05-04 14:49:29 -07:00
Shané Winner
046c6051fb updated config text and added tracking pixel 2019-05-04 14:38:39 -07:00
Shané Winner
bdb7db15ef updated tracking pixel and the config text 2019-05-04 14:35:28 -07:00
Shané Winner
b13139f103 update the config text and the tracking pixel 2019-05-04 14:31:25 -07:00
Shané Winner
8adb206ae3 updated config text and pixel tracker 2019-05-04 13:56:09 -07:00
Shané Winner
484b6bbb7a updated the config text and pixel server 2019-05-04 13:51:12 -07:00
Shané Winner
55ef0bda6a updated config text 2019-05-04 13:46:43 -07:00
Shané Winner
1401cdef33 updated config text 2019-05-04 13:41:34 -07:00
Shané Winner
5d02206cbd updated with tracking pixel 2019-05-04 13:34:11 -07:00
Shané Winner
c24b65d4ae updated with tracking pixel 2019-05-04 13:32:14 -07:00
Shané Winner
57c5ef318f updated with pixel tracker 2019-05-04 13:25:11 -07:00
Shané Winner
ba033d72f8 Update train-in-spark.ipynb 2019-05-04 09:33:07 -07:00
Shané Winner
aa657ac528 Update manage-runs.ipynb 2019-05-04 09:29:00 -07:00
Shané Winner
7d8289679d added the tracking pixel and the edited the config text 2019-05-04 08:40:18 -07:00
Shané Winner
a7c3db0560 Update model-register-and-deploy.ipynb 2019-05-03 23:21:58 -07:00
Shané Winner
e548847881 pixel text and config text update 2019-05-03 23:20:57 -07:00
Shané Winner
08c6b1f4ed tracking pixel test 2019-05-03 23:15:28 -07:00
Shané Winner
78abb65f5e updated configuration text 2019-05-03 23:08:55 -07:00
Shané Winner
3c6c090732 Update README.md 2019-05-03 22:54:31 -07:00
Shané Winner
513e36d9b2 updated the config verbiage and tracking pixel 2019-05-03 22:54:02 -07:00
Ilya Matiach
9db91a7fb8 Merge pull request #351 from imatiach-msft/ilmat/update-raw-features-notebook
Update raw features explanation notebook
2019-05-03 12:47:28 -04:00
Roope Astala
d9b26b655b Merge pull request #356 from rastala/master
how to use environments
2019-05-03 10:27:33 -04:00
Roope Astala
cb8dc41766 how to use environments 2019-05-03 10:25:39 -04:00
Ilya Matiach
9c9b4bb122 Update raw features explanation notebook 2019-05-02 14:29:53 -04:00
Roope Astala
f5c896c70f Merge pull request #345 from csteegz/add-gpu-deploy
Create production-deploy-to-aks-gpu.ipynb
2019-05-02 14:13:50 -04:00
Colleen Forbes
3b572eddb2 Merge pull request #350 from MayMSFT/master
add dataset tutorial
2019-05-02 09:33:25 -07:00
May Hu
51523db294 add dataset tutorial 2019-05-02 09:07:11 -07:00
Ilya Matiach
3b4998941c Merge pull request #348 from imatiach-msft/ilmat/update-explain-model-nb
updating model explanation notebooks
2019-04-30 17:27:44 -04:00
Ilya Matiach
6cdbfb8722 updating model explanation notebooks 2019-04-30 17:12:54 -04:00
Colin Versteeg
c086bd69c7 Create production-deploy-to-aks-gpu.ipynb
Add deploy to aks GPU notebook
2019-04-29 16:26:42 -07:00
Shané Winner
279c9b8dc4 Pixel Tracker 2019-04-29 11:27:03 -07:00
Shané Winner
98589fe335 Testing Pixel Tracker 2019-04-29 11:16:08 -07:00
Shané Winner
77f21058a2 Testing Pixel Tracker 2019-04-29 11:04:05 -07:00
Roope Astala
baa65d0886 Merge pull request #343 from Azure/paledger/add-accel-models
Initial commit to add AccelModels notebooks from AzureMlCli repo
2019-04-29 13:56:06 -04:00
Paula Ledgerwood
0fffa11b2a Update links and code formatting 2019-04-29 10:20:55 -07:00
Paula Ledgerwood
20ec225343 Initial commit to add notebooks from AzureMlCli repo 2019-04-26 11:16:33 -07:00
Roope Astala
845e9d653e Merge pull request #342 from rastala/master
dockerfile 1.0.33
2019-04-26 14:01:55 -04:00
Roope Astala
639ef81636 dockerfile 1.0.33 2019-04-26 13:57:46 -04:00
Roope Astala
60158bf41a Merge pull request #341 from rastala/master
version 1.0.33
2019-04-26 13:45:47 -04:00
Roope Astala
8dbbb01b8a version 1.0.33 2019-04-26 13:44:15 -04:00
Roope Astala
6e6b2b0c48 Merge pull request #340 from rastala/master
add readme
2019-04-26 09:41:49 -04:00
Roope Astala
85f5721bf8 add readme 2019-04-26 09:40:24 -04:00
Shané Winner
6a7dd741e7 Pixel server added 2019-04-23 13:48:23 -07:00
Shané Winner
314218fc89 Added pixel server 2019-04-23 13:47:06 -07:00
Shané Winner
b50d2725c7 Added pixel server 2019-04-23 13:46:06 -07:00
Shané Winner
9a2f448792 Added pixel server 2019-04-23 13:45:05 -07:00
Shané Winner
dd620f19fd Pixel server added 2019-04-23 13:43:41 -07:00
Shané Winner
8116d31da4 Pixel Server added 2019-04-23 13:40:26 -07:00
Shané Winner
ef29dc1fa5 Added Pixel Server 2019-04-23 13:39:18 -07:00
Shané Winner
97b345cb33 Implemented Pixel Server 2019-04-23 13:37:41 -07:00
Shané Winner
282250e670 Implementing Pixel Server 2019-04-23 13:36:24 -07:00
Shané Winner
acef60c5b3 Testing pixel web app 2019-04-23 13:15:04 -07:00
Shané Winner
bfb444eb15 Testing Pixel Tracker 2019-04-23 13:07:48 -07:00
Shané Winner
6277659bf2 Testing Pixel Server 2019-04-23 11:48:55 -07:00
Shané Winner
1645e12712 Testing Tracking Pixel 2019-04-23 11:15:53 -07:00
Roope Astala
cc4a32e70b Merge pull request #337 from jeff-shepherd/master
Updated automl_setup scripts
2019-04-23 13:50:09 -04:00
Jeff Shepherd
997a35aed5 Updated automl_setup scripts 2019-04-23 10:40:33 -07:00
Roope Astala
dd6317a4a0 Merge pull request #336 from rastala/master
adding work-with-data
2019-04-23 10:05:08 -04:00
Roope Astala
82d8353d54 adding work-with-data 2019-04-23 10:04:32 -04:00
Shané Winner
59a01c17a0 Testing the pixel tracker 2019-04-22 14:45:09 -07:00
Shané Winner
e31e1d9af3 Implemented a test pixel tracker 2019-04-22 14:41:32 -07:00
Roope Astala
d38b9db255 Merge pull request #334 from rastala/master
docker update
2019-04-22 15:43:28 -04:00
Roope Astala
761ad88c93 docker update 2019-04-22 15:43:02 -04:00
Roope Astala
644729e5db Merge pull request #333 from rastala/master
version 1.0.30
2019-04-22 15:40:11 -04:00
Roope Astala
e2b1b3fcaa version 1.0.30 2019-04-22 15:39:18 -04:00
Roope Astala
dc692589a9 Merge pull request #326 from rastala/master
update aks notebook
2019-04-18 16:19:51 -04:00
Roope Astala
624b4595b5 update aks notebook 2019-04-18 16:18:33 -04:00
Roope Astala
0ed85c33c2 Delete release.json 2019-04-18 10:01:50 -04:00
Roope Astala
5b01de605f Merge pull request #318 from savitamittal1/hdinotebook
Sample HDI notebook
2019-04-18 10:01:26 -04:00
Savitam
c351ac988a Sample HDI notebook
sample HDI notebook
2019-04-15 12:35:34 -07:00
Josée Martens
759ec3934c Delete yt_cover.png 2019-04-15 12:06:25 -05:00
Josée Martens
b499b88a85 Delete python36.png 2019-04-15 12:06:16 -05:00
Josée Martens
5f4edac3c1 Update NBSETUP.md 2019-04-15 12:00:31 -05:00
Josée Martens
edfce0d936 Update README.md 2019-04-12 17:28:16 -05:00
Josée Martens
1516c7fc24 Update README.md
testing for search
2019-04-12 17:19:55 -05:00
Roope Astala
389fb668ce Add files via upload 2019-04-10 11:12:55 -04:00
Josée Martens
647d5e72a5 Merge pull request #307 from Azure/vizhur-patch-2
Create googled8147fb6c0788258.html
2019-04-09 15:21:51 -05:00
vizhur
43ac4c84bb Create googled8147fb6c0788258.html 2019-04-09 16:19:47 -04:00
Roope Astala
8a1a82b50a Merge pull request #303 from rastala/master
dockerfile and missing config update
2019-04-08 15:38:13 -04:00
Roope Astala
72f386298c dockerfile and missing config update 2019-04-08 15:37:48 -04:00
Roope Astala
41d697e298 Merge pull request #302 from rastala/master
version 1.0.23
2019-04-08 15:35:50 -04:00
Roope Astala
c3ce932029 version 1.0.23 2019-04-08 15:34:51 -04:00
Roope Astala
a956162114 Merge pull request #290 from rastala/master
update aks deployment notebook
2019-04-03 10:53:51 -04:00
Roope Astala
cb5a178e40 Merge branch 'master' of github.com:rastala/MachineLearningNotebooks 2019-04-03 10:52:40 -04:00
Roope Astala
d81c336c59 update production deploy to aks 2019-04-03 10:52:15 -04:00
Roope Astala
4244a24d81 Merge pull request #287 from jeff-shepherd/master
Fixed line termination on automl_setup_linux.sh
2019-04-03 09:21:35 -04:00
Jeff Shepherd
3b488555e5 Added back automl_setup_linux.sh with correct line termination 2019-04-02 16:24:05 -07:00
Jeff Shepherd
6abc478f33 Removed automl_setup_linux.sh 2019-04-02 16:23:11 -07:00
Roope Astala
666c2579eb Merge pull request #285 from jeff-shepherd/master
Corrected line termination for automl_setup_mac.sh
2019-04-02 09:19:53 -04:00
Jeff Shepherd
5af3aa4231 Fixed line termination 2019-04-01 16:19:00 -07:00
Jeff Shepherd
e48d828ab0 Removed automl_setup_mac.sh 2019-04-01 16:17:56 -07:00
Jeff Shepherd
44aa636c21 Merge branch 'master' of https://github.com/Azure/MachineLearningNotebooks 2019-04-01 16:07:11 -07:00
Jeff Shepherd
4678f9adc3 Merge branch 'master' of https://github.com/jeff-shepherd/MachineLearningNotebooks 2019-04-01 16:04:46 -07:00
Jeff Shepherd
5bf85edade Added automl_setup_mac.sh with correct line termination 2019-04-01 16:03:39 -07:00
Jeff Shepherd
94f381e884 Removed automl_setup_mac.sh 2019-04-01 16:02:53 -07:00
Roope Astala
ea1b7599c3 Merge pull request #267 from rastala/master
add automl files
2019-03-25 19:26:07 -04:00
Roope Astala
6b8a6befde add automl files 2019-03-25 19:25:38 -04:00
Roope Astala
c1511b7b74 Merge pull request #266 from rastala/master
1.0.21 dockerfile
2019-03-25 15:10:05 -04:00
Roope Astala
8f007a3333 1.0.21 dockerfile 2019-03-25 15:09:39 -04:00
Roope Astala
5ad3ca00e8 Merge pull request #265 from rastala/master
version 1.0.21
2019-03-25 15:07:09 -04:00
Roope Astala
556a41e223 version 1.0.21 2019-03-25 15:06:08 -04:00
Roope Astala
407b8929d0 Merge pull request #259 from jeff-shepherd/master
Added example of printing model hyperparameters
2019-03-19 09:40:25 -04:00
Jeff Shepherd
18a11bbd8d Added model printing example 2019-03-18 16:31:48 -07:00
Roope Astala
8b439a9f7c Merge pull request #256 from rastala/master
update RAPIDS 2
2019-03-18 12:09:33 -04:00
rastala
75c393a221 update RAPIDS 2 2019-03-18 12:08:10 -04:00
Roope Astala
be7176fe06 Merge pull request #255 from rastala/master
update RAPIDS sample
2019-03-18 11:42:51 -04:00
rastala
7b41675355 update RAPIDS sample 2019-03-18 11:40:43 -04:00
Jeff Shepherd
fa7685f6fa Added example of printing model hyperparameters 2019-03-15 13:18:17 -07:00
Roope Astala
6b444b1467 Merge pull request #248 from rastala/master
dockerfile 1.0.18
2019-03-11 15:33:07 -04:00
Roope Astala
c9767473ae dockerfile 1.0.18 2019-03-11 15:32:30 -04:00
Roope Astala
648b48fc0c Merge pull request #247 from rastala/master
version 1.0.18
2019-03-11 15:23:44 -04:00
Roope Astala
04db5d93e2 version 1.0.18 2019-03-11 15:22:38 -04:00
Roope Astala
4e10935701 version 1.0.18 2019-03-11 15:21:35 -04:00
Roope Astala
f737db499d Delete googleade5d7141b3f2910.html 2019-03-05 17:01:36 -05:00
Roope Astala
6b66da1558 Merge pull request #238 from rastala/master
fix link in configuration notebook
2019-03-05 17:00:31 -05:00
Roope Astala
8647aea9d9 fix link in configuration notebook 2019-03-05 16:59:38 -05:00
Roope Astala
3ee2dc3258 Merge pull request #233 from jeff-shepherd/master
Setup updated to fix remote run
2019-02-26 15:34:15 -05:00
Jeff Shepherd
9f7c4ce668 Setup updated to fix remote run 2019-02-26 11:59:20 -08:00
hning86
036ca6ac75 dockerfile 1.0.17 2019-02-26 10:57:07 -05:00
291 changed files with 48764 additions and 7000 deletions

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.17"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.17" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.18"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.18" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.21"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.21" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.23"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.23" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.30"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.30" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.33"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.33" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.41"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.41" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.43"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.43" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -1,3 +1,4 @@
This software is made available to you on the condition that you agree to
[your agreement][1] governing your use of Azure.
If you do not have an existing agreement governing your use of Azure, you agree that

View File

@@ -1,6 +1,4 @@
# Setting up environment
---
# Set up your notebook environment for Azure Machine Learning
To run the notebooks in this repository use one of following options.
@@ -12,9 +10,7 @@ Azure Notebooks is a hosted Jupyter-based notebook service in the Azure cloud. A
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
1. Open one of the sample notebooks
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook
![set kernel to Python 3.6](images/python36.png)
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook by choosing Kernel > Change Kernel > Python 3.6 from the menus.
## **Option 2: Use your own notebook server**
@@ -28,11 +24,8 @@ pip install azureml-sdk
git clone https://github.com/Azure/MachineLearningNotebooks.git
# below steps are optional
# install the base SDK and a Jupyter notebook server
pip install azureml-sdk[notebooks]
# install the data prep component
pip install azureml-dataprep
# install the base SDK, Jupyter notebook server and tensorboard
pip install azureml-sdk[notebooks,tensorboard]
# install model explainability component
pip install azureml-sdk[explain]
@@ -58,8 +51,7 @@ Please make sure you start with the [Configuration](configuration.ipynb) noteboo
### Video walkthrough:
[![Get Started video](images/yt_cover.png)](https://youtu.be/VIsXeTuW3FU)
[!VIDEO https://youtu.be/VIsXeTuW3FU]
## **Option 3: Use Docker**
@@ -90,9 +82,6 @@ Now you can point your browser to http://localhost:8887. We recommend that you s
If you need additional Azure ML SDK components, you can either modify the Docker files before you build the Docker images to add additional steps, or install them through command line in the live container after you build the Docker image. For example:
```sh
# install dataprep components
pip install azureml-dataprep
# install the core SDK and automated ml components
pip install azureml-sdk[automl]

View File

@@ -11,7 +11,7 @@ pip install azureml-sdk
Read more detailed instructions on [how to set up your environment](./NBSETUP.md) using Azure Notebook service, your own Jupyter notebook server, or Docker.
## How to navigate and use the example notebooks?
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you want to...
@@ -20,7 +20,7 @@ If you want to...
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
## Tutorials
@@ -52,5 +52,18 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
Visit following repos to see projects contributed by Azure ML users:
- [AMLSamples](https://github.com/Azure/AMLSamples) Number of end-to-end examples, including face recognition, predictive maintenance, customer churn and sentiment analysis.
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
## Data/Telemetry
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
```sh
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)"
```
This URL will be slightly different depending on the file.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/README.png)

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/configuration.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -96,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.17 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.43 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -268,14 +275,14 @@
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cpucluster\")\n",
" print(\"Found existing cpu-cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new cpucluster\")\n",
" print(\"Creating new cpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
@@ -306,14 +313,14 @@
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"gpucluster\"\n",
"gpu_cluster_name = \"gpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpucluster\")\n",
" print(\"Creating new gpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
@@ -336,7 +343,7 @@
"\n",
"In this notebook you configured this notebook library to connect easily to an Azure ML workspace. You can copy this notebook to your own libraries to connect them to you workspace, or use it to bootstrap new workspaces completely.\n",
"\n",
"If you came here from another notebook, you can return there and complete that exercise, or you can try out the [Tutorials](./tutorials) or jump into \"how-to\" notebooks and start creating and deploying models. A good place to start is the [train in notebook](./how-to-use-azureml/training/train-in-notebook) example that walks through a simplified but complete end to end machine learning process."
"If you came here from another notebook, you can return there and complete that exercise, or you can try out the [Tutorials](./tutorials) or jump into \"how-to\" notebooks and start creating and deploying models. A good place to start is the [train within notebook](./how-to-use-azureml/training/train-within-notebook) example that walks through a simplified but complete end to end machine learning process."
]
},
{

307
contrib/RAPIDS/README.md Normal file
View File

@@ -0,0 +1,307 @@
## How to use the RAPIDS on AzureML materials
### Setting up requirements
The material requires the use of the Azure ML SDK and of the Jupyter Notebook Server to run the interactive execution. Please refer to instructions to [setup the environment.](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local "Local Computer Set Up") Follow the instructions under **Local Computer**, make sure to run the last step: <span style="font-family: Courier New;">pip install \<new package\></span> with <span style="font-family: Courier New;">new package = progressbar2 (pip install progressbar2)</span>
After following the directions, the user should end up setting a conda environment (<span style="font-family: Courier New;">myenv</span>)that can be activated in an Anaconda prompt
The user would also require an Azure Subscription with a Machine Learning Services quota on the desired region for 24 nodes or more (to be able to select a vmSize with 4 GPUs as it is used on the Notebook) on the desired VM family ([NC\_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC\_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview)), the specific vmSize to be used within the chosen family would also need to be whitelisted for Machine Learning Services usage.
&nbsp;
### Getting and running the material
Clone the AzureML Notebooks repository in GitHub by running the following command on a local_directory:
* C:\local_directory>git clone https://github.com/Azure/MachineLearningNotebooks.git
On a conda prompt navigate to the local directory, activate the conda environment (<span style="font-family: Courier New;">myenv</span>), where the Azure ML SDK was installed and launch Jupyter Notebook.
* (<span style="font-family: Courier New;">myenv</span>) C:\local_directory>jupyter notebook
From the resulting browser at http://localhost:8888/tree, navigate to the master notebook:
* http://localhost:8888/tree/MachineLearningNotebooks/contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb
&nbsp;
The following notebook will appear:
![](imgs/NotebookHome.png)
&nbsp;
### Master Jupyter Notebook
The notebook can be executed interactively step by step, by pressing the Run button (In a red circle in the above image.)
The first couple of functional steps import the necessary AzureML libraries. If you experience any errors please refer back to the [setup the environment.](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local "Local Computer Set Up") instructions.
&nbsp;
#### Setting up a Workspace
The following step gathers the information necessary to set up a workspace to execute the RAPIDS script. This needs to be done only once, or not at all if you already have a workspace you can use set up on the Azure Portal:
![](imgs/WorkSpaceSetUp.png)
It is important to be sure to set the correct values for the subscription\_id, resource\_group, workspace\_name, and region before executing the step. An example is:
subscription_id = os.environ.get("SUBSCRIPTION_ID", "1358e503-xxxx-4043-xxxx-65b83xxxx32d")
resource_group = os.environ.get("RESOURCE_GROUP", "AML-Rapids-Testing")
workspace_name = os.environ.get("WORKSPACE_NAME", "AML_Rapids_Tester")
workspace_region = os.environ.get("WORKSPACE_REGION", "West US 2")
&nbsp;
The resource\_group and workspace_name could take any value, the region should match the region for which the subscription has the required Machine Learning Services node quota.
The first time the code is executed it will redirect to the Azure Portal to validate subscription credentials. After the workspace is created, its related information is stored on a local file so that this step can be subsequently skipped. The immediate step will just load the saved workspace
![](imgs/saved_workspace.png)
Once a workspace has been created the user could skip its creation and just jump to this step. The configuration file resides in:
* C:\local_directory\\MachineLearningNotebooks\contrib\RAPIDS\aml_config\config.json
&nbsp;
#### Creating an AML Compute Target
Following step, creates an AML Compute Target
![](imgs/target_creation.png)
Parameter vm\_size on function call AmlCompute.provisioning\_configuration() has to be a member of the VM families ([NC\_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC\_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview)) that are the ones provided with P40 or V100 GPUs, that are the ones supported by RAPIDS. In this particular case an Standard\_NC24s\_V2 was used.
&nbsp;
If the output of running the step has an error of the form:
![](imgs/targeterror1.png)
It is an indication that even though the subscription has a node quota for VMs for that family, it does not have a node quota for Machine Learning Services for that family.
You will need to request an increase node quota for that family in that region for **Machine Learning Services**.
&nbsp;
Another possible error is the following:
![](imgs/targeterror2.png)
Which indicates that specified vmSize has not been whitelisted for usage on Machine Learning Services and a request to do so should be filled.
The successful creation of the compute target would have an output like the following:
![](imgs/targetsuccess.png)
&nbsp;
#### RAPIDS script uploading and viewing
The next step copies the RAPIDS script process_data.py, which is a slightly modified implementation of the [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb), into a script processing folder and it presents its contents to the user. (The script is discussed in the next section in detail).
If the user wants to use a different RAPIDS script, the references to the <span style="font-family: Courier New;">process_data.py</span> script have to be changed
![](imgs/scriptuploading.png)
&nbsp;
#### Data Uploading
The RAPIDS script loads and extracts features from the Fannie Maes Mortgage Dataset to train an XGBoost prediction model. The script uses two years of data
The next few steps download and decompress the data and is made available to the script as an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data).
&nbsp;
The following functions are used to download and decompress the input data
![](imgs/dcf1.png)
![](imgs/dcf2.png)
![](imgs/dcf3.png)
![](imgs/dcf4.png)
&nbsp;
The next step uses those functions to download locally file:
http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/mortgage_2000-2001.tgz'
And to decompress it, into local folder path = .\mortgage_2000-2001
The step takes several minutes, the intermediate outputs provide progress indicators.
![](imgs/downamddecom.png)
&nbsp;
The decompressed data should have the following structure:
* .\mortgage_2000-2001\acq\Acquisition_<year>Q<num>.txt
* .\mortgage_2000-2001\perf\Performance_<year>Q<num>.txt
* .\mortgage_2000-2001\names.csv
The data is divided in partitions that roughly correspond to yearly quarters. RAPIDS includes support for multi-node, multi-GPU deployments, enabling scaling up and out on much larger dataset sizes. The user will be able to verify that the number of partitions that the script is able to process increases with the number of GPUs used. The RAPIDS script is implemented for single-machine scenarios. An example supporting multiple nodes will be published later.
&nbsp;
The next step upload the data into the [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data) under reference <span style="font-family: Courier New;">fileroot = mortgage_2000-2001</span>
The step takes several minutes to load the data, the output provides a progress indicator.
![](imgs/datastore.png)
Once the data has been loaded into the Azure Machine LEarning Data Store, in subsequent run, the user can comment out the ds.upload line and just make reference to the <span style="font-family: Courier New;">mortgage_2000-2001</blog> data store reference
&nbsp;
#### Setting up required libraries and environment to run RAPIDS code
There are two options to setup the environment to run RAPIDS code. The following steps shows how to ues a prebuilt conda environment. A recommended alternative is to specify a base Docker image and package dependencies. You can find sample code for that in the notebook.
![](imgs/install2.png)
&nbsp;
#### Wrapper function to submit the RAPIDS script as an Azure Machine Learning experiment
The next step consists of the definition of a wrapper function to be used when the user attempts to run the RAPIDS script with different arguments. It takes as arguments: <span style="font-family: Times New Roman;">*cpu\_training*</span>; a flag that indicates if the run is meant to be processed with CPU-only, <span style="font-family: Times New Roman;">*gpu\_count*</span>; the number of GPUs to be used if they are meant to be used and part_count: the number of data partitions to be used
![](imgs/wrapper.png)
&nbsp;
The core of the function resides in configuring the run by the instantiation of a ScriptRunConfig object, which defines the source_directory for the script to be executed, the name of the script and the arguments to be passed to the script.
In addition to the wrapper function arguments, two other arguments are passed: <span style="font-family: Times New Roman;">*data\_dir*</span>, the directory where the data is stored and <span style="font-family: Times New Roman;">*end_year*</span> is the largest year to use partition from.
As mentioned earlier the size of the data that can be processed increases with the number of gpus, in the function, dictionary <span style="font-family: Times New Roman;">*max\_gpu\_count\_data\_partition_mapping*</span> maps the maximum number of partitions that we empirically found that the system can handle given the number of GPUs used. The function throws a warning when the number of partitions for a given number of gpus exceeds the maximum but the script is still executed, however the user should expect an error as an out of memory situation would be encountered
If the user wants to use a different RAPIDS script, the reference to the process_data.py script has to be changed
&nbsp;
#### Submitting Experiments
We are ready to submit experiments: launching the RAPIDS script with different sets of parameters.
&nbsp;
The following couple of steps submit experiments under different conditions.
![](imgs/submission1.png)
&nbsp;
The user can change variable num\_gpu between one and the number of GPUs supported by the chosen vmSize. Variable part\_count can take any value between 1 and 11, but if it exceeds the maximum for num_gpu, the run would result in an error
&nbsp;
If the experiment is successfully submitted, it would be placed on a queue for processing, its status would appeared as Queued and an output like the following would appear
![](imgs/queue.png)
&nbsp;
When the experiment starts running, its status would appeared as Running and the output would change to something like this:
![](imgs/running.png)
&nbsp;
#### Reproducing the performance gains plot results on the Blog Post
When the run has finished successfully, its status would appeared as Completed and the output would change to something like this:
&nbsp;
![](imgs/completed.png)
Which is the output for an experiment run with three partitions and one GPU, notice that the reported processing time is 49.16 seconds just as depicted on the performance gains plot on the blog post
&nbsp;
![](imgs/2GPUs.png)
This output corresponds to a run with three partitions and two GPUs, notice that the reported processing time is 37.50 seconds just as depicted on the performance gains plot on the blog post
&nbsp;
![](imgs/3GPUs.png)
This output corresponds to an experiment run with three partitions and three GPUs, notice that the reported processing time is 24.40 seconds just as depicted on the performance gains plot on the blog post
&nbsp;
![](imgs/4gpus.png)
This output corresponds to an experiment run with three partitions and four GPUs, notice that the reported processing time is 23.33 seconds just as depicted on the performance gains plot on the blogpost
&nbsp;
![](imgs/CPUBase.png)
This output corresponds to an experiment run with three partitions and using only CPU, notice that the reported processing time is 9 minutes and 1.21 seconds or 541.21 second just as depicted on the performance gains plot on the blog post
&nbsp;
![](imgs/OOM.png)
This output corresponds to an experiment run with nine partitions and four GPUs, notice that the notebook throws a warning signaling that the number of partitions exceed the maximum that the system can handle with those many GPUs and the run ends up failing, hence having and status of Failed.
&nbsp;
##### Freeing Resources
In the last step the notebook deletes the compute target. (This step is optional especially if the min_nodes in the cluster is set to 0 with which the cluster will scale down to 0 nodes when there is no usage.)
![](imgs/clusterdelete.png)
&nbsp;
### RAPIDS Script
The Master Notebook runs experiments by launching a RAPIDS script with different sets of parameters. In this section, the RAPIDS script, process_data.py in the material, is analyzed
The script first imports all the necessary libraries and parses the arguments passed by the Master Notebook.
The all internal functions to be used by the script are defined.
&nbsp;
#### Wrapper Auxiliary Functions:
The below functions are wrappers for a configuration module for librmm, the RAPIDS Memory Manager python interface:
![](imgs/wap1.png)![](imgs/wap2.png)
&nbsp;
A couple of other functions are wrappers for the submission of jobs to the DASK client:
![](imgs/wap3.png)
![](imgs/wap4.png)
&nbsp;
#### Data Loading Functions:
The data is loaded through the use of the following three functions
![](imgs/DLF1.png)![](imgs/DLF2.png)![](imgs/DLF3.png)
All three functions use library function cudf.read_csv(), cuDF version for the well known counterpart on Pandas.
&nbsp;
#### Data Transformation and Feature Extraction Functions:
The raw data is transformed and processed to extract features by joining, slicing, grouping, aggregating, factoring, etc, the original dataframes just as is done with Pandas. The following functions in the script are used for that purpose:
![](imgs/fef1.png)![](imgs/fef2.png)![](imgs/fef3.png)![](imgs/fef4.png)![](imgs/fef5.png)
![](imgs/fef6.png)![](imgs/fef7.png)![](imgs/fef8.png)![](imgs/fef9.png)
&nbsp;
#### Main() Function
The previous functions are used in the Main function to accomplish several steps: Set up the Dask client, do all ETL operations, set up and train an XGBoost model, the function also assigns which data needs to be processed by each Dask client
&nbsp;
##### Setting Up DASK client:
The following lines:
![](imgs/daskini.png)
&nbsp;
Initialize and set up a DASK client with a number of workers corresponding to the number of GPUs to be used on the run. A successful execution of the set up will result on the following output:
![](imgs/daskoutput.png)
##### All ETL functions are used on single calls to process\_quarter_gpu, one per data partition
![](imgs/ETL.png)
&nbsp;
##### Concentrating the data assigned to each DASK worker
The partitions assigned to each worker are concatenated and set up for training.
![](imgs/Dask2.png)
&nbsp;
##### Setting Training Parameters
The parameters used for the training of a gradient boosted decision tree model are set up in the following code block:
![](imgs/PArameters.png)
Notice how the parameters are modified when using the CPU-only mode.
&nbsp;
##### Launching the training of a gradient boosted decision tree model using XGBoost.
![](imgs/training.png)
The outputs of the script can be observed in the master notebook as the script is executed
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/RAPIDS/README.png)

View File

@@ -1,409 +1,559 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA RAPIDS in Azure Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [RAPIDS](https://www.developer.nvidia.com/rapids) suite of software libraries from NVIDIA enables the execution of end-to-end data science and analytics pipelines entirely on GPUs. In many machine learning projects, a significant portion of the model training time is spent in setting up the data; this stage of the process is known as Extraction, Transformation and Loading, or ETL. By using the DataFrame API for ETL and GPU-capable ML algorithms in RAPIDS, data preparation and training models can be done in GPU-accelerated end-to-end pipelines without incurring serialization costs between the pipeline stages. This notebook demonstrates how to use NVIDIA RAPIDS to prepare data and train model in Azure.\n",
" \n",
"In this notebook, we will do the following:\n",
" \n",
"* Create an Azure Machine Learning Workspace\n",
"* Create an AMLCompute target\n",
"* Use a script to process our data and train a model\n",
"* Obtain the data required to run this sample\n",
"* Create an AML run configuration to launch a machine learning job\n",
"* Run the script to prepare data for training and train the model\n",
" \n",
"Prerequisites:\n",
"* An Azure subscription to create a Machine Learning Workspace\n",
"* Familiarity with the Azure ML SDK (refer to [notebook samples](https://github.com/Azure/MachineLearningNotebooks))\n",
"* A Jupyter notebook environment with Azure Machine Learning SDK installed. Refer to instructions to [setup the environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Verify if Azure ML SDK is installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core import ScriptRunConfig\n",
"from azureml.widgets import RunDetails"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following step is optional if you already have a workspace. If you want to use an existing workspace, then\n",
"skip this workspace creation step and move on to the next step to load the workspace.\n",
" \n",
"<font color='red'>Important</font>: in the code cell below, be sure to set the correct values for the subscription_id, \n",
"resource_group, workspace_name, region before executing this code cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<subscription_id>\")\n",
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<resource_group>\")\n",
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<workspace_name>\")\n",
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"<region>\")\n",
"\n",
"ws = Workspace.create(workspace_name, subscription_id=subscription_id, resource_group=resource_group, location=workspace_region)\n",
"\n",
"# write config to a local directory for future use\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load existing Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"# if a locally-saved configuration file for the workspace is not available, use the following to load workspace\n",
"# ws = Workspace(subscription_id=subscription_id, resource_group=resource_group, workspace_name=workspace_name)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"\n",
"scripts_folder = \"scripts_folder\"\n",
"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML Compute Target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because NVIDIA RAPIDS requires P40 or V100 GPUs, the user needs to specify compute targets from one of [NC_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview) virtual machine types in Azure; these are the families of virtual machines in Azure that are provisioned with these GPUs.\n",
" \n",
"Pick one of the supported VM SKUs based on the number of GPUs you want to use for ETL and training in RAPIDS.\n",
" \n",
"The script in this notebook is implemented for single-machine scenarios. An example supporting multiple nodes will be published later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"if gpu_cluster_name in ws.compute_targets:\n",
" gpu_cluster = ws.compute_targets[gpu_cluster_name]\n",
" if gpu_cluster and type(gpu_cluster) is AmlCompute:\n",
" print('found compute target. just use it. ' + gpu_cluster_name)\n",
"else:\n",
" print(\"creating new cluster\")\n",
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
"\n",
" # create the cluster\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Script to process data and train model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _process&#95;data.py_ script used in the step below is a slightly modified implementation of [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# copy process_data.py into the script folder\n",
"import shutil\n",
"shutil.copy('./process_data.py', os.path.join(scripts_folder, 'process_data.py'))\n",
"\n",
"with open(os.path.join(scripts_folder, './process_data.py'), 'r') as process_data_script:\n",
" print(process_data_script.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data required to run this sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample uses [Fannie Mae\u00e2\u20ac\u2122s Single-Family Loan Performance Data](http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html). Refer to the 'Available mortgage datasets' section in [instructions](https://rapidsai.github.io/demos/datasets/mortgage-data) to get sample data.\n",
"\n",
"Once you obtain access to the data, you will need to make this data available in an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data), for use in this sample."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<font color='red'>Important</font>: The following step assumes the data is uploaded to the Workspace's default data store under a folder named 'mortgagedata2000_01'. Note that uploading data to the Workspace's default data store is not necessary and the data can be referenced from any datastore, e.g., from Azure Blob or File service, once it is added as a datastore to the workspace. The path_on_datastore parameter needs to be updated, depending on where the data is available. The directory where the data is available should have the following folder structure, as the process_data.py script expects this directory structure:\n",
"* _&lt;data directory>_/acq\n",
"* _&lt;data directory>_/perf\n",
"* _names.csv_\n",
"\n",
"The 'acq' and 'perf' refer to directories containing data files. The _&lt;data directory>_ is the path specified in _path&#95;on&#95;datastore_ parameter in the step below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"\n",
"# download and uncompress data in a local directory before uploading to data store\n",
"# directory specified in src_dir parameter below should have the acq, perf directories with data and names.csv file\n",
"# ds.upload(src_dir='<local directory that has data>', target_path='mortgagedata2000_01', overwrite=True, show_progress=True)\n",
"\n",
"# data already uploaded to the datastore\n",
"data_ref = DataReference(data_reference_name='data', datastore=ds, path_on_datastore='mortgagedata2000_01')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML run configuration to launch a machine learning job"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"AML allows the option of using existing Docker images with prebuilt conda environments. The following step use an existing image from [Docker Hub](https://hub.docker.com/r/rapidsai/rapidsai/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_config = RunConfiguration()\n",
"run_config.framework = 'python'\n",
"run_config.environment.python.user_managed_dependencies = True\n",
"# use conda environment named 'rapids' available in the Docker image\n",
"# this conda environment does not include azureml-defaults package that is required for using AML functionality like metrics tracking, model management etc.\n",
"run_config.environment.python.interpreter_path = '/conda/envs/rapids/bin/python'\n",
"run_config.target = gpu_cluster_name\n",
"run_config.environment.docker.enabled = True\n",
"run_config.environment.docker.gpu_support = True\n",
"# if registry is not mentioned the image is pulled from Docker Hub\n",
"run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2_ubuntu16.04_root\"\n",
"run_config.environment.spark.precache_packages = False\n",
"run_config.data_references={'data':data_ref.to_config()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wrapper function to submit Azure Machine Learning experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameter cpu_predictor indicates if training should be done on CPU. If set to true, GPUs are used *only* for ETL and *not* for training\n",
"# parameter num_gpu indicates number of GPUs to use among the GPUs available in the VM for ETL and if cpu_predictor is false, for training as well \n",
"def run_rapids_experiment(cpu_training, gpu_count):\n",
" # any value between 1-4 is allowed here depending the type of VMs available in gpu_cluster\n",
" if gpu_count not in [1, 2, 3, 4]:\n",
" raise Exception('Value specified for the number of GPUs to use {0} is invalid'.format(gpu_count))\n",
"\n",
" # following data partition mapping is empirical (specific to GPUs used and current data partitioning scheme) and may need to be tweaked\n",
" gpu_count_data_partition_mapping = {1: 2, 2: 4, 3: 5, 4: 7}\n",
" part_count = gpu_count_data_partition_mapping[gpu_count]\n",
"\n",
" end_year = 2000\n",
" if gpu_count > 2:\n",
" end_year = 2001 # use more data with more GPUs\n",
"\n",
" src = ScriptRunConfig(source_directory=scripts_folder, \n",
" script='process_data.py', \n",
" arguments = ['--num_gpu', gpu_count, '--data_dir', str(data_ref),\n",
" '--part_count', part_count, '--end_year', end_year,\n",
" '--cpu_predictor', cpu_training\n",
" ],\n",
" run_config=run_config\n",
" )\n",
"\n",
" exp = Experiment(ws, 'rapidstest')\n",
" run = exp.submit(config=src)\n",
" RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL & training on GPU)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = False\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1 \n",
"# train using CPU, use GPU for both ETL and training\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL on GPU, training on CPU)\n",
"\n",
"To observe performance difference between GPU-accelerated RAPIDS based training with CPU-only training, set 'cpu_predictor' predictor to 'True' and rerun the experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = True\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1\n",
"# train using CPU, use GPU for ETL\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# delete the cluster\n",
"# gpu_cluster.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "ksivas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
"nbformat": 4,
"nbformat_minor": 2
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA RAPIDS in Azure Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [RAPIDS](https://www.developer.nvidia.com/rapids) suite of software libraries from NVIDIA enables the execution of end-to-end data science and analytics pipelines entirely on GPUs. In many machine learning projects, a significant portion of the model training time is spent in setting up the data; this stage of the process is known as Extraction, Transformation and Loading, or ETL. By using the DataFrame API for ETL and GPU-capable ML algorithms in RAPIDS, data preparation and training models can be done in GPU-accelerated end-to-end pipelines without incurring serialization costs between the pipeline stages. This notebook demonstrates how to use NVIDIA RAPIDS to prepare data and train model in Azure.\n",
" \n",
"In this notebook, we will do the following:\n",
" \n",
"* Create an Azure Machine Learning Workspace\n",
"* Create an AMLCompute target\n",
"* Use a script to process our data and train a model\n",
"* Obtain the data required to run this sample\n",
"* Create an AML run configuration to launch a machine learning job\n",
"* Run the script to prepare data for training and train the model\n",
" \n",
"Prerequisites:\n",
"* An Azure subscription to create a Machine Learning Workspace\n",
"* Familiarity with the Azure ML SDK (refer to [notebook samples](https://github.com/Azure/MachineLearningNotebooks))\n",
"* A Jupyter notebook environment with Azure Machine Learning SDK installed. Refer to instructions to [setup the environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Verify if Azure ML SDK is installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core import ScriptRunConfig\n",
"from azureml.widgets import RunDetails"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following step is optional if you already have a workspace. If you want to use an existing workspace, then\n",
"skip this workspace creation step and move on to the next step to load the workspace.\n",
" \n",
"<font color='red'>Important</font>: in the code cell below, be sure to set the correct values for the subscription_id, \n",
"resource_group, workspace_name, region before executing this code cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<subscription_id>\")\n",
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<resource_group>\")\n",
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<workspace_name>\")\n",
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"<region>\")\n",
"\n",
"ws = Workspace.create(workspace_name, subscription_id=subscription_id, resource_group=resource_group, location=workspace_region)\n",
"\n",
"# write config to a local directory for future use\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load existing Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"# if a locally-saved configuration file for the workspace is not available, use the following to load workspace\n",
"# ws = Workspace(subscription_id=subscription_id, resource_group=resource_group, workspace_name=workspace_name)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"\n",
"scripts_folder = \"scripts_folder\"\n",
"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML Compute Target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because NVIDIA RAPIDS requires P40 or V100 GPUs, the user needs to specify compute targets from one of [NC_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview) virtual machine types in Azure; these are the families of virtual machines in Azure that are provisioned with these GPUs.\n",
" \n",
"Pick one of the supported VM SKUs based on the number of GPUs you want to use for ETL and training in RAPIDS.\n",
" \n",
"The script in this notebook is implemented for single-machine scenarios. An example supporting multiple nodes will be published later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"if gpu_cluster_name in ws.compute_targets:\n",
" gpu_cluster = ws.compute_targets[gpu_cluster_name]\n",
" if gpu_cluster and type(gpu_cluster) is AmlCompute:\n",
" print('found compute target. just use it. ' + gpu_cluster_name)\n",
"else:\n",
" print(\"creating new cluster\")\n",
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
"\n",
" # create the cluster\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Script to process data and train model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _process&#95;data.py_ script used in the step below is a slightly modified implementation of [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# copy process_data.py into the script folder\n",
"import shutil\n",
"shutil.copy('./process_data.py', os.path.join(scripts_folder, 'process_data.py'))\n",
"\n",
"with open(os.path.join(scripts_folder, './process_data.py'), 'r') as process_data_script:\n",
" print(process_data_script.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data required to run this sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample uses [Fannie Mae's Single-Family Loan Performance Data](http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html). Once you obtain access to the data, you will need to make this data available in an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data), for use in this sample. The following code shows how to do that."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Downloading Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<font color='red'>Important</font>: Python package progressbar2 is necessary to run the following cell. If it is not available in your environment where this notebook is running, please install it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import tarfile\n",
"import hashlib\n",
"from urllib.request import urlretrieve\n",
"from progressbar import ProgressBar\n",
"\n",
"def validate_downloaded_data(path):\n",
" if(os.path.isdir(path) and os.path.exists(path + '//names.csv')) :\n",
" if(os.path.isdir(path + '//acq' ) and len(os.listdir(path + '//acq')) == 8):\n",
" if(os.path.isdir(path + '//perf' ) and len(os.listdir(path + '//perf')) == 11):\n",
" print(\"Data has been downloaded and decompressed at: {0}\".format(path))\n",
" return True\n",
" print(\"Data has not been downloaded and decompressed\")\n",
" return False\n",
"\n",
"def show_progress(count, block_size, total_size):\n",
" global pbar\n",
" global processed\n",
" \n",
" if count == 0:\n",
" pbar = ProgressBar(maxval=total_size)\n",
" processed = 0\n",
" \n",
" processed += block_size\n",
" processed = min(processed,total_size)\n",
" pbar.update(processed)\n",
"\n",
" \n",
"def download_file(fileroot):\n",
" filename = fileroot + '.tgz'\n",
" if(not os.path.exists(filename) or hashlib.md5(open(filename, 'rb').read()).hexdigest() != '82dd47135053303e9526c2d5c43befd5' ):\n",
" url_format = 'http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/{0}.tgz'\n",
" url = url_format.format(fileroot)\n",
" print(\"...Downloading file :{0}\".format(filename))\n",
" urlretrieve(url, filename,show_progress)\n",
" pbar.finish()\n",
" print(\"...File :{0} finished downloading\".format(filename))\n",
" else:\n",
" print(\"...File :{0} has been downloaded already\".format(filename))\n",
" return filename\n",
"\n",
"def decompress_file(filename,path):\n",
" tar = tarfile.open(filename)\n",
" print(\"...Getting information from {0} about files to decompress\".format(filename))\n",
" members = tar.getmembers()\n",
" numFiles = len(members)\n",
" so_far = 0\n",
" for member_info in members:\n",
" tar.extract(member_info,path=path)\n",
" show_progress(so_far, 1, numFiles)\n",
" so_far += 1\n",
" pbar.finish()\n",
" print(\"...All {0} files have been decompressed\".format(numFiles))\n",
" tar.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fileroot = 'mortgage_2000-2001'\n",
"path = '.\\\\{0}'.format(fileroot)\n",
"pbar = None\n",
"processed = 0\n",
"\n",
"if(not validate_downloaded_data(path)):\n",
" print(\"Downloading and Decompressing Input Data\")\n",
" filename = download_file(fileroot)\n",
" decompress_file(filename,path)\n",
" print(\"Input Data has been Downloaded and Decompressed\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uploading Data to Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"\n",
"# download and uncompress data in a local directory before uploading to data store\n",
"# directory specified in src_dir parameter below should have the acq, perf directories with data and names.csv file\n",
"ds.upload(src_dir=path, target_path=fileroot, overwrite=True, show_progress=True)\n",
"\n",
"# data already uploaded to the datastore\n",
"data_ref = DataReference(data_reference_name='data', datastore=ds, path_on_datastore=fileroot)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML run configuration to launch a machine learning job"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"RunConfiguration is used to submit jobs to Azure Machine Learning service. When creating RunConfiguration for a job, users can either \n",
"1. specify a Docker image with prebuilt conda environment and use it without any modifications to run the job, or \n",
"2. specify a Docker image as the base image and conda or pip packages as dependnecies to let AML build a new Docker image with a conda environment containing specified dependencies to use in the job\n",
"\n",
"The second option is the recommended option in AML. \n",
"The following steps have code for both options. You can pick the one that is more appropriate for your requirements. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specify prebuilt conda environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following code shows how to use an existing image from [Docker Hub](https://hub.docker.com/r/rapidsai/rapidsai/) that has a prebuilt conda environment named 'rapids' when creating a RunConfiguration. Note that this conda environment does not include azureml-defaults package that is required for using AML functionality like metrics tracking, model management etc. This package is automatically installed when you use 'Specify package dependencies' option and that is why it is the recommended option to create RunConfiguraiton in AML."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_config = RunConfiguration()\n",
"run_config.framework = 'python'\n",
"run_config.environment.python.user_managed_dependencies = True\n",
"run_config.environment.python.interpreter_path = '/conda/envs/rapids/bin/python'\n",
"run_config.target = gpu_cluster_name\n",
"run_config.environment.docker.enabled = True\n",
"run_config.environment.docker.gpu_support = True\n",
"run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2-runtime-ubuntu18.04\"\n",
"# run_config.environment.docker.base_image_registry.address = '<registry_url>' # not required if the base_image is in Docker hub\n",
"# run_config.environment.docker.base_image_registry.username = '<user_name>' # needed only for private images\n",
"# run_config.environment.docker.base_image_registry.password = '<password>' # needed only for private images\n",
"run_config.environment.spark.precache_packages = False\n",
"run_config.data_references={'data':data_ref.to_config()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specify package dependencies"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following code shows how to list package dependencies in a conda environment definition file (rapids.yml) when creating a RunConfiguration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# cd = CondaDependencies(conda_dependencies_file_path='rapids.yml')\n",
"# run_config = RunConfiguration(conda_dependencies=cd)\n",
"# run_config.framework = 'python'\n",
"# run_config.target = gpu_cluster_name\n",
"# run_config.environment.docker.enabled = True\n",
"# run_config.environment.docker.gpu_support = True\n",
"# run_config.environment.docker.base_image = \"<image>\"\n",
"# run_config.environment.docker.base_image_registry.address = '<registry_url>' # not required if the base_image is in Docker hub\n",
"# run_config.environment.docker.base_image_registry.username = '<user_name>' # needed only for private images\n",
"# run_config.environment.docker.base_image_registry.password = '<password>' # needed only for private images\n",
"# run_config.environment.spark.precache_packages = False\n",
"# run_config.data_references={'data':data_ref.to_config()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wrapper function to submit Azure Machine Learning experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameter cpu_predictor indicates if training should be done on CPU. If set to true, GPUs are used *only* for ETL and *not* for training\n",
"# parameter num_gpu indicates number of GPUs to use among the GPUs available in the VM for ETL and if cpu_predictor is false, for training as well \n",
"def run_rapids_experiment(cpu_training, gpu_count, part_count):\n",
" # any value between 1-4 is allowed here depending the type of VMs available in gpu_cluster\n",
" if gpu_count not in [1, 2, 3, 4]:\n",
" raise Exception('Value specified for the number of GPUs to use {0} is invalid'.format(gpu_count))\n",
"\n",
" # following data partition mapping is empirical (specific to GPUs used and current data partitioning scheme) and may need to be tweaked\n",
" max_gpu_count_data_partition_mapping = {1: 3, 2: 4, 3: 6, 4: 8}\n",
" \n",
" if part_count > max_gpu_count_data_partition_mapping[gpu_count]:\n",
" print(\"Too many partitions for the number of GPUs, exceeding memory threshold\")\n",
" \n",
" if part_count > 11:\n",
" print(\"Warning: Maximum number of partitions available is 11\")\n",
" part_count = 11\n",
" \n",
" end_year = 2000\n",
" \n",
" if part_count > 4:\n",
" end_year = 2001 # use more data with more GPUs\n",
"\n",
" src = ScriptRunConfig(source_directory=scripts_folder, \n",
" script='process_data.py', \n",
" arguments = ['--num_gpu', gpu_count, '--data_dir', str(data_ref),\n",
" '--part_count', part_count, '--end_year', end_year,\n",
" '--cpu_predictor', cpu_training\n",
" ],\n",
" run_config=run_config\n",
" )\n",
"\n",
" exp = Experiment(ws, 'rapidstest')\n",
" run = exp.submit(config=src)\n",
" RunDetails(run).show()\n",
" return run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL & training on GPU)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = False\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1\n",
"data_part_count = 1\n",
"# train using CPU, use GPU for both ETL and training\n",
"run = run_rapids_experiment(cpu_predictor, num_gpu, data_part_count)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL on GPU, training on CPU)\n",
"\n",
"To observe performance difference between GPU-accelerated RAPIDS based training with CPU-only training, set 'cpu_predictor' predictor to 'True' and rerun the experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = True\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1\n",
"data_part_count = 1\n",
"# train using CPU, use GPU for ETL\n",
"run = run_rapids_experiment(cpu_predictor, num_gpu, data_part_count)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# delete the cluster\n",
"# gpu_cluster.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "ksivas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 183 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 183 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

BIN
contrib/RAPIDS/imgs/ETL.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 554 KiB

BIN
contrib/RAPIDS/imgs/OOM.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 181 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

View File

@@ -1,9 +1,9 @@
# License Info: https://github.com/rapidsai/notebooks/blob/master/LICENSE
import numpy as np
import datetime
import dask_xgboost as dxgb_gpu
import dask
import dask_cudf
from dask_cuda import LocalCUDACluster
from dask.delayed import delayed
from dask.distributed import Client, wait
import xgboost as xgb
@@ -15,53 +15,6 @@ from glob import glob
import os
import argparse
parser = argparse.ArgumentParser("rapidssample")
parser.add_argument("--data_dir", type=str, help="location of data")
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
args = parser.parse_args()
data_dir = args.data_dir
num_gpu = args.num_gpu
part_count = args.part_count
end_year = args.end_year
cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')
print('data_dir = {0}'.format(data_dir))
print('num_gpu = {0}'.format(num_gpu))
print('part_count = {0}'.format(part_count))
part_count = part_count + 1 # adding one because the usage below is not inclusive
print('end_year = {0}'.format(end_year))
print('cpu_predictor = {0}'.format(cpu_predictor))
import subprocess
cmd = "hostname --all-ip-addresses"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
IPADDR = str(output.decode()).split()[0]
print('IPADDR is {0}'.format(IPADDR))
cmd = "/rapids/notebooks/utils/dask-setup.sh 0"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
cmd = "/rapids/notebooks/utils/dask-setup.sh rapids " + str(num_gpu) + " 8786 8787 8790 " + str(IPADDR) + " MASTER"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
print(output.decode())
import dask
from dask.delayed import delayed
from dask.distributed import Client, wait
_client = IPADDR + str(":8786")
client = dask.distributed.Client(_client)
def initialize_rmm_pool():
from librmm_cffi import librmm_config as rmm_cfg
@@ -81,15 +34,17 @@ def run_dask_task(func, **kwargs):
task = func(**kwargs)
return task
def process_quarter_gpu(year=2000, quarter=1, perf_file=""):
def process_quarter_gpu(client, col_names_path, acq_data_path, year=2000, quarter=1, perf_file=""):
dask_client = client
ml_arrays = run_dask_task(delayed(run_gpu_workflow),
col_path=col_names_path,
acq_path=acq_data_path,
quarter=quarter,
year=year,
perf_file=perf_file)
return client.compute(ml_arrays,
return dask_client.compute(ml_arrays,
optimize_graph=False,
fifo_timeout="0ms"
)
fifo_timeout="0ms")
def null_workaround(df, **kwargs):
for column, data_type in df.dtypes.items():
@@ -99,9 +54,9 @@ def null_workaround(df, **kwargs):
df[column] = df[column].fillna(-1)
return df
def run_gpu_workflow(quarter=1, year=2000, perf_file="", **kwargs):
names = gpu_load_names()
acq_gdf = gpu_load_acquisition_csv(acquisition_path= acq_data_path + "/Acquisition_"
def run_gpu_workflow(col_path, acq_path, quarter=1, year=2000, perf_file="", **kwargs):
names = gpu_load_names(col_path=col_path)
acq_gdf = gpu_load_acquisition_csv(acquisition_path= acq_path + "/Acquisition_"
+ str(year) + "Q" + str(quarter) + ".txt")
acq_gdf = acq_gdf.merge(names, how='left', on=['seller_name'])
acq_gdf.drop_column('seller_name')
@@ -231,7 +186,7 @@ def gpu_load_acquisition_csv(acquisition_path, **kwargs):
return cudf.read_csv(acquisition_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def gpu_load_names(**kwargs):
def gpu_load_names(col_path):
""" Loads names used for renaming the banks
Returns
@@ -248,7 +203,7 @@ def gpu_load_names(**kwargs):
("new", "category"),
])
return cudf.read_csv(col_names_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
return cudf.read_csv(col_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def create_ever_features(gdf, **kwargs):
everdf = gdf[['loan_id', 'current_loan_delinquency_status']]
@@ -384,117 +339,157 @@ def last_mile_cleaning(df, **kwargs):
df['delinquency_12'] = df['delinquency_12'].fillna(False).astype('int32')
for column in df.columns:
df[column] = df[column].fillna(-1)
return df.to_arrow(index=False)
return df.to_arrow(preserve_index=False)
def main():
#print('XGBOOST_BUILD_DOC is ' + os.environ['XGBOOST_BUILD_DOC'])
parser = argparse.ArgumentParser("rapidssample")
parser.add_argument("--data_dir", type=str, help="location of data")
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
args = parser.parse_args()
data_dir = args.data_dir
num_gpu = args.num_gpu
part_count = args.part_count
end_year = args.end_year
cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')
if cpu_predictor:
print('Training with CPUs require num gpu = 1')
num_gpu = 1
print('data_dir = {0}'.format(data_dir))
print('num_gpu = {0}'.format(num_gpu))
print('part_count = {0}'.format(part_count))
#part_count = part_count + 1 # adding one because the usage below is not inclusive
print('end_year = {0}'.format(end_year))
print('cpu_predictor = {0}'.format(cpu_predictor))
import subprocess
cmd = "hostname --all-ip-addresses"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
IPADDR = str(output.decode()).split()[0]
cluster = LocalCUDACluster(ip=IPADDR,n_workers=num_gpu)
client = Client(cluster)
client
print(client.ncores())
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
start_year = 2000
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
start_year = 2000
#end_year = 2000 # end_year is inclusive -- converted to parameter
#part_count = 2 # the number of data files to train against -- converted to parameter
client.run(initialize_rmm_pool)
client.run(initialize_rmm_pool)
client
print(client.ncores())
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
print("Reading ...")
t1 = datetime.datetime.now()
gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
if count < part_count:
gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
count += 1
print('file: {0}'.format(file))
print('count: {0}'.format(count))
quarter += 1
if quarter == 5:
year += 1
quarter = 1
print("Reading ...")
t1 = datetime.datetime.now()
gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
if count < part_count:
gpu_dfs.append(process_quarter_gpu(client, col_names_path, acq_data_path, year=year, quarter=quarter, perf_file=file))
count += 1
print('file: {0}'.format(file))
print('count: {0}'.format(count))
quarter += 1
if quarter == 5:
year += 1
quarter = 1
wait(gpu_dfs)
t2 = datetime.datetime.now()
print("Reading time ...")
print(t2-t1)
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
client.run(cudf._gdf.rmm_finalize)
client.run(initialize_rmm_no_pool)
client
print(client.ncores())
dxgb_gpu_params = {
'nround': 100,
'max_depth': 8,
'max_leaves': 2**8,
'alpha': 0.9,
'eta': 0.1,
'gamma': 0.1,
'learning_rate': 0.1,
'subsample': 1,
'reg_lambda': 1,
'scale_pos_weight': 2,
'min_child_weight': 30,
'tree_method': 'gpu_hist',
'n_gpus': 1,
'distributed_dask': True,
'loss': 'ls',
'objective': 'gpu:reg:linear',
'max_features': 'auto',
'criterion': 'friedman_mse',
'grow_policy': 'lossguide',
'verbose': True
}
if cpu_predictor:
print('Training using CPUs')
dxgb_gpu_params['predictor'] = 'cpu_predictor'
dxgb_gpu_params['tree_method'] = 'hist'
dxgb_gpu_params['objective'] = 'reg:linear'
wait(gpu_dfs)
t2 = datetime.datetime.now()
print("Reading time ...")
print(t2-t1)
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
client.run(cudf._gdf.rmm_finalize)
client.run(initialize_rmm_no_pool)
dxgb_gpu_params = {
'nround': 100,
'max_depth': 8,
'max_leaves': 2**8,
'alpha': 0.9,
'eta': 0.1,
'gamma': 0.1,
'learning_rate': 0.1,
'subsample': 1,
'reg_lambda': 1,
'scale_pos_weight': 2,
'min_child_weight': 30,
'tree_method': 'gpu_hist',
'n_gpus': 1,
'distributed_dask': True,
'loss': 'ls',
'objective': 'gpu:reg:linear',
'max_features': 'auto',
'criterion': 'friedman_mse',
'grow_policy': 'lossguide',
'verbose': True
}
if cpu_predictor:
print('Training using CPUs')
dxgb_gpu_params['predictor'] = 'cpu_predictor'
dxgb_gpu_params['tree_method'] = 'hist'
dxgb_gpu_params['objective'] = 'reg:linear'
else:
print('Training using GPUs')
print('Training parameters are {0}'.format(dxgb_gpu_params))
gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
if value not in new_map:
new_map[value] = [key]
else:
new_map[value].append(key)
print('Training using GPUs')
print('Training parameters are {0}'.format(dxgb_gpu_params))
gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
if value not in new_map:
new_map[value] = [key]
else:
new_map[value].append(key)
del(tmp_map)
gpu_dfs = []
for list_delayed in new_map.values():
gpu_dfs.append(delayed(cudf.concat)(list_delayed))
del(new_map)
gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
gc.collect()
wait(gpu_dfs)
labels = None
t1 = datetime.datetime.now()
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
t2 = datetime.datetime.now()
print("Training time ...")
print(t2-t1)
print('str(bst) is {0}'.format(str(bst)))
print('Exiting script')
del(tmp_map)
gpu_dfs = []
for list_delayed in new_map.values():
gpu_dfs.append(delayed(cudf.concat)(list_delayed))
del(new_map)
gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
gc.collect()
labels = None
print('str(gpu_dfs) is {0}'.format(str(gpu_dfs)))
wait(gpu_dfs)
t1 = datetime.datetime.now()
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
t2 = datetime.datetime.now()
print("Training time ...")
print(t2-t1)
print('str(bst) is {0}'.format(str(bst)))
print('Exiting script')
if __name__ == '__main__':
main()

35
contrib/RAPIDS/rapids.yml Normal file
View File

@@ -0,0 +1,35 @@
name: rapids
channels:
- nvidia
- numba
- conda-forge
- rapidsai
- defaults
- pytorch
dependencies:
- arrow-cpp=0.12.0
- bokeh
- cffi=1.11.5
- cmake=3.12
- cuda92
- cython==0.29
- dask=1.1.1
- distributed=1.25.3
- faiss-gpu=1.5.0
- numba=0.42
- numpy=1.15.4
- nvstrings
- pandas=0.23.4
- pyarrow=0.12.0
- scikit-learn
- scipy
- cudf
- cuml
- python=3.6.2
- jupyterlab
- pip:
- file:/rapids/xgboost/python-package/dist/xgboost-0.81-py3-none-any.whl
- git+https://github.com/rapidsai/dask-xgboost@dask-cudf
- git+https://github.com/rapidsai/dask-cudf@master
- git+https://github.com/rapidsai/dask-cuda@master

View File

@@ -1 +0,0 @@
google-site-verification: googleade5d7141b3f2910.html

View File

@@ -1,8 +1,8 @@
# Table of Contents
1. [Automated ML Introduction](#introduction)
1. [Running samples in Azure Notebooks](#jupyter)
1. [Running samples in Azure Databricks](#databricks)
1. [Running samples in a Local Conda environment](#localconda)
1. [Setup using Azure Notebooks](#jupyter)
1. [Setup using Azure Databricks](#databricks)
1. [Setup using a Local Conda environment](#localconda)
1. [Automated ML SDK Sample Notebooks](#samples)
1. [Documentation](#documentation)
1. [Running using python command](#pythoncommand)
@@ -13,15 +13,15 @@
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
If you are new to Data Science, AutoML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are new to Data Science, automated ML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are an experienced data scientist, AutoML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. AutoML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
If you are an experienced data scientist, automated ML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. Automated ML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
Below are the three execution environments supported by AutoML.
Below are the three execution environments supported by automated ML.
<a name="jupyter"></a>
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
## Setup using Azure Notebooks - Jupyter based notebooks in the Azure cloud
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
@@ -29,7 +29,7 @@ Below are the three execution environments supported by AutoML.
1. Open one of the sample notebooks.
<a name="databricks"></a>
## Running samples in Azure Databricks
## Setup using Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
@@ -39,35 +39,25 @@ Below are the three execution environments supported by AutoML.
- Attach the notebook to the cluster.
<a name="localconda"></a>
## Running samples in a Local Conda environment
## Setup using a Local Conda environment
To run these notebook on your own notebook server, use these installation instructions.
The instructions below will install everything you need and then start a Jupyter notebook. To start your Jupyter notebook manually, use:
```
conda activate azure_automl
jupyter notebook
```
or on Mac:
```
source activate azure_automl
jupyter notebook
```
The instructions below will install everything you need and then start a Jupyter notebook.
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.7 or higher.
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
There's no need to install mini-conda specifically.
### 2. Downloading the sample notebooks
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The AutoML sample notebooks are in the "automl" folder.
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The automated ML sample notebooks are in the "automated-machine-learning" folder.
### 3. Setup a new conda environment
The **automl/automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook.
It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
The **automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook. It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
Packages installed by the **automl_setup** script:
<ul><li>python</li><li>nb_conda</li><li>matplotlib</li><li>numpy</li><li>cython</li><li>urllib3</li><li>scipy</li><li>scikit-learn</li><li>pandas</li><li>tensorflow</li><li>py-xgboost</li><li>azureml-sdk</li><li>azureml-widgets</li><li>pandas-ml</li></ul>
For more details refer to the [automl_env.yml](./automl_env.yml)
## Windows
Start an **Anaconda Prompt** window, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
```
@@ -95,44 +85,44 @@ bash automl_setup_linux.sh
### 5. Running Samples
- Please make sure you use the Python [conda env:azure_automl] kernel when trying the sample Notebooks.
- Follow the instructions in the individual notebooks to explore various features in AutoML
- Follow the instructions in the individual notebooks to explore various features in automated ML.
### 6. Starting jupyter notebook manually
To start your Jupyter notebook manually, use:
```
conda activate azure_automl
jupyter notebook
```
or on Mac or Linux:
```
source activate azure_automl
jupyter notebook
```
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Simple example of using automated ML for classification
- Uses local compute for training
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
- Simple example of using Auto ML for regression
- Simple example of using automated ML for regression
- Uses local compute for training
- [auto-ml-remote-execution.ipynb](remote-execution/auto-ml-remote-execution.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using Auto ML for classification using a remote linux DSVM for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- [auto-ml-remote-batchai.ipynb](remote-batchai/auto-ml-remote-batchai.ipynb)
- [auto-ml-remote-amlcompute.ipynb](remote-amlcompute/auto-ml-remote-amlcompute.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using automated ML for classification using remote AmlCompute for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- [auto-ml-remote-attach.ipynb](remote-attach/auto-ml-remote-attach.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- handling text data with preprocess flag
- Reading data from a blob store for remote executions
- using pandas dataframes for reading data
- Specify automated ML settings as kwargs
- [auto-ml-missing-data-blacklist-early-termination.ipynb](missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
@@ -147,17 +137,13 @@ bash automl_setup_linux.sh
- [auto-ml-exploring-previous-runs.ipynb](exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb)
- List all projects for the workspace
- List all AutoML Runs for a given project
- Get details for a AutoML Run. (Automl settings, run widget & all metrics)
- List all automated ML Runs for a given project
- Get details for a automated ML Run. (automated ML settings, run widget & all metrics)
- Download fitted pipeline for any iteration
- [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- Download the data and store it in DataStore.
- [auto-ml-classification-with-deployment.ipynb](classification-with-deployment/auto-ml-classification-with-deployment.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Simple example of using automated ML for classification
- Registering the model
- Creating Image and creating aci service
- Testing the aci service
@@ -177,16 +163,21 @@ bash automl_setup_linux.sh
- [auto-ml-classification-with-whitelisting.ipynb](classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification with whitelisting tensorflow models.
- Simple example of using automated ML for classification with whitelisting tensorflow models.
- Uses local compute for training
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
- Example of using AutoML for training a forecasting model
- Example of using automated ML for training a forecasting model
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
- Example of training an AutoML forecasting model on multiple time-series
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-classification-with-onnx.ipynb](classification-with-onnx/auto-ml-classification-with-onnx.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification with ONNX models
- Uses local compute for training
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
@@ -205,10 +196,18 @@ The main code of the file must be indented so that it is under this condition.
<a name="troubleshooting"></a>
# Troubleshooting
## automl_setup fails
1. On windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
1. On Windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
2. Check that you have conda 64-bit installed rather than 32-bit. You can check this with the command `conda info`. The `platform` should be `win-64` for Windows or `osx-64` for Mac.
3. Check that you have conda 4.4.10 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
4. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
4. On Linux, if the error is `gcc: error trying to exec 'cc1plus': execvp: No such file or directory`, install build essentials using the command `sudo apt-get install build-essential`.
5. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
## automl_setup_linux.sh fails
If automl_setup_linux.sh fails on Ubuntu Linux with the error: `unable to execute 'gcc': No such file or directory`
1. Make sure that outbound ports 53 and 80 are enabled. On an Azure VM, you can do this from the Azure Portal by selecting the VM and clicking on Networking.
2. Run the command: `sudo apt-get update`
3. Run the command: `sudo apt-get install build-essential --fix-missing`
4. Run `automl_setup_linux.sh` again.
## configuration.ipynb fails
1) For local conda, make sure that you have susccessfully run automl_setup first.
@@ -232,13 +231,20 @@ If a sample notebook fails with an error that property, method or library does n
## Numpy import fails on Windows
Some Windows environments see an error loading numpy with the latest Python version 3.6.8. If you see this issue, try with Python version 3.6.7.
## Numpy import fails
Check the tensorflow version in the automated ml conda environment. Supported versions are < 1.13. Uninstall tensorflow from the environment if version is >= 1.13
You may check the version of tensorflow and uninstall as follows
1) start a command shell, activate conda environment where automated ml packages are installed
2) enter `pip freeze` and look for `tensorflow` , if found, the version listed should be < 1.13
3) If the listed version is a not a supported version, `pip uninstall tensorflow` in the command shell and enter y for confirmation.
## Remote run: DsvmCompute.create fails
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.
2) `The requested VM size xxxxx is not available in the current region.` You can select a different region or vm_size.
## Remote run: Unable to establish SSH connection
AutoML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
Automated ML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
1) The DSVM is not ready for SSH connections. When DSVM creation completes, the DSVM might still not be ready to acceept SSH connections. The sample notebooks have a one minute delay to allow for this.
2) Your Azure Subscription may restrict the IP address ranges that can access the DSVM on port 22. You can check this in the Azure Portal by selecting the Virtual Machine and then clicking Networking. The Virtual Machine name is the name that you provided in the notebook plus 10 alpha numeric characters to make the name unique. The Inbound Port Rules define what can access the VM on specific ports. Note that there is a priority priority order. So, a Deny entry with a low priority number will override a Allow entry with a higher priority number.
@@ -249,13 +255,13 @@ This is often an issue with the `get_data` method.
3) You can get to the error log for the setup iteration by clicking the `Click here to see the run in Azure portal` link, click `Back to Experiment`, click on the highest run number and then click on Logs.
## Remote run: disk full
AutoML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
Automated ML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
You can delete the files under /tmp/azureml_runs or just delete the VM and create a new one.
If your get_data downloads files, make sure the delete them or they can use disk space as well.
When using DataStore, it is good to specify an absolute path for the files so that they are downloaded just once. If you specify a relative path, it will download a file for each iteration.
## Remote run: Iterations fail and the log contains "MemoryError"
This can be caused by insufficient memory on the DSVM. AutoML loads all training data into memory. So, the available memory should be more than the training data size.
This can be caused by insufficient memory on the DSVM. Automated ML loads all training data into memory. So, the available memory should be more than the training data size.
If you are using a remote DSVM, memory is needed for each concurrent iteration. The max_concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and max_concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
To resolve this issue, allocate a DSVM with more memory or reduce the value specified for max_concurrent_iterations.

View File

@@ -5,17 +5,17 @@ dependencies:
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<1.15.0
- numpy>=1.11.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.18.0,<=0.19.1
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.80
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -2,21 +2,21 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- nomkl
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.15.3
- numpy>=1.11.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.18.0,<=0.19.1
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
- py-xgboost<=0.80
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -31,7 +31,6 @@ else
conda install lightgbm -c conda-forge -y &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
pip install numpy==1.15.3 &&
echo "" &&
echo "" &&
echo "***************************************" &&

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -119,7 +126,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
@@ -139,7 +146,6 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 20,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
@@ -263,7 +269,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. The following cells create a file, myenv.yml, which specifies the dependencies from the run."
]
},
{
@@ -303,7 +309,8 @@
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
" pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"

View File

@@ -0,0 +1,358 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute with ONNX compatible config on.\n",
"4. Explore the results and save the ONNX model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig, constants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-classification-onnx'\n",
"project_folder = './sample_projects/automl-classification-onnx'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_iris](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iris = datasets.load_iris()\n",
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
" iris.target, \n",
" test_size=0.2, \n",
" random_state=0)\n",
"\n",
"# Convert the X_train and X_test to pandas DataFrame and set column names,\n",
"# This is needed for initializing the input variable names of ONNX model, \n",
"# and the prediction with the ONNX model using the inference helper.\n",
"X_train = pd.DataFrame(X_train, columns=['c1', 'c2', 'c3', 'c4'])\n",
"X_test = pd.DataFrame(X_test, columns=['c1', 'c2', 'c3', 'c4'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train with enable ONNX compatible models config on\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" verbosity = logging.INFO, \n",
" X = X_train, \n",
" y = y_train,\n",
" preprocess=True,\n",
" enable_onnx_compatible_models=True,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best ONNX Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.\n",
"\n",
"Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, onnx_mdl = local_run.get_output(return_onnx_model=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the best ONNX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.onnx_convert import OnnxConverter\n",
"onnx_fl_path = \"./best_model.onnx\"\n",
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict with the ONNX model, using onnxruntime package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import json\n",
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
"\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" python_version_compatible = True\n",
"else:\n",
" python_version_compatible = False\n",
"\n",
"try:\n",
" import onnxruntime\n",
" from azureml.automl.core.onnx_convert import OnnxInferenceHelper \n",
" onnxrt_present = True\n",
"except ImportError:\n",
" onnxrt_present = False\n",
"\n",
"def get_onnx_res(run):\n",
" res_path = '_debug_y_trans_converter.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n",
" onnx_res = json.load(f)\n",
" return onnx_res\n",
"\n",
"if onnxrt_present and python_version_compatible: \n",
" mdl_bytes = onnx_mdl.SerializeToString()\n",
" onnx_res = get_onnx_res(best_run)\n",
"\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(X_test)\n",
"\n",
" print(pred_onnx)\n",
" print(pred_prob_onnx)\n",
"else:\n",
" if not python_version_compatible:\n",
" print('Please use Python version 3.6 to run the inference helper.') \n",
" if not onnxrt_present:\n",
" print('Please install the onnxruntime package to do the prediction with ONNX model.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -60,6 +67,7 @@
"metadata": {},
"outputs": [],
"source": [
"#Note: This notebook will install tensorflow if not already installed in the enviornment..\n",
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
@@ -70,6 +78,17 @@
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import sys\n",
"whitelist_models=[\"LightGBM\"]\n",
"if \"3.7\" != sys.version[0:3]:\n",
" try:\n",
" import tensorflow as tf1\n",
" except ImportError:\n",
" from pip._internal import main\n",
" main(['install', 'tensorflow>=1.10.0,<=1.12.0'])\n",
" logging.getLogger().setLevel(logging.ERROR)\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"]\n",
"\n",
"from azureml.train.automl import AutoMLConfig"
]
},
@@ -138,7 +157,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
]
@@ -154,12 +173,11 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_tf=True,\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"],\n",
" whitelist_models=whitelist_models,\n",
" path = project_folder)"
]
},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -72,6 +79,32 @@
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the `ws = Workspace.from_config()` line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see [aka.ms/aml-notebook-auth](http://aka.ms/aml-notebook-auth)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -133,12 +166,17 @@
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|\n",
"\n",
"Automated machine learning trains multiple machine learning pipelines. Each pipelines training is known as an iteration.\n",
"* You can specify a maximum number of iterations using the `iterations` parameter.\n",
"* You can specify a maximum time for the run using the `experiment_timeout_minutes` parameter.\n",
"* If you specify neither the `iterations` nor the `experiment_timeout_minutes`, automated ML keeps running iterations while it continues to see improvements in the scores.\n",
"\n",
"The following example doesn't specify `iterations` or `experiment_timeout_minutes` and so runs until the scores stop improving.\n"
]
},
{
@@ -148,15 +186,10 @@
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 25,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" n_cross_validations = 3)"
]
},
{
@@ -274,8 +307,45 @@
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
"print(best_run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n",
"The following shows printing hyperparameters for each step in the pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pprint import pprint\n",
"\n",
"def print_model(model, prefix=\"\"):\n",
" for step in model.steps:\n",
" print(prefix + step[0])\n",
" if hasattr(step[1], 'estimators') and hasattr(step[1], 'weights'):\n",
" pprint({'estimators': list(e[0] for e in step[1].estimators), 'weights': step[1].weights})\n",
" print()\n",
" for estimator in step[1].estimators:\n",
" print_model(estimator[1], estimator[0]+ ' - ')\n",
" elif hasattr(step[1], '_base_learners') and hasattr(step[1], '_meta_learner'):\n",
" print(\"\\nMeta Learner\")\n",
" pprint(step[1]._meta_learner)\n",
" print()\n",
" for estimator in step[1]._base_learners:\n",
" print_model(estimator[1], estimator[0]+ ' - ')\n",
" else:\n",
" pprint(step[1].get_params())\n",
" print()\n",
" \n",
"print_model(fitted_model)"
]
},
{
@@ -294,8 +364,16 @@
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
"print(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_model(fitted_model)"
]
},
{
@@ -314,8 +392,16 @@
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
"print(third_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_model(third_model)"
]
},
{

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep-remote-execution/auto-ml-dataprep-remote-execution.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -117,21 +124,12 @@
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n",
"dflow.get_profile()"
]
},
{
@@ -140,7 +138,30 @@
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
"dflow = dflow.drop_nulls('Primary Type')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
]
},
{
@@ -162,9 +183,8 @@
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
" \"preprocess\" : True,\n",
" \"verbosity\" : logging.INFO\n",
"}"
]
},
@@ -172,7 +192,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach a Remote Linux DSVM"
"### Create or Attach an AmlCompute cluster"
]
},
{
@@ -181,21 +201,36 @@
"metadata": {},
"outputs": [],
"source": [
"dsvm_name = 'mydsvmc'\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"try:\n",
" while ws.compute_targets[dsvm_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found existing DVSM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster\"\n",
"\n",
"found = False\n",
"\n",
"# Check if this compute target already exists in the workspace.\n",
"\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
@@ -207,11 +242,15 @@
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"conda_run_config.target = dsvm_compute\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
@@ -257,6 +296,44 @@
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -376,7 +453,8 @@
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
"#### Load Test Data\n",
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
]
},
{
@@ -385,12 +463,8 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
"dflow_test = dflow_test.drop_nulls('Primary Type')"
]
},
{
@@ -398,7 +472,7 @@
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
"We will use confusion matrix to see how our model works."
]
},
{
@@ -407,65 +481,19 @@
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
"\n",
"ypred = fitted_model.predict(X_test)\n",
"\n",
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
"\n",
"print(cm)\n",
"\n",
"cm.plot()"
]
}
],

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -115,23 +122,12 @@
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n",
"dflow.get_profile()"
]
},
{
@@ -140,7 +136,30 @@
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
"dflow = dflow.drop_nulls('Primary Type')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
]
},
{
@@ -162,9 +181,8 @@
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
" \"preprocess\" : True,\n",
" \"verbosity\" : logging.INFO\n",
"}"
]
},
@@ -327,7 +345,8 @@
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
"#### Load Test Data\n",
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
]
},
{
@@ -336,12 +355,8 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
"dflow_test = dflow_test.drop_nulls('Primary Type')"
]
},
{
@@ -349,7 +364,7 @@
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
"We will use confusion matrix to see how our model works."
]
},
{
@@ -358,65 +373,18 @@
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
"ypred = fitted_model.predict(X_test)\n",
"\n",
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
"\n",
"print(cm)\n",
"\n",
"cm.plot()"
]
}
],

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -0,0 +1,500 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"**BikeShare Demand Forecasting**\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we show how AutoML can be used for bike share forecasting.\n",
"\n",
"The purpose is to demonstrate how to take advantage of the built-in holiday featurization, access the feature names, and further demonstrate how to work with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-bikeshareforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-bikeshareforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"Read bike share demand data from file, and preview data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('bike-no.csv', parse_dates=['date'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set up what we know abou the dataset. \n",
"\n",
"**Target column** is what we want to forecast.\n",
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Grain** is another word for an individual time series in your dataset. Grains are identified by values of the columns listed `grain_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_column_name = 'cnt'\n",
"time_column_name = 'date'\n",
"grain_column_names = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split the data\n",
"\n",
"The first split we make is into train and test sets. Note we are splitting on time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train = data[data[time_column_name] < '2012-09-01']\n",
"test = data[data[time_column_name] >= '2012-09-01']\n",
"\n",
"X_train = train.copy()\n",
"y_train = X_train.pop(target_column_name).values\n",
"\n",
"X_test = test.copy()\n",
"y_test = X_test.pop(target_column_name).values\n",
"\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_test.shape)\n",
"print(y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"Assuming your test data forms a full and regular time series(regular time intervals and no holes), \n",
"the maximum horizon you will need to forecast is the length of the longest grain in your test set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if len(grain_column_names) == 0:\n",
" max_horizon = len(X_test)\n",
"else:\n",
" max_horizon = X_test.groupby(grain_column_names)[time_column_name].count().max()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'date'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
" # these columns are a breakdown of the total and therefore a leak\n",
" \"drop_column_names\": ['casual', 'registered'],\n",
" # knowing the country/region allows Automated ML to bring in holidays\n",
" \"country_or_region\" : 'US',\n",
" \"max_horizon\" : max_horizon,\n",
" \"target_lags\": 1 \n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3, \n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. Experiment can be continued for more iterations if the results are not yet good. You will see the currently running iterations printing to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"\n",
"You can accees the engineered feature names generated in time-series featurization. Note that a number of named holiday periods are represented. We recommend that you have at least one year of data when using this feature to ensure that all yearly holidays are captured in the training featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the featurization summary\n",
"\n",
"You can also see what featurization steps were performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:\n",
"\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values.\n",
"\n",
"We always score on the original dataset whose schema matches the scheme of the training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.NaN)\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga@microsoft.com, tosingli@microsoft.com"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,732 @@
instant,date,season,yr,mnth,weekday,weathersit,temp,atemp,hum,windspeed,casual,registered,cnt
1,1/1/2011,1,0,1,6,2,0.344167,0.363625,0.805833,0.160446,331,654,985
2,1/2/2011,1,0,1,0,2,0.363478,0.353739,0.696087,0.248539,131,670,801
3,1/3/2011,1,0,1,1,1,0.196364,0.189405,0.437273,0.248309,120,1229,1349
4,1/4/2011,1,0,1,2,1,0.2,0.212122,0.590435,0.160296,108,1454,1562
5,1/5/2011,1,0,1,3,1,0.226957,0.22927,0.436957,0.1869,82,1518,1600
6,1/6/2011,1,0,1,4,1,0.204348,0.233209,0.518261,0.0895652,88,1518,1606
7,1/7/2011,1,0,1,5,2,0.196522,0.208839,0.498696,0.168726,148,1362,1510
8,1/8/2011,1,0,1,6,2,0.165,0.162254,0.535833,0.266804,68,891,959
9,1/9/2011,1,0,1,0,1,0.138333,0.116175,0.434167,0.36195,54,768,822
10,1/10/2011,1,0,1,1,1,0.150833,0.150888,0.482917,0.223267,41,1280,1321
11,1/11/2011,1,0,1,2,2,0.169091,0.191464,0.686364,0.122132,43,1220,1263
12,1/12/2011,1,0,1,3,1,0.172727,0.160473,0.599545,0.304627,25,1137,1162
13,1/13/2011,1,0,1,4,1,0.165,0.150883,0.470417,0.301,38,1368,1406
14,1/14/2011,1,0,1,5,1,0.16087,0.188413,0.537826,0.126548,54,1367,1421
15,1/15/2011,1,0,1,6,2,0.233333,0.248112,0.49875,0.157963,222,1026,1248
16,1/16/2011,1,0,1,0,1,0.231667,0.234217,0.48375,0.188433,251,953,1204
17,1/17/2011,1,0,1,1,2,0.175833,0.176771,0.5375,0.194017,117,883,1000
18,1/18/2011,1,0,1,2,2,0.216667,0.232333,0.861667,0.146775,9,674,683
19,1/19/2011,1,0,1,3,2,0.292174,0.298422,0.741739,0.208317,78,1572,1650
20,1/20/2011,1,0,1,4,2,0.261667,0.25505,0.538333,0.195904,83,1844,1927
21,1/21/2011,1,0,1,5,1,0.1775,0.157833,0.457083,0.353242,75,1468,1543
22,1/22/2011,1,0,1,6,1,0.0591304,0.0790696,0.4,0.17197,93,888,981
23,1/23/2011,1,0,1,0,1,0.0965217,0.0988391,0.436522,0.2466,150,836,986
24,1/24/2011,1,0,1,1,1,0.0973913,0.11793,0.491739,0.15833,86,1330,1416
25,1/25/2011,1,0,1,2,2,0.223478,0.234526,0.616957,0.129796,186,1799,1985
26,1/26/2011,1,0,1,3,3,0.2175,0.2036,0.8625,0.29385,34,472,506
27,1/27/2011,1,0,1,4,1,0.195,0.2197,0.6875,0.113837,15,416,431
28,1/28/2011,1,0,1,5,2,0.203478,0.223317,0.793043,0.1233,38,1129,1167
29,1/29/2011,1,0,1,6,1,0.196522,0.212126,0.651739,0.145365,123,975,1098
30,1/30/2011,1,0,1,0,1,0.216522,0.250322,0.722174,0.0739826,140,956,1096
31,1/31/2011,1,0,1,1,2,0.180833,0.18625,0.60375,0.187192,42,1459,1501
32,2/1/2011,1,0,2,2,2,0.192174,0.23453,0.829565,0.053213,47,1313,1360
33,2/2/2011,1,0,2,3,2,0.26,0.254417,0.775417,0.264308,72,1454,1526
34,2/3/2011,1,0,2,4,1,0.186957,0.177878,0.437826,0.277752,61,1489,1550
35,2/4/2011,1,0,2,5,2,0.211304,0.228587,0.585217,0.127839,88,1620,1708
36,2/5/2011,1,0,2,6,2,0.233333,0.243058,0.929167,0.161079,100,905,1005
37,2/6/2011,1,0,2,0,1,0.285833,0.291671,0.568333,0.1418,354,1269,1623
38,2/7/2011,1,0,2,1,1,0.271667,0.303658,0.738333,0.0454083,120,1592,1712
39,2/8/2011,1,0,2,2,1,0.220833,0.198246,0.537917,0.36195,64,1466,1530
40,2/9/2011,1,0,2,3,2,0.134783,0.144283,0.494783,0.188839,53,1552,1605
41,2/10/2011,1,0,2,4,1,0.144348,0.149548,0.437391,0.221935,47,1491,1538
42,2/11/2011,1,0,2,5,1,0.189091,0.213509,0.506364,0.10855,149,1597,1746
43,2/12/2011,1,0,2,6,1,0.2225,0.232954,0.544167,0.203367,288,1184,1472
44,2/13/2011,1,0,2,0,1,0.316522,0.324113,0.457391,0.260883,397,1192,1589
45,2/14/2011,1,0,2,1,1,0.415,0.39835,0.375833,0.417908,208,1705,1913
46,2/15/2011,1,0,2,2,1,0.266087,0.254274,0.314348,0.291374,140,1675,1815
47,2/16/2011,1,0,2,3,1,0.318261,0.3162,0.423478,0.251791,218,1897,2115
48,2/17/2011,1,0,2,4,1,0.435833,0.428658,0.505,0.230104,259,2216,2475
49,2/18/2011,1,0,2,5,1,0.521667,0.511983,0.516667,0.264925,579,2348,2927
50,2/19/2011,1,0,2,6,1,0.399167,0.391404,0.187917,0.507463,532,1103,1635
51,2/20/2011,1,0,2,0,1,0.285217,0.27733,0.407826,0.223235,639,1173,1812
52,2/21/2011,1,0,2,1,2,0.303333,0.284075,0.605,0.307846,195,912,1107
53,2/22/2011,1,0,2,2,1,0.182222,0.186033,0.577778,0.195683,74,1376,1450
54,2/23/2011,1,0,2,3,1,0.221739,0.245717,0.423043,0.094113,139,1778,1917
55,2/24/2011,1,0,2,4,2,0.295652,0.289191,0.697391,0.250496,100,1707,1807
56,2/25/2011,1,0,2,5,2,0.364348,0.350461,0.712174,0.346539,120,1341,1461
57,2/26/2011,1,0,2,6,1,0.2825,0.282192,0.537917,0.186571,424,1545,1969
58,2/27/2011,1,0,2,0,1,0.343478,0.351109,0.68,0.125248,694,1708,2402
59,2/28/2011,1,0,2,1,2,0.407273,0.400118,0.876364,0.289686,81,1365,1446
60,3/1/2011,1,0,3,2,1,0.266667,0.263879,0.535,0.216425,137,1714,1851
61,3/2/2011,1,0,3,3,1,0.335,0.320071,0.449583,0.307833,231,1903,2134
62,3/3/2011,1,0,3,4,1,0.198333,0.200133,0.318333,0.225754,123,1562,1685
63,3/4/2011,1,0,3,5,2,0.261667,0.255679,0.610417,0.203346,214,1730,1944
64,3/5/2011,1,0,3,6,2,0.384167,0.378779,0.789167,0.251871,640,1437,2077
65,3/6/2011,1,0,3,0,2,0.376522,0.366252,0.948261,0.343287,114,491,605
66,3/7/2011,1,0,3,1,1,0.261739,0.238461,0.551304,0.341352,244,1628,1872
67,3/8/2011,1,0,3,2,1,0.2925,0.3024,0.420833,0.12065,316,1817,2133
68,3/9/2011,1,0,3,3,2,0.295833,0.286608,0.775417,0.22015,191,1700,1891
69,3/10/2011,1,0,3,4,3,0.389091,0.385668,0,0.261877,46,577,623
70,3/11/2011,1,0,3,5,2,0.316522,0.305,0.649565,0.23297,247,1730,1977
71,3/12/2011,1,0,3,6,1,0.329167,0.32575,0.594583,0.220775,724,1408,2132
72,3/13/2011,1,0,3,0,1,0.384348,0.380091,0.527391,0.270604,982,1435,2417
73,3/14/2011,1,0,3,1,1,0.325217,0.332,0.496957,0.136926,359,1687,2046
74,3/15/2011,1,0,3,2,2,0.317391,0.318178,0.655652,0.184309,289,1767,2056
75,3/16/2011,1,0,3,3,2,0.365217,0.36693,0.776522,0.203117,321,1871,2192
76,3/17/2011,1,0,3,4,1,0.415,0.410333,0.602917,0.209579,424,2320,2744
77,3/18/2011,1,0,3,5,1,0.54,0.527009,0.525217,0.231017,884,2355,3239
78,3/19/2011,1,0,3,6,1,0.4725,0.466525,0.379167,0.368167,1424,1693,3117
79,3/20/2011,1,0,3,0,1,0.3325,0.32575,0.47375,0.207721,1047,1424,2471
80,3/21/2011,2,0,3,1,2,0.430435,0.409735,0.737391,0.288783,401,1676,2077
81,3/22/2011,2,0,3,2,1,0.441667,0.440642,0.624583,0.22575,460,2243,2703
82,3/23/2011,2,0,3,3,2,0.346957,0.337939,0.839565,0.234261,203,1918,2121
83,3/24/2011,2,0,3,4,2,0.285,0.270833,0.805833,0.243787,166,1699,1865
84,3/25/2011,2,0,3,5,1,0.264167,0.256312,0.495,0.230725,300,1910,2210
85,3/26/2011,2,0,3,6,1,0.265833,0.257571,0.394167,0.209571,981,1515,2496
86,3/27/2011,2,0,3,0,2,0.253043,0.250339,0.493913,0.1843,472,1221,1693
87,3/28/2011,2,0,3,1,1,0.264348,0.257574,0.302174,0.212204,222,1806,2028
88,3/29/2011,2,0,3,2,1,0.3025,0.292908,0.314167,0.226996,317,2108,2425
89,3/30/2011,2,0,3,3,2,0.3,0.29735,0.646667,0.172888,168,1368,1536
90,3/31/2011,2,0,3,4,3,0.268333,0.257575,0.918333,0.217646,179,1506,1685
91,4/1/2011,2,0,4,5,2,0.3,0.283454,0.68625,0.258708,307,1920,2227
92,4/2/2011,2,0,4,6,2,0.315,0.315637,0.65375,0.197146,898,1354,2252
93,4/3/2011,2,0,4,0,1,0.378333,0.378767,0.48,0.182213,1651,1598,3249
94,4/4/2011,2,0,4,1,1,0.573333,0.542929,0.42625,0.385571,734,2381,3115
95,4/5/2011,2,0,4,2,2,0.414167,0.39835,0.642083,0.388067,167,1628,1795
96,4/6/2011,2,0,4,3,1,0.390833,0.387608,0.470833,0.263063,413,2395,2808
97,4/7/2011,2,0,4,4,1,0.4375,0.433696,0.602917,0.162312,571,2570,3141
98,4/8/2011,2,0,4,5,2,0.335833,0.324479,0.83625,0.226992,172,1299,1471
99,4/9/2011,2,0,4,6,2,0.3425,0.341529,0.8775,0.133083,879,1576,2455
100,4/10/2011,2,0,4,0,2,0.426667,0.426737,0.8575,0.146767,1188,1707,2895
101,4/11/2011,2,0,4,1,2,0.595652,0.565217,0.716956,0.324474,855,2493,3348
102,4/12/2011,2,0,4,2,2,0.5025,0.493054,0.739167,0.274879,257,1777,2034
103,4/13/2011,2,0,4,3,2,0.4125,0.417283,0.819167,0.250617,209,1953,2162
104,4/14/2011,2,0,4,4,1,0.4675,0.462742,0.540417,0.1107,529,2738,3267
105,4/15/2011,2,0,4,5,1,0.446667,0.441913,0.67125,0.226375,642,2484,3126
106,4/16/2011,2,0,4,6,3,0.430833,0.425492,0.888333,0.340808,121,674,795
107,4/17/2011,2,0,4,0,1,0.456667,0.445696,0.479583,0.303496,1558,2186,3744
108,4/18/2011,2,0,4,1,1,0.5125,0.503146,0.5425,0.163567,669,2760,3429
109,4/19/2011,2,0,4,2,2,0.505833,0.489258,0.665833,0.157971,409,2795,3204
110,4/20/2011,2,0,4,3,1,0.595,0.564392,0.614167,0.241925,613,3331,3944
111,4/21/2011,2,0,4,4,1,0.459167,0.453892,0.407083,0.325258,745,3444,4189
112,4/22/2011,2,0,4,5,2,0.336667,0.321954,0.729583,0.219521,177,1506,1683
113,4/23/2011,2,0,4,6,2,0.46,0.450121,0.887917,0.230725,1462,2574,4036
114,4/24/2011,2,0,4,0,2,0.581667,0.551763,0.810833,0.192175,1710,2481,4191
115,4/25/2011,2,0,4,1,1,0.606667,0.5745,0.776667,0.185333,773,3300,4073
116,4/26/2011,2,0,4,2,1,0.631667,0.594083,0.729167,0.3265,678,3722,4400
117,4/27/2011,2,0,4,3,2,0.62,0.575142,0.835417,0.3122,547,3325,3872
118,4/28/2011,2,0,4,4,2,0.6175,0.578929,0.700833,0.320908,569,3489,4058
119,4/29/2011,2,0,4,5,1,0.51,0.497463,0.457083,0.240063,878,3717,4595
120,4/30/2011,2,0,4,6,1,0.4725,0.464021,0.503333,0.235075,1965,3347,5312
121,5/1/2011,2,0,5,0,2,0.451667,0.448204,0.762083,0.106354,1138,2213,3351
122,5/2/2011,2,0,5,1,2,0.549167,0.532833,0.73,0.183454,847,3554,4401
123,5/3/2011,2,0,5,2,2,0.616667,0.582079,0.697083,0.342667,603,3848,4451
124,5/4/2011,2,0,5,3,2,0.414167,0.40465,0.737083,0.328996,255,2378,2633
125,5/5/2011,2,0,5,4,1,0.459167,0.441917,0.444167,0.295392,614,3819,4433
126,5/6/2011,2,0,5,5,1,0.479167,0.474117,0.59,0.228246,894,3714,4608
127,5/7/2011,2,0,5,6,1,0.52,0.512621,0.54125,0.16045,1612,3102,4714
128,5/8/2011,2,0,5,0,1,0.528333,0.518933,0.631667,0.0746375,1401,2932,4333
129,5/9/2011,2,0,5,1,1,0.5325,0.525246,0.58875,0.176,664,3698,4362
130,5/10/2011,2,0,5,2,1,0.5325,0.522721,0.489167,0.115671,694,4109,4803
131,5/11/2011,2,0,5,3,1,0.5425,0.5284,0.632917,0.120642,550,3632,4182
132,5/12/2011,2,0,5,4,1,0.535,0.523363,0.7475,0.189667,695,4169,4864
133,5/13/2011,2,0,5,5,2,0.5125,0.4943,0.863333,0.179725,692,3413,4105
134,5/14/2011,2,0,5,6,2,0.520833,0.500629,0.9225,0.13495,902,2507,3409
135,5/15/2011,2,0,5,0,2,0.5625,0.536,0.867083,0.152979,1582,2971,4553
136,5/16/2011,2,0,5,1,1,0.5775,0.550512,0.787917,0.126871,773,3185,3958
137,5/17/2011,2,0,5,2,2,0.561667,0.538529,0.837917,0.277354,678,3445,4123
138,5/18/2011,2,0,5,3,2,0.55,0.527158,0.87,0.201492,536,3319,3855
139,5/19/2011,2,0,5,4,2,0.530833,0.510742,0.829583,0.108213,735,3840,4575
140,5/20/2011,2,0,5,5,1,0.536667,0.529042,0.719583,0.125013,909,4008,4917
141,5/21/2011,2,0,5,6,1,0.6025,0.571975,0.626667,0.12065,2258,3547,5805
142,5/22/2011,2,0,5,0,1,0.604167,0.5745,0.749583,0.148008,1576,3084,4660
143,5/23/2011,2,0,5,1,2,0.631667,0.590296,0.81,0.233842,836,3438,4274
144,5/24/2011,2,0,5,2,2,0.66,0.604813,0.740833,0.207092,659,3833,4492
145,5/25/2011,2,0,5,3,1,0.660833,0.615542,0.69625,0.154233,740,4238,4978
146,5/26/2011,2,0,5,4,1,0.708333,0.654688,0.6775,0.199642,758,3919,4677
147,5/27/2011,2,0,5,5,1,0.681667,0.637008,0.65375,0.240679,871,3808,4679
148,5/28/2011,2,0,5,6,1,0.655833,0.612379,0.729583,0.230092,2001,2757,4758
149,5/29/2011,2,0,5,0,1,0.6675,0.61555,0.81875,0.213938,2355,2433,4788
150,5/30/2011,2,0,5,1,1,0.733333,0.671092,0.685,0.131225,1549,2549,4098
151,5/31/2011,2,0,5,2,1,0.775,0.725383,0.636667,0.111329,673,3309,3982
152,6/1/2011,2,0,6,3,2,0.764167,0.720967,0.677083,0.207092,513,3461,3974
153,6/2/2011,2,0,6,4,1,0.715,0.643942,0.305,0.292287,736,4232,4968
154,6/3/2011,2,0,6,5,1,0.62,0.587133,0.354167,0.253121,898,4414,5312
155,6/4/2011,2,0,6,6,1,0.635,0.594696,0.45625,0.123142,1869,3473,5342
156,6/5/2011,2,0,6,0,2,0.648333,0.616804,0.6525,0.138692,1685,3221,4906
157,6/6/2011,2,0,6,1,1,0.678333,0.621858,0.6,0.121896,673,3875,4548
158,6/7/2011,2,0,6,2,1,0.7075,0.65595,0.597917,0.187808,763,4070,4833
159,6/8/2011,2,0,6,3,1,0.775833,0.727279,0.622083,0.136817,676,3725,4401
160,6/9/2011,2,0,6,4,2,0.808333,0.757579,0.568333,0.149883,563,3352,3915
161,6/10/2011,2,0,6,5,1,0.755,0.703292,0.605,0.140554,815,3771,4586
162,6/11/2011,2,0,6,6,1,0.725,0.678038,0.654583,0.15485,1729,3237,4966
163,6/12/2011,2,0,6,0,1,0.6925,0.643325,0.747917,0.163567,1467,2993,4460
164,6/13/2011,2,0,6,1,1,0.635,0.601654,0.494583,0.30535,863,4157,5020
165,6/14/2011,2,0,6,2,1,0.604167,0.591546,0.507083,0.269283,727,4164,4891
166,6/15/2011,2,0,6,3,1,0.626667,0.587754,0.471667,0.167912,769,4411,5180
167,6/16/2011,2,0,6,4,2,0.628333,0.595346,0.688333,0.206471,545,3222,3767
168,6/17/2011,2,0,6,5,1,0.649167,0.600383,0.735833,0.143029,863,3981,4844
169,6/18/2011,2,0,6,6,1,0.696667,0.643954,0.670417,0.119408,1807,3312,5119
170,6/19/2011,2,0,6,0,2,0.699167,0.645846,0.666667,0.102,1639,3105,4744
171,6/20/2011,2,0,6,1,2,0.635,0.595346,0.74625,0.155475,699,3311,4010
172,6/21/2011,3,0,6,2,2,0.680833,0.637646,0.770417,0.171025,774,4061,4835
173,6/22/2011,3,0,6,3,1,0.733333,0.693829,0.7075,0.172262,661,3846,4507
174,6/23/2011,3,0,6,4,2,0.728333,0.693833,0.703333,0.238804,746,4044,4790
175,6/24/2011,3,0,6,5,1,0.724167,0.656583,0.573333,0.222025,969,4022,4991
176,6/25/2011,3,0,6,6,1,0.695,0.643313,0.483333,0.209571,1782,3420,5202
177,6/26/2011,3,0,6,0,1,0.68,0.637629,0.513333,0.0945333,1920,3385,5305
178,6/27/2011,3,0,6,1,2,0.6825,0.637004,0.658333,0.107588,854,3854,4708
179,6/28/2011,3,0,6,2,1,0.744167,0.692558,0.634167,0.144283,732,3916,4648
180,6/29/2011,3,0,6,3,1,0.728333,0.654688,0.497917,0.261821,848,4377,5225
181,6/30/2011,3,0,6,4,1,0.696667,0.637008,0.434167,0.185312,1027,4488,5515
182,7/1/2011,3,0,7,5,1,0.7225,0.652162,0.39625,0.102608,1246,4116,5362
183,7/2/2011,3,0,7,6,1,0.738333,0.667308,0.444583,0.115062,2204,2915,5119
184,7/3/2011,3,0,7,0,2,0.716667,0.668575,0.6825,0.228858,2282,2367,4649
185,7/4/2011,3,0,7,1,2,0.726667,0.665417,0.637917,0.0814792,3065,2978,6043
186,7/5/2011,3,0,7,2,1,0.746667,0.696338,0.590417,0.126258,1031,3634,4665
187,7/6/2011,3,0,7,3,1,0.72,0.685633,0.743333,0.149883,784,3845,4629
188,7/7/2011,3,0,7,4,1,0.75,0.686871,0.65125,0.1592,754,3838,4592
189,7/8/2011,3,0,7,5,2,0.709167,0.670483,0.757917,0.225129,692,3348,4040
190,7/9/2011,3,0,7,6,1,0.733333,0.664158,0.609167,0.167912,1988,3348,5336
191,7/10/2011,3,0,7,0,1,0.7475,0.690025,0.578333,0.183471,1743,3138,4881
192,7/11/2011,3,0,7,1,1,0.7625,0.729804,0.635833,0.282337,723,3363,4086
193,7/12/2011,3,0,7,2,1,0.794167,0.739275,0.559167,0.200254,662,3596,4258
194,7/13/2011,3,0,7,3,1,0.746667,0.689404,0.631667,0.146133,748,3594,4342
195,7/14/2011,3,0,7,4,1,0.680833,0.635104,0.47625,0.240667,888,4196,5084
196,7/15/2011,3,0,7,5,1,0.663333,0.624371,0.59125,0.182833,1318,4220,5538
197,7/16/2011,3,0,7,6,1,0.686667,0.638263,0.585,0.208342,2418,3505,5923
198,7/17/2011,3,0,7,0,1,0.719167,0.669833,0.604167,0.245033,2006,3296,5302
199,7/18/2011,3,0,7,1,1,0.746667,0.703925,0.65125,0.215804,841,3617,4458
200,7/19/2011,3,0,7,2,1,0.776667,0.747479,0.650417,0.1306,752,3789,4541
201,7/20/2011,3,0,7,3,1,0.768333,0.74685,0.707083,0.113817,644,3688,4332
202,7/21/2011,3,0,7,4,2,0.815,0.826371,0.69125,0.222021,632,3152,3784
203,7/22/2011,3,0,7,5,1,0.848333,0.840896,0.580417,0.1331,562,2825,3387
204,7/23/2011,3,0,7,6,1,0.849167,0.804287,0.5,0.131221,987,2298,3285
205,7/24/2011,3,0,7,0,1,0.83,0.794829,0.550833,0.169171,1050,2556,3606
206,7/25/2011,3,0,7,1,1,0.743333,0.720958,0.757083,0.0908083,568,3272,3840
207,7/26/2011,3,0,7,2,1,0.771667,0.696979,0.540833,0.200258,750,3840,4590
208,7/27/2011,3,0,7,3,1,0.775,0.690667,0.402917,0.183463,755,3901,4656
209,7/28/2011,3,0,7,4,1,0.779167,0.7399,0.583333,0.178479,606,3784,4390
210,7/29/2011,3,0,7,5,1,0.838333,0.785967,0.5425,0.174138,670,3176,3846
211,7/30/2011,3,0,7,6,1,0.804167,0.728537,0.465833,0.168537,1559,2916,4475
212,7/31/2011,3,0,7,0,1,0.805833,0.729796,0.480833,0.164813,1524,2778,4302
213,8/1/2011,3,0,8,1,1,0.771667,0.703292,0.550833,0.156717,729,3537,4266
214,8/2/2011,3,0,8,2,1,0.783333,0.707071,0.49125,0.20585,801,4044,4845
215,8/3/2011,3,0,8,3,2,0.731667,0.679937,0.6575,0.135583,467,3107,3574
216,8/4/2011,3,0,8,4,2,0.71,0.664788,0.7575,0.19715,799,3777,4576
217,8/5/2011,3,0,8,5,1,0.710833,0.656567,0.630833,0.184696,1023,3843,4866
218,8/6/2011,3,0,8,6,2,0.716667,0.676154,0.755,0.22825,1521,2773,4294
219,8/7/2011,3,0,8,0,1,0.7425,0.715292,0.752917,0.201487,1298,2487,3785
220,8/8/2011,3,0,8,1,1,0.765,0.703283,0.592083,0.192175,846,3480,4326
221,8/9/2011,3,0,8,2,1,0.775,0.724121,0.570417,0.151121,907,3695,4602
222,8/10/2011,3,0,8,3,1,0.766667,0.684983,0.424167,0.200258,884,3896,4780
223,8/11/2011,3,0,8,4,1,0.7175,0.651521,0.42375,0.164796,812,3980,4792
224,8/12/2011,3,0,8,5,1,0.708333,0.654042,0.415,0.125621,1051,3854,4905
225,8/13/2011,3,0,8,6,2,0.685833,0.645858,0.729583,0.211454,1504,2646,4150
226,8/14/2011,3,0,8,0,2,0.676667,0.624388,0.8175,0.222633,1338,2482,3820
227,8/15/2011,3,0,8,1,1,0.665833,0.616167,0.712083,0.208954,775,3563,4338
228,8/16/2011,3,0,8,2,1,0.700833,0.645837,0.578333,0.236329,721,4004,4725
229,8/17/2011,3,0,8,3,1,0.723333,0.666671,0.575417,0.143667,668,4026,4694
230,8/18/2011,3,0,8,4,1,0.711667,0.662258,0.654583,0.233208,639,3166,3805
231,8/19/2011,3,0,8,5,2,0.685,0.633221,0.722917,0.139308,797,3356,4153
232,8/20/2011,3,0,8,6,1,0.6975,0.648996,0.674167,0.104467,1914,3277,5191
233,8/21/2011,3,0,8,0,1,0.710833,0.675525,0.77,0.248754,1249,2624,3873
234,8/22/2011,3,0,8,1,1,0.691667,0.638254,0.47,0.27675,833,3925,4758
235,8/23/2011,3,0,8,2,1,0.640833,0.606067,0.455417,0.146763,1281,4614,5895
236,8/24/2011,3,0,8,3,1,0.673333,0.630692,0.605,0.253108,949,4181,5130
237,8/25/2011,3,0,8,4,2,0.684167,0.645854,0.771667,0.210833,435,3107,3542
238,8/26/2011,3,0,8,5,1,0.7,0.659733,0.76125,0.0839625,768,3893,4661
239,8/27/2011,3,0,8,6,2,0.68,0.635556,0.85,0.375617,226,889,1115
240,8/28/2011,3,0,8,0,1,0.707059,0.647959,0.561765,0.304659,1415,2919,4334
241,8/29/2011,3,0,8,1,1,0.636667,0.607958,0.554583,0.159825,729,3905,4634
242,8/30/2011,3,0,8,2,1,0.639167,0.594704,0.548333,0.125008,775,4429,5204
243,8/31/2011,3,0,8,3,1,0.656667,0.611121,0.597917,0.0833333,688,4370,5058
244,9/1/2011,3,0,9,4,1,0.655,0.614921,0.639167,0.141796,783,4332,5115
245,9/2/2011,3,0,9,5,2,0.643333,0.604808,0.727083,0.139929,875,3852,4727
246,9/3/2011,3,0,9,6,1,0.669167,0.633213,0.716667,0.185325,1935,2549,4484
247,9/4/2011,3,0,9,0,1,0.709167,0.665429,0.742083,0.206467,2521,2419,4940
248,9/5/2011,3,0,9,1,2,0.673333,0.625646,0.790417,0.212696,1236,2115,3351
249,9/6/2011,3,0,9,2,3,0.54,0.5152,0.886957,0.343943,204,2506,2710
250,9/7/2011,3,0,9,3,3,0.599167,0.544229,0.917083,0.0970208,118,1878,1996
251,9/8/2011,3,0,9,4,3,0.633913,0.555361,0.939565,0.192748,153,1689,1842
252,9/9/2011,3,0,9,5,2,0.65,0.578946,0.897917,0.124379,417,3127,3544
253,9/10/2011,3,0,9,6,1,0.66,0.607962,0.75375,0.153608,1750,3595,5345
254,9/11/2011,3,0,9,0,1,0.653333,0.609229,0.71375,0.115054,1633,3413,5046
255,9/12/2011,3,0,9,1,1,0.644348,0.60213,0.692174,0.088913,690,4023,4713
256,9/13/2011,3,0,9,2,1,0.650833,0.603554,0.7125,0.141804,701,4062,4763
257,9/14/2011,3,0,9,3,1,0.673333,0.6269,0.697083,0.1673,647,4138,4785
258,9/15/2011,3,0,9,4,2,0.5775,0.553671,0.709167,0.271146,428,3231,3659
259,9/16/2011,3,0,9,5,2,0.469167,0.461475,0.590417,0.164183,742,4018,4760
260,9/17/2011,3,0,9,6,2,0.491667,0.478512,0.718333,0.189675,1434,3077,4511
261,9/18/2011,3,0,9,0,1,0.5075,0.490537,0.695,0.178483,1353,2921,4274
262,9/19/2011,3,0,9,1,2,0.549167,0.529675,0.69,0.151742,691,3848,4539
263,9/20/2011,3,0,9,2,2,0.561667,0.532217,0.88125,0.134954,438,3203,3641
264,9/21/2011,3,0,9,3,2,0.595,0.550533,0.9,0.0964042,539,3813,4352
265,9/22/2011,3,0,9,4,2,0.628333,0.554963,0.902083,0.128125,555,4240,4795
266,9/23/2011,4,0,9,5,2,0.609167,0.522125,0.9725,0.0783667,258,2137,2395
267,9/24/2011,4,0,9,6,2,0.606667,0.564412,0.8625,0.0783833,1776,3647,5423
268,9/25/2011,4,0,9,0,2,0.634167,0.572637,0.845,0.0503792,1544,3466,5010
269,9/26/2011,4,0,9,1,2,0.649167,0.589042,0.848333,0.1107,684,3946,4630
270,9/27/2011,4,0,9,2,2,0.636667,0.574525,0.885417,0.118171,477,3643,4120
271,9/28/2011,4,0,9,3,2,0.635,0.575158,0.84875,0.148629,480,3427,3907
272,9/29/2011,4,0,9,4,1,0.616667,0.574512,0.699167,0.172883,653,4186,4839
273,9/30/2011,4,0,9,5,1,0.564167,0.544829,0.6475,0.206475,830,4372,5202
274,10/1/2011,4,0,10,6,2,0.41,0.412863,0.75375,0.292296,480,1949,2429
275,10/2/2011,4,0,10,0,2,0.356667,0.345317,0.791667,0.222013,616,2302,2918
276,10/3/2011,4,0,10,1,2,0.384167,0.392046,0.760833,0.0833458,330,3240,3570
277,10/4/2011,4,0,10,2,1,0.484167,0.472858,0.71,0.205854,486,3970,4456
278,10/5/2011,4,0,10,3,1,0.538333,0.527138,0.647917,0.17725,559,4267,4826
279,10/6/2011,4,0,10,4,1,0.494167,0.480425,0.620833,0.134954,639,4126,4765
280,10/7/2011,4,0,10,5,1,0.510833,0.504404,0.684167,0.0223917,949,4036,4985
281,10/8/2011,4,0,10,6,1,0.521667,0.513242,0.70125,0.0454042,2235,3174,5409
282,10/9/2011,4,0,10,0,1,0.540833,0.523983,0.7275,0.06345,2397,3114,5511
283,10/10/2011,4,0,10,1,1,0.570833,0.542925,0.73375,0.0423042,1514,3603,5117
284,10/11/2011,4,0,10,2,2,0.566667,0.546096,0.80875,0.143042,667,3896,4563
285,10/12/2011,4,0,10,3,3,0.543333,0.517717,0.90625,0.24815,217,2199,2416
286,10/13/2011,4,0,10,4,2,0.589167,0.551804,0.896667,0.141787,290,2623,2913
287,10/14/2011,4,0,10,5,2,0.550833,0.529675,0.71625,0.223883,529,3115,3644
288,10/15/2011,4,0,10,6,1,0.506667,0.498725,0.483333,0.258083,1899,3318,5217
289,10/16/2011,4,0,10,0,1,0.511667,0.503154,0.486667,0.281717,1748,3293,5041
290,10/17/2011,4,0,10,1,1,0.534167,0.510725,0.579583,0.175379,713,3857,4570
291,10/18/2011,4,0,10,2,2,0.5325,0.522721,0.701667,0.110087,637,4111,4748
292,10/19/2011,4,0,10,3,3,0.541739,0.513848,0.895217,0.243339,254,2170,2424
293,10/20/2011,4,0,10,4,1,0.475833,0.466525,0.63625,0.422275,471,3724,4195
294,10/21/2011,4,0,10,5,1,0.4275,0.423596,0.574167,0.221396,676,3628,4304
295,10/22/2011,4,0,10,6,1,0.4225,0.425492,0.629167,0.0926667,1499,2809,4308
296,10/23/2011,4,0,10,0,1,0.421667,0.422333,0.74125,0.0995125,1619,2762,4381
297,10/24/2011,4,0,10,1,1,0.463333,0.457067,0.772083,0.118792,699,3488,4187
298,10/25/2011,4,0,10,2,1,0.471667,0.463375,0.622917,0.166658,695,3992,4687
299,10/26/2011,4,0,10,3,2,0.484167,0.472846,0.720417,0.148642,404,3490,3894
300,10/27/2011,4,0,10,4,2,0.47,0.457046,0.812917,0.197763,240,2419,2659
301,10/28/2011,4,0,10,5,2,0.330833,0.318812,0.585833,0.229479,456,3291,3747
302,10/29/2011,4,0,10,6,3,0.254167,0.227913,0.8825,0.351371,57,570,627
303,10/30/2011,4,0,10,0,1,0.319167,0.321329,0.62375,0.176617,885,2446,3331
304,10/31/2011,4,0,10,1,1,0.34,0.356063,0.703333,0.10635,362,3307,3669
305,11/1/2011,4,0,11,2,1,0.400833,0.397088,0.68375,0.135571,410,3658,4068
306,11/2/2011,4,0,11,3,1,0.3775,0.390133,0.71875,0.0820917,370,3816,4186
307,11/3/2011,4,0,11,4,1,0.408333,0.405921,0.702083,0.136817,318,3656,3974
308,11/4/2011,4,0,11,5,2,0.403333,0.403392,0.6225,0.271779,470,3576,4046
309,11/5/2011,4,0,11,6,1,0.326667,0.323854,0.519167,0.189062,1156,2770,3926
310,11/6/2011,4,0,11,0,1,0.348333,0.362358,0.734583,0.0920542,952,2697,3649
311,11/7/2011,4,0,11,1,1,0.395,0.400871,0.75875,0.057225,373,3662,4035
312,11/8/2011,4,0,11,2,1,0.408333,0.412246,0.721667,0.0690375,376,3829,4205
313,11/9/2011,4,0,11,3,1,0.4,0.409079,0.758333,0.0621958,305,3804,4109
314,11/10/2011,4,0,11,4,2,0.38,0.373721,0.813333,0.189067,190,2743,2933
315,11/11/2011,4,0,11,5,1,0.324167,0.306817,0.44625,0.314675,440,2928,3368
316,11/12/2011,4,0,11,6,1,0.356667,0.357942,0.552917,0.212062,1275,2792,4067
317,11/13/2011,4,0,11,0,1,0.440833,0.43055,0.458333,0.281721,1004,2713,3717
318,11/14/2011,4,0,11,1,1,0.53,0.524612,0.587083,0.306596,595,3891,4486
319,11/15/2011,4,0,11,2,2,0.53,0.507579,0.68875,0.199633,449,3746,4195
320,11/16/2011,4,0,11,3,3,0.456667,0.451988,0.93,0.136829,145,1672,1817
321,11/17/2011,4,0,11,4,2,0.341667,0.323221,0.575833,0.305362,139,2914,3053
322,11/18/2011,4,0,11,5,1,0.274167,0.272721,0.41,0.168533,245,3147,3392
323,11/19/2011,4,0,11,6,1,0.329167,0.324483,0.502083,0.224496,943,2720,3663
324,11/20/2011,4,0,11,0,2,0.463333,0.457058,0.684583,0.18595,787,2733,3520
325,11/21/2011,4,0,11,1,3,0.4475,0.445062,0.91,0.138054,220,2545,2765
326,11/22/2011,4,0,11,2,3,0.416667,0.421696,0.9625,0.118792,69,1538,1607
327,11/23/2011,4,0,11,3,2,0.440833,0.430537,0.757917,0.335825,112,2454,2566
328,11/24/2011,4,0,11,4,1,0.373333,0.372471,0.549167,0.167304,560,935,1495
329,11/25/2011,4,0,11,5,1,0.375,0.380671,0.64375,0.0988958,1095,1697,2792
330,11/26/2011,4,0,11,6,1,0.375833,0.385087,0.681667,0.0684208,1249,1819,3068
331,11/27/2011,4,0,11,0,1,0.459167,0.4558,0.698333,0.208954,810,2261,3071
332,11/28/2011,4,0,11,1,1,0.503478,0.490122,0.743043,0.142122,253,3614,3867
333,11/29/2011,4,0,11,2,2,0.458333,0.451375,0.830833,0.258092,96,2818,2914
334,11/30/2011,4,0,11,3,1,0.325,0.311221,0.613333,0.271158,188,3425,3613
335,12/1/2011,4,0,12,4,1,0.3125,0.305554,0.524583,0.220158,182,3545,3727
336,12/2/2011,4,0,12,5,1,0.314167,0.331433,0.625833,0.100754,268,3672,3940
337,12/3/2011,4,0,12,6,1,0.299167,0.310604,0.612917,0.0957833,706,2908,3614
338,12/4/2011,4,0,12,0,1,0.330833,0.3491,0.775833,0.0839583,634,2851,3485
339,12/5/2011,4,0,12,1,2,0.385833,0.393925,0.827083,0.0622083,233,3578,3811
340,12/6/2011,4,0,12,2,3,0.4625,0.4564,0.949583,0.232583,126,2468,2594
341,12/7/2011,4,0,12,3,3,0.41,0.400246,0.970417,0.266175,50,655,705
342,12/8/2011,4,0,12,4,1,0.265833,0.256938,0.58,0.240058,150,3172,3322
343,12/9/2011,4,0,12,5,1,0.290833,0.317542,0.695833,0.0827167,261,3359,3620
344,12/10/2011,4,0,12,6,1,0.275,0.266412,0.5075,0.233221,502,2688,3190
345,12/11/2011,4,0,12,0,1,0.220833,0.253154,0.49,0.0665417,377,2366,2743
346,12/12/2011,4,0,12,1,1,0.238333,0.270196,0.670833,0.06345,143,3167,3310
347,12/13/2011,4,0,12,2,1,0.2825,0.301138,0.59,0.14055,155,3368,3523
348,12/14/2011,4,0,12,3,2,0.3175,0.338362,0.66375,0.0609583,178,3562,3740
349,12/15/2011,4,0,12,4,2,0.4225,0.412237,0.634167,0.268042,181,3528,3709
350,12/16/2011,4,0,12,5,2,0.375,0.359825,0.500417,0.260575,178,3399,3577
351,12/17/2011,4,0,12,6,2,0.258333,0.249371,0.560833,0.243167,275,2464,2739
352,12/18/2011,4,0,12,0,1,0.238333,0.245579,0.58625,0.169779,220,2211,2431
353,12/19/2011,4,0,12,1,1,0.276667,0.280933,0.6375,0.172896,260,3143,3403
354,12/20/2011,4,0,12,2,2,0.385833,0.396454,0.595417,0.0615708,216,3534,3750
355,12/21/2011,1,0,12,3,2,0.428333,0.428017,0.858333,0.2214,107,2553,2660
356,12/22/2011,1,0,12,4,2,0.423333,0.426121,0.7575,0.047275,227,2841,3068
357,12/23/2011,1,0,12,5,1,0.373333,0.377513,0.68625,0.274246,163,2046,2209
358,12/24/2011,1,0,12,6,1,0.3025,0.299242,0.5425,0.190304,155,856,1011
359,12/25/2011,1,0,12,0,1,0.274783,0.279961,0.681304,0.155091,303,451,754
360,12/26/2011,1,0,12,1,1,0.321739,0.315535,0.506957,0.239465,430,887,1317
361,12/27/2011,1,0,12,2,2,0.325,0.327633,0.7625,0.18845,103,1059,1162
362,12/28/2011,1,0,12,3,1,0.29913,0.279974,0.503913,0.293961,255,2047,2302
363,12/29/2011,1,0,12,4,1,0.248333,0.263892,0.574167,0.119412,254,2169,2423
364,12/30/2011,1,0,12,5,1,0.311667,0.318812,0.636667,0.134337,491,2508,2999
365,12/31/2011,1,0,12,6,1,0.41,0.414121,0.615833,0.220154,665,1820,2485
366,1/1/2012,1,1,1,0,1,0.37,0.375621,0.6925,0.192167,686,1608,2294
367,1/2/2012,1,1,1,1,1,0.273043,0.252304,0.381304,0.329665,244,1707,1951
368,1/3/2012,1,1,1,2,1,0.15,0.126275,0.44125,0.365671,89,2147,2236
369,1/4/2012,1,1,1,3,2,0.1075,0.119337,0.414583,0.1847,95,2273,2368
370,1/5/2012,1,1,1,4,1,0.265833,0.278412,0.524167,0.129987,140,3132,3272
371,1/6/2012,1,1,1,5,1,0.334167,0.340267,0.542083,0.167908,307,3791,4098
372,1/7/2012,1,1,1,6,1,0.393333,0.390779,0.531667,0.174758,1070,3451,4521
373,1/8/2012,1,1,1,0,1,0.3375,0.340258,0.465,0.191542,599,2826,3425
374,1/9/2012,1,1,1,1,2,0.224167,0.247479,0.701667,0.0989,106,2270,2376
375,1/10/2012,1,1,1,2,1,0.308696,0.318826,0.646522,0.187552,173,3425,3598
376,1/11/2012,1,1,1,3,2,0.274167,0.282821,0.8475,0.131221,92,2085,2177
377,1/12/2012,1,1,1,4,2,0.3825,0.381938,0.802917,0.180967,269,3828,4097
378,1/13/2012,1,1,1,5,1,0.274167,0.249362,0.5075,0.378108,174,3040,3214
379,1/14/2012,1,1,1,6,1,0.18,0.183087,0.4575,0.187183,333,2160,2493
380,1/15/2012,1,1,1,0,1,0.166667,0.161625,0.419167,0.251258,284,2027,2311
381,1/16/2012,1,1,1,1,1,0.19,0.190663,0.5225,0.231358,217,2081,2298
382,1/17/2012,1,1,1,2,2,0.373043,0.364278,0.716087,0.34913,127,2808,2935
383,1/18/2012,1,1,1,3,1,0.303333,0.275254,0.443333,0.415429,109,3267,3376
384,1/19/2012,1,1,1,4,1,0.19,0.190038,0.4975,0.220158,130,3162,3292
385,1/20/2012,1,1,1,5,2,0.2175,0.220958,0.45,0.20275,115,3048,3163
386,1/21/2012,1,1,1,6,2,0.173333,0.174875,0.83125,0.222642,67,1234,1301
387,1/22/2012,1,1,1,0,2,0.1625,0.16225,0.79625,0.199638,196,1781,1977
388,1/23/2012,1,1,1,1,2,0.218333,0.243058,0.91125,0.110708,145,2287,2432
389,1/24/2012,1,1,1,2,1,0.3425,0.349108,0.835833,0.123767,439,3900,4339
390,1/25/2012,1,1,1,3,1,0.294167,0.294821,0.64375,0.161071,467,3803,4270
391,1/26/2012,1,1,1,4,2,0.341667,0.35605,0.769583,0.0733958,244,3831,4075
392,1/27/2012,1,1,1,5,2,0.425,0.415383,0.74125,0.342667,269,3187,3456
393,1/28/2012,1,1,1,6,1,0.315833,0.326379,0.543333,0.210829,775,3248,4023
394,1/29/2012,1,1,1,0,1,0.2825,0.272721,0.31125,0.24005,558,2685,3243
395,1/30/2012,1,1,1,1,1,0.269167,0.262625,0.400833,0.215792,126,3498,3624
396,1/31/2012,1,1,1,2,1,0.39,0.381317,0.416667,0.261817,324,4185,4509
397,2/1/2012,1,1,2,3,1,0.469167,0.466538,0.507917,0.189067,304,4275,4579
398,2/2/2012,1,1,2,4,2,0.399167,0.398971,0.672917,0.187187,190,3571,3761
399,2/3/2012,1,1,2,5,1,0.313333,0.309346,0.526667,0.178496,310,3841,4151
400,2/4/2012,1,1,2,6,2,0.264167,0.272725,0.779583,0.121896,384,2448,2832
401,2/5/2012,1,1,2,0,2,0.265833,0.264521,0.687917,0.175996,318,2629,2947
402,2/6/2012,1,1,2,1,1,0.282609,0.296426,0.622174,0.1538,206,3578,3784
403,2/7/2012,1,1,2,2,1,0.354167,0.361104,0.49625,0.147379,199,4176,4375
404,2/8/2012,1,1,2,3,2,0.256667,0.266421,0.722917,0.133721,109,2693,2802
405,2/9/2012,1,1,2,4,1,0.265,0.261988,0.562083,0.194037,163,3667,3830
406,2/10/2012,1,1,2,5,2,0.280833,0.293558,0.54,0.116929,227,3604,3831
407,2/11/2012,1,1,2,6,3,0.224167,0.210867,0.73125,0.289796,192,1977,2169
408,2/12/2012,1,1,2,0,1,0.1275,0.101658,0.464583,0.409212,73,1456,1529
409,2/13/2012,1,1,2,1,1,0.2225,0.227913,0.41125,0.167283,94,3328,3422
410,2/14/2012,1,1,2,2,2,0.319167,0.333946,0.50875,0.141179,135,3787,3922
411,2/15/2012,1,1,2,3,1,0.348333,0.351629,0.53125,0.1816,141,4028,4169
412,2/16/2012,1,1,2,4,2,0.316667,0.330162,0.752917,0.091425,74,2931,3005
413,2/17/2012,1,1,2,5,1,0.343333,0.351629,0.634583,0.205846,349,3805,4154
414,2/18/2012,1,1,2,6,1,0.346667,0.355425,0.534583,0.190929,1435,2883,4318
415,2/19/2012,1,1,2,0,2,0.28,0.265788,0.515833,0.253112,618,2071,2689
416,2/20/2012,1,1,2,1,1,0.28,0.273391,0.507826,0.229083,502,2627,3129
417,2/21/2012,1,1,2,2,1,0.287826,0.295113,0.594348,0.205717,163,3614,3777
418,2/22/2012,1,1,2,3,1,0.395833,0.392667,0.567917,0.234471,394,4379,4773
419,2/23/2012,1,1,2,4,1,0.454167,0.444446,0.554583,0.190913,516,4546,5062
420,2/24/2012,1,1,2,5,2,0.4075,0.410971,0.7375,0.237567,246,3241,3487
421,2/25/2012,1,1,2,6,1,0.290833,0.255675,0.395833,0.421642,317,2415,2732
422,2/26/2012,1,1,2,0,1,0.279167,0.268308,0.41,0.205229,515,2874,3389
423,2/27/2012,1,1,2,1,1,0.366667,0.357954,0.490833,0.268033,253,4069,4322
424,2/28/2012,1,1,2,2,1,0.359167,0.353525,0.395833,0.193417,229,4134,4363
425,2/29/2012,1,1,2,3,2,0.344348,0.34847,0.804783,0.179117,65,1769,1834
426,3/1/2012,1,1,3,4,1,0.485833,0.475371,0.615417,0.226987,325,4665,4990
427,3/2/2012,1,1,3,5,2,0.353333,0.359842,0.657083,0.144904,246,2948,3194
428,3/3/2012,1,1,3,6,2,0.414167,0.413492,0.62125,0.161079,956,3110,4066
429,3/4/2012,1,1,3,0,1,0.325833,0.303021,0.403333,0.334571,710,2713,3423
430,3/5/2012,1,1,3,1,1,0.243333,0.241171,0.50625,0.228858,203,3130,3333
431,3/6/2012,1,1,3,2,1,0.258333,0.255042,0.456667,0.200875,221,3735,3956
432,3/7/2012,1,1,3,3,1,0.404167,0.3851,0.513333,0.345779,432,4484,4916
433,3/8/2012,1,1,3,4,1,0.5275,0.524604,0.5675,0.441563,486,4896,5382
434,3/9/2012,1,1,3,5,2,0.410833,0.397083,0.407083,0.4148,447,4122,4569
435,3/10/2012,1,1,3,6,1,0.2875,0.277767,0.350417,0.22575,968,3150,4118
436,3/11/2012,1,1,3,0,1,0.361739,0.35967,0.476957,0.222587,1658,3253,4911
437,3/12/2012,1,1,3,1,1,0.466667,0.459592,0.489167,0.207713,838,4460,5298
438,3/13/2012,1,1,3,2,1,0.565,0.542929,0.6175,0.23695,762,5085,5847
439,3/14/2012,1,1,3,3,1,0.5725,0.548617,0.507083,0.115062,997,5315,6312
440,3/15/2012,1,1,3,4,1,0.5575,0.532825,0.579583,0.149883,1005,5187,6192
441,3/16/2012,1,1,3,5,2,0.435833,0.436229,0.842083,0.113192,548,3830,4378
442,3/17/2012,1,1,3,6,2,0.514167,0.505046,0.755833,0.110704,3155,4681,7836
443,3/18/2012,1,1,3,0,2,0.4725,0.464,0.81,0.126883,2207,3685,5892
444,3/19/2012,1,1,3,1,1,0.545,0.532821,0.72875,0.162317,982,5171,6153
445,3/20/2012,1,1,3,2,1,0.560833,0.538533,0.807917,0.121271,1051,5042,6093
446,3/21/2012,2,1,3,3,2,0.531667,0.513258,0.82125,0.0895583,1122,5108,6230
447,3/22/2012,2,1,3,4,1,0.554167,0.531567,0.83125,0.117562,1334,5537,6871
448,3/23/2012,2,1,3,5,2,0.601667,0.570067,0.694167,0.1163,2469,5893,8362
449,3/24/2012,2,1,3,6,2,0.5025,0.486733,0.885417,0.192783,1033,2339,3372
450,3/25/2012,2,1,3,0,2,0.4375,0.437488,0.880833,0.220775,1532,3464,4996
451,3/26/2012,2,1,3,1,1,0.445833,0.43875,0.477917,0.386821,795,4763,5558
452,3/27/2012,2,1,3,2,1,0.323333,0.315654,0.29,0.187192,531,4571,5102
453,3/28/2012,2,1,3,3,1,0.484167,0.47095,0.48125,0.291671,674,5024,5698
454,3/29/2012,2,1,3,4,1,0.494167,0.482304,0.439167,0.31965,834,5299,6133
455,3/30/2012,2,1,3,5,2,0.37,0.375621,0.580833,0.138067,796,4663,5459
456,3/31/2012,2,1,3,6,2,0.424167,0.421708,0.738333,0.250617,2301,3934,6235
457,4/1/2012,2,1,4,0,2,0.425833,0.417287,0.67625,0.172267,2347,3694,6041
458,4/2/2012,2,1,4,1,1,0.433913,0.427513,0.504348,0.312139,1208,4728,5936
459,4/3/2012,2,1,4,2,1,0.466667,0.461483,0.396667,0.100133,1348,5424,6772
460,4/4/2012,2,1,4,3,1,0.541667,0.53345,0.469583,0.180975,1058,5378,6436
461,4/5/2012,2,1,4,4,1,0.435,0.431163,0.374167,0.219529,1192,5265,6457
462,4/6/2012,2,1,4,5,1,0.403333,0.390767,0.377083,0.300388,1807,4653,6460
463,4/7/2012,2,1,4,6,1,0.4375,0.426129,0.254167,0.274871,3252,3605,6857
464,4/8/2012,2,1,4,0,1,0.5,0.492425,0.275833,0.232596,2230,2939,5169
465,4/9/2012,2,1,4,1,1,0.489167,0.476638,0.3175,0.358196,905,4680,5585
466,4/10/2012,2,1,4,2,1,0.446667,0.436233,0.435,0.249375,819,5099,5918
467,4/11/2012,2,1,4,3,1,0.348696,0.337274,0.469565,0.295274,482,4380,4862
468,4/12/2012,2,1,4,4,1,0.3975,0.387604,0.46625,0.290429,663,4746,5409
469,4/13/2012,2,1,4,5,1,0.4425,0.431808,0.408333,0.155471,1252,5146,6398
470,4/14/2012,2,1,4,6,1,0.495,0.487996,0.502917,0.190917,2795,4665,7460
471,4/15/2012,2,1,4,0,1,0.606667,0.573875,0.507917,0.225129,2846,4286,7132
472,4/16/2012,2,1,4,1,1,0.664167,0.614925,0.561667,0.284829,1198,5172,6370
473,4/17/2012,2,1,4,2,1,0.608333,0.598487,0.390417,0.273629,989,5702,6691
474,4/18/2012,2,1,4,3,2,0.463333,0.457038,0.569167,0.167912,347,4020,4367
475,4/19/2012,2,1,4,4,1,0.498333,0.493046,0.6125,0.0659292,846,5719,6565
476,4/20/2012,2,1,4,5,1,0.526667,0.515775,0.694583,0.149871,1340,5950,7290
477,4/21/2012,2,1,4,6,1,0.57,0.542921,0.682917,0.283587,2541,4083,6624
478,4/22/2012,2,1,4,0,3,0.396667,0.389504,0.835417,0.344546,120,907,1027
479,4/23/2012,2,1,4,1,2,0.321667,0.301125,0.766667,0.303496,195,3019,3214
480,4/24/2012,2,1,4,2,1,0.413333,0.405283,0.454167,0.249383,518,5115,5633
481,4/25/2012,2,1,4,3,1,0.476667,0.470317,0.427917,0.118792,655,5541,6196
482,4/26/2012,2,1,4,4,2,0.498333,0.483583,0.756667,0.176625,475,4551,5026
483,4/27/2012,2,1,4,5,1,0.4575,0.452637,0.400833,0.347633,1014,5219,6233
484,4/28/2012,2,1,4,6,2,0.376667,0.377504,0.489583,0.129975,1120,3100,4220
485,4/29/2012,2,1,4,0,1,0.458333,0.450121,0.587083,0.116908,2229,4075,6304
486,4/30/2012,2,1,4,1,2,0.464167,0.457696,0.57,0.171638,665,4907,5572
487,5/1/2012,2,1,5,2,2,0.613333,0.577021,0.659583,0.156096,653,5087,5740
488,5/2/2012,2,1,5,3,1,0.564167,0.537896,0.797083,0.138058,667,5502,6169
489,5/3/2012,2,1,5,4,2,0.56,0.537242,0.768333,0.133696,764,5657,6421
490,5/4/2012,2,1,5,5,1,0.6275,0.590917,0.735417,0.162938,1069,5227,6296
491,5/5/2012,2,1,5,6,2,0.621667,0.584608,0.756667,0.152992,2496,4387,6883
492,5/6/2012,2,1,5,0,2,0.5625,0.546737,0.74,0.149879,2135,4224,6359
493,5/7/2012,2,1,5,1,2,0.5375,0.527142,0.664167,0.230721,1008,5265,6273
494,5/8/2012,2,1,5,2,2,0.581667,0.557471,0.685833,0.296029,738,4990,5728
495,5/9/2012,2,1,5,3,2,0.575,0.553025,0.744167,0.216412,620,4097,4717
496,5/10/2012,2,1,5,4,1,0.505833,0.491783,0.552083,0.314063,1026,5546,6572
497,5/11/2012,2,1,5,5,1,0.533333,0.520833,0.360417,0.236937,1319,5711,7030
498,5/12/2012,2,1,5,6,1,0.564167,0.544817,0.480417,0.123133,2622,4807,7429
499,5/13/2012,2,1,5,0,1,0.6125,0.585238,0.57625,0.225117,2172,3946,6118
500,5/14/2012,2,1,5,1,2,0.573333,0.5499,0.789583,0.212692,342,2501,2843
501,5/15/2012,2,1,5,2,2,0.611667,0.576404,0.794583,0.147392,625,4490,5115
502,5/16/2012,2,1,5,3,1,0.636667,0.595975,0.697917,0.122512,991,6433,7424
503,5/17/2012,2,1,5,4,1,0.593333,0.572613,0.52,0.229475,1242,6142,7384
504,5/18/2012,2,1,5,5,1,0.564167,0.551121,0.523333,0.136817,1521,6118,7639
505,5/19/2012,2,1,5,6,1,0.6,0.566908,0.45625,0.083975,3410,4884,8294
506,5/20/2012,2,1,5,0,1,0.620833,0.583967,0.530417,0.254367,2704,4425,7129
507,5/21/2012,2,1,5,1,2,0.598333,0.565667,0.81125,0.233204,630,3729,4359
508,5/22/2012,2,1,5,2,2,0.615,0.580825,0.765833,0.118167,819,5254,6073
509,5/23/2012,2,1,5,3,2,0.621667,0.584612,0.774583,0.102,766,4494,5260
510,5/24/2012,2,1,5,4,1,0.655,0.6067,0.716667,0.172896,1059,5711,6770
511,5/25/2012,2,1,5,5,1,0.68,0.627529,0.747083,0.14055,1417,5317,6734
512,5/26/2012,2,1,5,6,1,0.6925,0.642696,0.7325,0.198992,2855,3681,6536
513,5/27/2012,2,1,5,0,1,0.69,0.641425,0.697083,0.215171,3283,3308,6591
514,5/28/2012,2,1,5,1,1,0.7125,0.6793,0.67625,0.196521,2557,3486,6043
515,5/29/2012,2,1,5,2,1,0.7225,0.672992,0.684583,0.2954,880,4863,5743
516,5/30/2012,2,1,5,3,2,0.656667,0.611129,0.67,0.134329,745,6110,6855
517,5/31/2012,2,1,5,4,1,0.68,0.631329,0.492917,0.195279,1100,6238,7338
518,6/1/2012,2,1,6,5,2,0.654167,0.607962,0.755417,0.237563,533,3594,4127
519,6/2/2012,2,1,6,6,1,0.583333,0.566288,0.549167,0.186562,2795,5325,8120
520,6/3/2012,2,1,6,0,1,0.6025,0.575133,0.493333,0.184087,2494,5147,7641
521,6/4/2012,2,1,6,1,1,0.5975,0.578283,0.487083,0.284833,1071,5927,6998
522,6/5/2012,2,1,6,2,2,0.540833,0.525892,0.613333,0.209575,968,6033,7001
523,6/6/2012,2,1,6,3,1,0.554167,0.542292,0.61125,0.077125,1027,6028,7055
524,6/7/2012,2,1,6,4,1,0.6025,0.569442,0.567083,0.15735,1038,6456,7494
525,6/8/2012,2,1,6,5,1,0.649167,0.597862,0.467917,0.175383,1488,6248,7736
526,6/9/2012,2,1,6,6,1,0.710833,0.648367,0.437083,0.144287,2708,4790,7498
527,6/10/2012,2,1,6,0,1,0.726667,0.663517,0.538333,0.133721,2224,4374,6598
528,6/11/2012,2,1,6,1,2,0.720833,0.659721,0.587917,0.207713,1017,5647,6664
529,6/12/2012,2,1,6,2,2,0.653333,0.597875,0.833333,0.214546,477,4495,4972
530,6/13/2012,2,1,6,3,1,0.655833,0.611117,0.582083,0.343279,1173,6248,7421
531,6/14/2012,2,1,6,4,1,0.648333,0.624383,0.569583,0.253733,1180,6183,7363
532,6/15/2012,2,1,6,5,1,0.639167,0.599754,0.589583,0.176617,1563,6102,7665
533,6/16/2012,2,1,6,6,1,0.631667,0.594708,0.504167,0.166667,2963,4739,7702
534,6/17/2012,2,1,6,0,1,0.5925,0.571975,0.59875,0.144904,2634,4344,6978
535,6/18/2012,2,1,6,1,2,0.568333,0.544842,0.777917,0.174746,653,4446,5099
536,6/19/2012,2,1,6,2,1,0.688333,0.654692,0.69,0.148017,968,5857,6825
537,6/20/2012,2,1,6,3,1,0.7825,0.720975,0.592083,0.113812,872,5339,6211
538,6/21/2012,3,1,6,4,1,0.805833,0.752542,0.567917,0.118787,778,5127,5905
539,6/22/2012,3,1,6,5,1,0.7775,0.724121,0.57375,0.182842,964,4859,5823
540,6/23/2012,3,1,6,6,1,0.731667,0.652792,0.534583,0.179721,2657,4801,7458
541,6/24/2012,3,1,6,0,1,0.743333,0.674254,0.479167,0.145525,2551,4340,6891
542,6/25/2012,3,1,6,1,1,0.715833,0.654042,0.504167,0.300383,1139,5640,6779
543,6/26/2012,3,1,6,2,1,0.630833,0.594704,0.373333,0.347642,1077,6365,7442
544,6/27/2012,3,1,6,3,1,0.6975,0.640792,0.36,0.271775,1077,6258,7335
545,6/28/2012,3,1,6,4,1,0.749167,0.675512,0.4225,0.17165,921,5958,6879
546,6/29/2012,3,1,6,5,1,0.834167,0.786613,0.48875,0.165417,829,4634,5463
547,6/30/2012,3,1,6,6,1,0.765,0.687508,0.60125,0.161071,1455,4232,5687
548,7/1/2012,3,1,7,0,1,0.815833,0.750629,0.51875,0.168529,1421,4110,5531
549,7/2/2012,3,1,7,1,1,0.781667,0.702038,0.447083,0.195267,904,5323,6227
550,7/3/2012,3,1,7,2,1,0.780833,0.70265,0.492083,0.126237,1052,5608,6660
551,7/4/2012,3,1,7,3,1,0.789167,0.732337,0.53875,0.13495,2562,4841,7403
552,7/5/2012,3,1,7,4,1,0.8275,0.761367,0.457917,0.194029,1405,4836,6241
553,7/6/2012,3,1,7,5,1,0.828333,0.752533,0.450833,0.146142,1366,4841,6207
554,7/7/2012,3,1,7,6,1,0.861667,0.804913,0.492083,0.163554,1448,3392,4840
555,7/8/2012,3,1,7,0,1,0.8225,0.790396,0.57375,0.125629,1203,3469,4672
556,7/9/2012,3,1,7,1,2,0.710833,0.654054,0.683333,0.180975,998,5571,6569
557,7/10/2012,3,1,7,2,2,0.720833,0.664796,0.6675,0.151737,954,5336,6290
558,7/11/2012,3,1,7,3,1,0.716667,0.650271,0.633333,0.151733,975,6289,7264
559,7/12/2012,3,1,7,4,1,0.715833,0.654683,0.529583,0.146775,1032,6414,7446
560,7/13/2012,3,1,7,5,2,0.731667,0.667933,0.485833,0.08085,1511,5988,7499
561,7/14/2012,3,1,7,6,2,0.703333,0.666042,0.699167,0.143679,2355,4614,6969
562,7/15/2012,3,1,7,0,1,0.745833,0.705196,0.717917,0.166667,1920,4111,6031
563,7/16/2012,3,1,7,1,1,0.763333,0.724125,0.645,0.164187,1088,5742,6830
564,7/17/2012,3,1,7,2,1,0.818333,0.755683,0.505833,0.114429,921,5865,6786
565,7/18/2012,3,1,7,3,1,0.793333,0.745583,0.577083,0.137442,799,4914,5713
566,7/19/2012,3,1,7,4,1,0.77,0.714642,0.600417,0.165429,888,5703,6591
567,7/20/2012,3,1,7,5,2,0.665833,0.613025,0.844167,0.208967,747,5123,5870
568,7/21/2012,3,1,7,6,3,0.595833,0.549912,0.865417,0.2133,1264,3195,4459
569,7/22/2012,3,1,7,0,2,0.6675,0.623125,0.7625,0.0939208,2544,4866,7410
570,7/23/2012,3,1,7,1,1,0.741667,0.690017,0.694167,0.138683,1135,5831,6966
571,7/24/2012,3,1,7,2,1,0.750833,0.70645,0.655,0.211454,1140,6452,7592
572,7/25/2012,3,1,7,3,1,0.724167,0.654054,0.45,0.1648,1383,6790,8173
573,7/26/2012,3,1,7,4,1,0.776667,0.739263,0.596667,0.284813,1036,5825,6861
574,7/27/2012,3,1,7,5,1,0.781667,0.734217,0.594583,0.152992,1259,5645,6904
575,7/28/2012,3,1,7,6,1,0.755833,0.697604,0.613333,0.15735,2234,4451,6685
576,7/29/2012,3,1,7,0,1,0.721667,0.667933,0.62375,0.170396,2153,4444,6597
577,7/30/2012,3,1,7,1,1,0.730833,0.684987,0.66875,0.153617,1040,6065,7105
578,7/31/2012,3,1,7,2,1,0.713333,0.662896,0.704167,0.165425,968,6248,7216
579,8/1/2012,3,1,8,3,1,0.7175,0.667308,0.6775,0.141179,1074,6506,7580
580,8/2/2012,3,1,8,4,1,0.7525,0.707088,0.659583,0.129354,983,6278,7261
581,8/3/2012,3,1,8,5,2,0.765833,0.722867,0.6425,0.215792,1328,5847,7175
582,8/4/2012,3,1,8,6,1,0.793333,0.751267,0.613333,0.257458,2345,4479,6824
583,8/5/2012,3,1,8,0,1,0.769167,0.731079,0.6525,0.290421,1707,3757,5464
584,8/6/2012,3,1,8,1,2,0.7525,0.710246,0.654167,0.129354,1233,5780,7013
585,8/7/2012,3,1,8,2,2,0.735833,0.697621,0.70375,0.116908,1278,5995,7273
586,8/8/2012,3,1,8,3,2,0.75,0.707717,0.672917,0.1107,1263,6271,7534
587,8/9/2012,3,1,8,4,1,0.755833,0.699508,0.620417,0.1561,1196,6090,7286
588,8/10/2012,3,1,8,5,2,0.715833,0.667942,0.715833,0.238813,1065,4721,5786
589,8/11/2012,3,1,8,6,2,0.6925,0.638267,0.732917,0.206479,2247,4052,6299
590,8/12/2012,3,1,8,0,1,0.700833,0.644579,0.530417,0.122512,2182,4362,6544
591,8/13/2012,3,1,8,1,1,0.720833,0.662254,0.545417,0.136212,1207,5676,6883
592,8/14/2012,3,1,8,2,1,0.726667,0.676779,0.686667,0.169158,1128,5656,6784
593,8/15/2012,3,1,8,3,1,0.706667,0.654037,0.619583,0.169771,1198,6149,7347
594,8/16/2012,3,1,8,4,1,0.719167,0.654688,0.519167,0.141796,1338,6267,7605
595,8/17/2012,3,1,8,5,1,0.723333,0.2424,0.570833,0.231354,1483,5665,7148
596,8/18/2012,3,1,8,6,1,0.678333,0.618071,0.603333,0.177867,2827,5038,7865
597,8/19/2012,3,1,8,0,2,0.635833,0.603554,0.711667,0.08645,1208,3341,4549
598,8/20/2012,3,1,8,1,2,0.635833,0.595967,0.734167,0.129979,1026,5504,6530
599,8/21/2012,3,1,8,2,1,0.649167,0.601025,0.67375,0.0727708,1081,5925,7006
600,8/22/2012,3,1,8,3,1,0.6675,0.621854,0.677083,0.0702833,1094,6281,7375
601,8/23/2012,3,1,8,4,1,0.695833,0.637008,0.635833,0.0845958,1363,6402,7765
602,8/24/2012,3,1,8,5,2,0.7025,0.6471,0.615,0.0721458,1325,6257,7582
603,8/25/2012,3,1,8,6,2,0.661667,0.618696,0.712917,0.244408,1829,4224,6053
604,8/26/2012,3,1,8,0,2,0.653333,0.595996,0.845833,0.228858,1483,3772,5255
605,8/27/2012,3,1,8,1,1,0.703333,0.654688,0.730417,0.128733,989,5928,6917
606,8/28/2012,3,1,8,2,1,0.728333,0.66605,0.62,0.190925,935,6105,7040
607,8/29/2012,3,1,8,3,1,0.685,0.635733,0.552083,0.112562,1177,6520,7697
608,8/30/2012,3,1,8,4,1,0.706667,0.652779,0.590417,0.0771167,1172,6541,7713
609,8/31/2012,3,1,8,5,1,0.764167,0.6894,0.5875,0.168533,1433,5917,7350
610,9/1/2012,3,1,9,6,2,0.753333,0.702654,0.638333,0.113187,2352,3788,6140
611,9/2/2012,3,1,9,0,2,0.696667,0.649,0.815,0.0640708,2613,3197,5810
612,9/3/2012,3,1,9,1,1,0.7075,0.661629,0.790833,0.151121,1965,4069,6034
613,9/4/2012,3,1,9,2,1,0.725833,0.686888,0.755,0.236321,867,5997,6864
614,9/5/2012,3,1,9,3,1,0.736667,0.708983,0.74125,0.187808,832,6280,7112
615,9/6/2012,3,1,9,4,2,0.696667,0.655329,0.810417,0.142421,611,5592,6203
616,9/7/2012,3,1,9,5,1,0.703333,0.657204,0.73625,0.171646,1045,6459,7504
617,9/8/2012,3,1,9,6,2,0.659167,0.611121,0.799167,0.281104,1557,4419,5976
618,9/9/2012,3,1,9,0,1,0.61,0.578925,0.5475,0.224496,2570,5657,8227
619,9/10/2012,3,1,9,1,1,0.583333,0.565654,0.50375,0.258713,1118,6407,7525
620,9/11/2012,3,1,9,2,1,0.5775,0.554292,0.52,0.0920542,1070,6697,7767
621,9/12/2012,3,1,9,3,1,0.599167,0.570075,0.577083,0.131846,1050,6820,7870
622,9/13/2012,3,1,9,4,1,0.6125,0.579558,0.637083,0.0827208,1054,6750,7804
623,9/14/2012,3,1,9,5,1,0.633333,0.594083,0.6725,0.103863,1379,6630,8009
624,9/15/2012,3,1,9,6,1,0.608333,0.585867,0.501667,0.247521,3160,5554,8714
625,9/16/2012,3,1,9,0,1,0.58,0.563125,0.57,0.0901833,2166,5167,7333
626,9/17/2012,3,1,9,1,2,0.580833,0.55305,0.734583,0.151742,1022,5847,6869
627,9/18/2012,3,1,9,2,2,0.623333,0.565067,0.8725,0.357587,371,3702,4073
628,9/19/2012,3,1,9,3,1,0.5525,0.540404,0.536667,0.215175,788,6803,7591
629,9/20/2012,3,1,9,4,1,0.546667,0.532192,0.618333,0.118167,939,6781,7720
630,9/21/2012,3,1,9,5,1,0.599167,0.571971,0.66875,0.154229,1250,6917,8167
631,9/22/2012,3,1,9,6,1,0.65,0.610488,0.646667,0.283583,2512,5883,8395
632,9/23/2012,4,1,9,0,1,0.529167,0.518933,0.467083,0.223258,2454,5453,7907
633,9/24/2012,4,1,9,1,1,0.514167,0.502513,0.492917,0.142404,1001,6435,7436
634,9/25/2012,4,1,9,2,1,0.55,0.544179,0.57,0.236321,845,6693,7538
635,9/26/2012,4,1,9,3,1,0.635,0.596613,0.630833,0.2444,787,6946,7733
636,9/27/2012,4,1,9,4,2,0.65,0.607975,0.690833,0.134342,751,6642,7393
637,9/28/2012,4,1,9,5,2,0.619167,0.585863,0.69,0.164179,1045,6370,7415
638,9/29/2012,4,1,9,6,1,0.5425,0.530296,0.542917,0.227604,2589,5966,8555
639,9/30/2012,4,1,9,0,1,0.526667,0.517663,0.583333,0.134958,2015,4874,6889
640,10/1/2012,4,1,10,1,2,0.520833,0.512,0.649167,0.0908042,763,6015,6778
641,10/2/2012,4,1,10,2,3,0.590833,0.542333,0.871667,0.104475,315,4324,4639
642,10/3/2012,4,1,10,3,2,0.6575,0.599133,0.79375,0.0665458,728,6844,7572
643,10/4/2012,4,1,10,4,2,0.6575,0.607975,0.722917,0.117546,891,6437,7328
644,10/5/2012,4,1,10,5,1,0.615,0.580187,0.6275,0.10635,1516,6640,8156
645,10/6/2012,4,1,10,6,1,0.554167,0.538521,0.664167,0.268025,3031,4934,7965
646,10/7/2012,4,1,10,0,2,0.415833,0.419813,0.708333,0.141162,781,2729,3510
647,10/8/2012,4,1,10,1,2,0.383333,0.387608,0.709583,0.189679,874,4604,5478
648,10/9/2012,4,1,10,2,2,0.446667,0.438112,0.761667,0.1903,601,5791,6392
649,10/10/2012,4,1,10,3,1,0.514167,0.503142,0.630833,0.187821,780,6911,7691
650,10/11/2012,4,1,10,4,1,0.435,0.431167,0.463333,0.181596,834,6736,7570
651,10/12/2012,4,1,10,5,1,0.4375,0.433071,0.539167,0.235092,1060,6222,7282
652,10/13/2012,4,1,10,6,1,0.393333,0.391396,0.494583,0.146142,2252,4857,7109
653,10/14/2012,4,1,10,0,1,0.521667,0.508204,0.640417,0.278612,2080,4559,6639
654,10/15/2012,4,1,10,1,2,0.561667,0.53915,0.7075,0.296037,760,5115,5875
655,10/16/2012,4,1,10,2,1,0.468333,0.460846,0.558333,0.182221,922,6612,7534
656,10/17/2012,4,1,10,3,1,0.455833,0.450108,0.692917,0.101371,979,6482,7461
657,10/18/2012,4,1,10,4,2,0.5225,0.512625,0.728333,0.236937,1008,6501,7509
658,10/19/2012,4,1,10,5,2,0.563333,0.537896,0.815,0.134954,753,4671,5424
659,10/20/2012,4,1,10,6,1,0.484167,0.472842,0.572917,0.117537,2806,5284,8090
660,10/21/2012,4,1,10,0,1,0.464167,0.456429,0.51,0.166054,2132,4692,6824
661,10/22/2012,4,1,10,1,1,0.4875,0.482942,0.568333,0.0814833,830,6228,7058
662,10/23/2012,4,1,10,2,1,0.544167,0.530304,0.641667,0.0945458,841,6625,7466
663,10/24/2012,4,1,10,3,1,0.5875,0.558721,0.63625,0.0727792,795,6898,7693
664,10/25/2012,4,1,10,4,2,0.55,0.529688,0.800417,0.124375,875,6484,7359
665,10/26/2012,4,1,10,5,2,0.545833,0.52275,0.807083,0.132467,1182,6262,7444
666,10/27/2012,4,1,10,6,2,0.53,0.515133,0.72,0.235692,2643,5209,7852
667,10/28/2012,4,1,10,0,2,0.4775,0.467771,0.694583,0.398008,998,3461,4459
668,10/29/2012,4,1,10,1,3,0.44,0.4394,0.88,0.3582,2,20,22
669,10/30/2012,4,1,10,2,2,0.318182,0.309909,0.825455,0.213009,87,1009,1096
670,10/31/2012,4,1,10,3,2,0.3575,0.3611,0.666667,0.166667,419,5147,5566
671,11/1/2012,4,1,11,4,2,0.365833,0.369942,0.581667,0.157346,466,5520,5986
672,11/2/2012,4,1,11,5,1,0.355,0.356042,0.522083,0.266175,618,5229,5847
673,11/3/2012,4,1,11,6,2,0.343333,0.323846,0.49125,0.270529,1029,4109,5138
674,11/4/2012,4,1,11,0,1,0.325833,0.329538,0.532917,0.179108,1201,3906,5107
675,11/5/2012,4,1,11,1,1,0.319167,0.308075,0.494167,0.236325,378,4881,5259
676,11/6/2012,4,1,11,2,1,0.280833,0.281567,0.567083,0.173513,466,5220,5686
677,11/7/2012,4,1,11,3,2,0.295833,0.274621,0.5475,0.304108,326,4709,5035
678,11/8/2012,4,1,11,4,1,0.352174,0.341891,0.333478,0.347835,340,4975,5315
679,11/9/2012,4,1,11,5,1,0.361667,0.355413,0.540833,0.214558,709,5283,5992
680,11/10/2012,4,1,11,6,1,0.389167,0.393937,0.645417,0.0578458,2090,4446,6536
681,11/11/2012,4,1,11,0,1,0.420833,0.421713,0.659167,0.1275,2290,4562,6852
682,11/12/2012,4,1,11,1,1,0.485,0.475383,0.741667,0.173517,1097,5172,6269
683,11/13/2012,4,1,11,2,2,0.343333,0.323225,0.662917,0.342046,327,3767,4094
684,11/14/2012,4,1,11,3,1,0.289167,0.281563,0.552083,0.199625,373,5122,5495
685,11/15/2012,4,1,11,4,2,0.321667,0.324492,0.620417,0.152987,320,5125,5445
686,11/16/2012,4,1,11,5,1,0.345,0.347204,0.524583,0.171025,484,5214,5698
687,11/17/2012,4,1,11,6,1,0.325,0.326383,0.545417,0.179729,1313,4316,5629
688,11/18/2012,4,1,11,0,1,0.3425,0.337746,0.692917,0.227612,922,3747,4669
689,11/19/2012,4,1,11,1,2,0.380833,0.375621,0.623333,0.235067,449,5050,5499
690,11/20/2012,4,1,11,2,2,0.374167,0.380667,0.685,0.082725,534,5100,5634
691,11/21/2012,4,1,11,3,1,0.353333,0.364892,0.61375,0.103246,615,4531,5146
692,11/22/2012,4,1,11,4,1,0.34,0.350371,0.580417,0.0528708,955,1470,2425
693,11/23/2012,4,1,11,5,1,0.368333,0.378779,0.56875,0.148021,1603,2307,3910
694,11/24/2012,4,1,11,6,1,0.278333,0.248742,0.404583,0.376871,532,1745,2277
695,11/25/2012,4,1,11,0,1,0.245833,0.257583,0.468333,0.1505,309,2115,2424
696,11/26/2012,4,1,11,1,1,0.313333,0.339004,0.535417,0.04665,337,4750,5087
697,11/27/2012,4,1,11,2,2,0.291667,0.281558,0.786667,0.237562,123,3836,3959
698,11/28/2012,4,1,11,3,1,0.296667,0.289762,0.50625,0.210821,198,5062,5260
699,11/29/2012,4,1,11,4,1,0.28087,0.298422,0.555652,0.115522,243,5080,5323
700,11/30/2012,4,1,11,5,1,0.298333,0.323867,0.649583,0.0584708,362,5306,5668
701,12/1/2012,4,1,12,6,2,0.298333,0.316904,0.806667,0.0597042,951,4240,5191
702,12/2/2012,4,1,12,0,2,0.3475,0.359208,0.823333,0.124379,892,3757,4649
703,12/3/2012,4,1,12,1,1,0.4525,0.455796,0.7675,0.0827208,555,5679,6234
704,12/4/2012,4,1,12,2,1,0.475833,0.469054,0.73375,0.174129,551,6055,6606
705,12/5/2012,4,1,12,3,1,0.438333,0.428012,0.485,0.324021,331,5398,5729
706,12/6/2012,4,1,12,4,1,0.255833,0.258204,0.50875,0.174754,340,5035,5375
707,12/7/2012,4,1,12,5,2,0.320833,0.321958,0.764167,0.1306,349,4659,5008
708,12/8/2012,4,1,12,6,2,0.381667,0.389508,0.91125,0.101379,1153,4429,5582
709,12/9/2012,4,1,12,0,2,0.384167,0.390146,0.905417,0.157975,441,2787,3228
710,12/10/2012,4,1,12,1,2,0.435833,0.435575,0.925,0.190308,329,4841,5170
711,12/11/2012,4,1,12,2,2,0.353333,0.338363,0.596667,0.296037,282,5219,5501
712,12/12/2012,4,1,12,3,2,0.2975,0.297338,0.538333,0.162937,310,5009,5319
713,12/13/2012,4,1,12,4,1,0.295833,0.294188,0.485833,0.174129,425,5107,5532
714,12/14/2012,4,1,12,5,1,0.281667,0.294192,0.642917,0.131229,429,5182,5611
715,12/15/2012,4,1,12,6,1,0.324167,0.338383,0.650417,0.10635,767,4280,5047
716,12/16/2012,4,1,12,0,2,0.3625,0.369938,0.83875,0.100742,538,3248,3786
717,12/17/2012,4,1,12,1,2,0.393333,0.4015,0.907083,0.0982583,212,4373,4585
718,12/18/2012,4,1,12,2,1,0.410833,0.409708,0.66625,0.221404,433,5124,5557
719,12/19/2012,4,1,12,3,1,0.3325,0.342162,0.625417,0.184092,333,4934,5267
720,12/20/2012,4,1,12,4,2,0.33,0.335217,0.667917,0.132463,314,3814,4128
721,12/21/2012,1,1,12,5,2,0.326667,0.301767,0.556667,0.374383,221,3402,3623
722,12/22/2012,1,1,12,6,1,0.265833,0.236113,0.44125,0.407346,205,1544,1749
723,12/23/2012,1,1,12,0,1,0.245833,0.259471,0.515417,0.133083,408,1379,1787
724,12/24/2012,1,1,12,1,2,0.231304,0.2589,0.791304,0.0772304,174,746,920
725,12/25/2012,1,1,12,2,2,0.291304,0.294465,0.734783,0.168726,440,573,1013
726,12/26/2012,1,1,12,3,3,0.243333,0.220333,0.823333,0.316546,9,432,441
727,12/27/2012,1,1,12,4,2,0.254167,0.226642,0.652917,0.350133,247,1867,2114
728,12/28/2012,1,1,12,5,2,0.253333,0.255046,0.59,0.155471,644,2451,3095
729,12/29/2012,1,1,12,6,2,0.253333,0.2424,0.752917,0.124383,159,1182,1341
730,12/30/2012,1,1,12,0,1,0.255833,0.2317,0.483333,0.350754,364,1432,1796
731,12/31/2012,1,1,12,1,2,0.215833,0.223487,0.5775,0.154846,439,2290,2729
1 instant date season yr mnth weekday weathersit temp atemp hum windspeed casual registered cnt
2 1 1/1/2011 1 0 1 6 2 0.344167 0.363625 0.805833 0.160446 331 654 985
3 2 1/2/2011 1 0 1 0 2 0.363478 0.353739 0.696087 0.248539 131 670 801
4 3 1/3/2011 1 0 1 1 1 0.196364 0.189405 0.437273 0.248309 120 1229 1349
5 4 1/4/2011 1 0 1 2 1 0.2 0.212122 0.590435 0.160296 108 1454 1562
6 5 1/5/2011 1 0 1 3 1 0.226957 0.22927 0.436957 0.1869 82 1518 1600
7 6 1/6/2011 1 0 1 4 1 0.204348 0.233209 0.518261 0.0895652 88 1518 1606
8 7 1/7/2011 1 0 1 5 2 0.196522 0.208839 0.498696 0.168726 148 1362 1510
9 8 1/8/2011 1 0 1 6 2 0.165 0.162254 0.535833 0.266804 68 891 959
10 9 1/9/2011 1 0 1 0 1 0.138333 0.116175 0.434167 0.36195 54 768 822
11 10 1/10/2011 1 0 1 1 1 0.150833 0.150888 0.482917 0.223267 41 1280 1321
12 11 1/11/2011 1 0 1 2 2 0.169091 0.191464 0.686364 0.122132 43 1220 1263
13 12 1/12/2011 1 0 1 3 1 0.172727 0.160473 0.599545 0.304627 25 1137 1162
14 13 1/13/2011 1 0 1 4 1 0.165 0.150883 0.470417 0.301 38 1368 1406
15 14 1/14/2011 1 0 1 5 1 0.16087 0.188413 0.537826 0.126548 54 1367 1421
16 15 1/15/2011 1 0 1 6 2 0.233333 0.248112 0.49875 0.157963 222 1026 1248
17 16 1/16/2011 1 0 1 0 1 0.231667 0.234217 0.48375 0.188433 251 953 1204
18 17 1/17/2011 1 0 1 1 2 0.175833 0.176771 0.5375 0.194017 117 883 1000
19 18 1/18/2011 1 0 1 2 2 0.216667 0.232333 0.861667 0.146775 9 674 683
20 19 1/19/2011 1 0 1 3 2 0.292174 0.298422 0.741739 0.208317 78 1572 1650
21 20 1/20/2011 1 0 1 4 2 0.261667 0.25505 0.538333 0.195904 83 1844 1927
22 21 1/21/2011 1 0 1 5 1 0.1775 0.157833 0.457083 0.353242 75 1468 1543
23 22 1/22/2011 1 0 1 6 1 0.0591304 0.0790696 0.4 0.17197 93 888 981
24 23 1/23/2011 1 0 1 0 1 0.0965217 0.0988391 0.436522 0.2466 150 836 986
25 24 1/24/2011 1 0 1 1 1 0.0973913 0.11793 0.491739 0.15833 86 1330 1416
26 25 1/25/2011 1 0 1 2 2 0.223478 0.234526 0.616957 0.129796 186 1799 1985
27 26 1/26/2011 1 0 1 3 3 0.2175 0.2036 0.8625 0.29385 34 472 506
28 27 1/27/2011 1 0 1 4 1 0.195 0.2197 0.6875 0.113837 15 416 431
29 28 1/28/2011 1 0 1 5 2 0.203478 0.223317 0.793043 0.1233 38 1129 1167
30 29 1/29/2011 1 0 1 6 1 0.196522 0.212126 0.651739 0.145365 123 975 1098
31 30 1/30/2011 1 0 1 0 1 0.216522 0.250322 0.722174 0.0739826 140 956 1096
32 31 1/31/2011 1 0 1 1 2 0.180833 0.18625 0.60375 0.187192 42 1459 1501
33 32 2/1/2011 1 0 2 2 2 0.192174 0.23453 0.829565 0.053213 47 1313 1360
34 33 2/2/2011 1 0 2 3 2 0.26 0.254417 0.775417 0.264308 72 1454 1526
35 34 2/3/2011 1 0 2 4 1 0.186957 0.177878 0.437826 0.277752 61 1489 1550
36 35 2/4/2011 1 0 2 5 2 0.211304 0.228587 0.585217 0.127839 88 1620 1708
37 36 2/5/2011 1 0 2 6 2 0.233333 0.243058 0.929167 0.161079 100 905 1005
38 37 2/6/2011 1 0 2 0 1 0.285833 0.291671 0.568333 0.1418 354 1269 1623
39 38 2/7/2011 1 0 2 1 1 0.271667 0.303658 0.738333 0.0454083 120 1592 1712
40 39 2/8/2011 1 0 2 2 1 0.220833 0.198246 0.537917 0.36195 64 1466 1530
41 40 2/9/2011 1 0 2 3 2 0.134783 0.144283 0.494783 0.188839 53 1552 1605
42 41 2/10/2011 1 0 2 4 1 0.144348 0.149548 0.437391 0.221935 47 1491 1538
43 42 2/11/2011 1 0 2 5 1 0.189091 0.213509 0.506364 0.10855 149 1597 1746
44 43 2/12/2011 1 0 2 6 1 0.2225 0.232954 0.544167 0.203367 288 1184 1472
45 44 2/13/2011 1 0 2 0 1 0.316522 0.324113 0.457391 0.260883 397 1192 1589
46 45 2/14/2011 1 0 2 1 1 0.415 0.39835 0.375833 0.417908 208 1705 1913
47 46 2/15/2011 1 0 2 2 1 0.266087 0.254274 0.314348 0.291374 140 1675 1815
48 47 2/16/2011 1 0 2 3 1 0.318261 0.3162 0.423478 0.251791 218 1897 2115
49 48 2/17/2011 1 0 2 4 1 0.435833 0.428658 0.505 0.230104 259 2216 2475
50 49 2/18/2011 1 0 2 5 1 0.521667 0.511983 0.516667 0.264925 579 2348 2927
51 50 2/19/2011 1 0 2 6 1 0.399167 0.391404 0.187917 0.507463 532 1103 1635
52 51 2/20/2011 1 0 2 0 1 0.285217 0.27733 0.407826 0.223235 639 1173 1812
53 52 2/21/2011 1 0 2 1 2 0.303333 0.284075 0.605 0.307846 195 912 1107
54 53 2/22/2011 1 0 2 2 1 0.182222 0.186033 0.577778 0.195683 74 1376 1450
55 54 2/23/2011 1 0 2 3 1 0.221739 0.245717 0.423043 0.094113 139 1778 1917
56 55 2/24/2011 1 0 2 4 2 0.295652 0.289191 0.697391 0.250496 100 1707 1807
57 56 2/25/2011 1 0 2 5 2 0.364348 0.350461 0.712174 0.346539 120 1341 1461
58 57 2/26/2011 1 0 2 6 1 0.2825 0.282192 0.537917 0.186571 424 1545 1969
59 58 2/27/2011 1 0 2 0 1 0.343478 0.351109 0.68 0.125248 694 1708 2402
60 59 2/28/2011 1 0 2 1 2 0.407273 0.400118 0.876364 0.289686 81 1365 1446
61 60 3/1/2011 1 0 3 2 1 0.266667 0.263879 0.535 0.216425 137 1714 1851
62 61 3/2/2011 1 0 3 3 1 0.335 0.320071 0.449583 0.307833 231 1903 2134
63 62 3/3/2011 1 0 3 4 1 0.198333 0.200133 0.318333 0.225754 123 1562 1685
64 63 3/4/2011 1 0 3 5 2 0.261667 0.255679 0.610417 0.203346 214 1730 1944
65 64 3/5/2011 1 0 3 6 2 0.384167 0.378779 0.789167 0.251871 640 1437 2077
66 65 3/6/2011 1 0 3 0 2 0.376522 0.366252 0.948261 0.343287 114 491 605
67 66 3/7/2011 1 0 3 1 1 0.261739 0.238461 0.551304 0.341352 244 1628 1872
68 67 3/8/2011 1 0 3 2 1 0.2925 0.3024 0.420833 0.12065 316 1817 2133
69 68 3/9/2011 1 0 3 3 2 0.295833 0.286608 0.775417 0.22015 191 1700 1891
70 69 3/10/2011 1 0 3 4 3 0.389091 0.385668 0 0.261877 46 577 623
71 70 3/11/2011 1 0 3 5 2 0.316522 0.305 0.649565 0.23297 247 1730 1977
72 71 3/12/2011 1 0 3 6 1 0.329167 0.32575 0.594583 0.220775 724 1408 2132
73 72 3/13/2011 1 0 3 0 1 0.384348 0.380091 0.527391 0.270604 982 1435 2417
74 73 3/14/2011 1 0 3 1 1 0.325217 0.332 0.496957 0.136926 359 1687 2046
75 74 3/15/2011 1 0 3 2 2 0.317391 0.318178 0.655652 0.184309 289 1767 2056
76 75 3/16/2011 1 0 3 3 2 0.365217 0.36693 0.776522 0.203117 321 1871 2192
77 76 3/17/2011 1 0 3 4 1 0.415 0.410333 0.602917 0.209579 424 2320 2744
78 77 3/18/2011 1 0 3 5 1 0.54 0.527009 0.525217 0.231017 884 2355 3239
79 78 3/19/2011 1 0 3 6 1 0.4725 0.466525 0.379167 0.368167 1424 1693 3117
80 79 3/20/2011 1 0 3 0 1 0.3325 0.32575 0.47375 0.207721 1047 1424 2471
81 80 3/21/2011 2 0 3 1 2 0.430435 0.409735 0.737391 0.288783 401 1676 2077
82 81 3/22/2011 2 0 3 2 1 0.441667 0.440642 0.624583 0.22575 460 2243 2703
83 82 3/23/2011 2 0 3 3 2 0.346957 0.337939 0.839565 0.234261 203 1918 2121
84 83 3/24/2011 2 0 3 4 2 0.285 0.270833 0.805833 0.243787 166 1699 1865
85 84 3/25/2011 2 0 3 5 1 0.264167 0.256312 0.495 0.230725 300 1910 2210
86 85 3/26/2011 2 0 3 6 1 0.265833 0.257571 0.394167 0.209571 981 1515 2496
87 86 3/27/2011 2 0 3 0 2 0.253043 0.250339 0.493913 0.1843 472 1221 1693
88 87 3/28/2011 2 0 3 1 1 0.264348 0.257574 0.302174 0.212204 222 1806 2028
89 88 3/29/2011 2 0 3 2 1 0.3025 0.292908 0.314167 0.226996 317 2108 2425
90 89 3/30/2011 2 0 3 3 2 0.3 0.29735 0.646667 0.172888 168 1368 1536
91 90 3/31/2011 2 0 3 4 3 0.268333 0.257575 0.918333 0.217646 179 1506 1685
92 91 4/1/2011 2 0 4 5 2 0.3 0.283454 0.68625 0.258708 307 1920 2227
93 92 4/2/2011 2 0 4 6 2 0.315 0.315637 0.65375 0.197146 898 1354 2252
94 93 4/3/2011 2 0 4 0 1 0.378333 0.378767 0.48 0.182213 1651 1598 3249
95 94 4/4/2011 2 0 4 1 1 0.573333 0.542929 0.42625 0.385571 734 2381 3115
96 95 4/5/2011 2 0 4 2 2 0.414167 0.39835 0.642083 0.388067 167 1628 1795
97 96 4/6/2011 2 0 4 3 1 0.390833 0.387608 0.470833 0.263063 413 2395 2808
98 97 4/7/2011 2 0 4 4 1 0.4375 0.433696 0.602917 0.162312 571 2570 3141
99 98 4/8/2011 2 0 4 5 2 0.335833 0.324479 0.83625 0.226992 172 1299 1471
100 99 4/9/2011 2 0 4 6 2 0.3425 0.341529 0.8775 0.133083 879 1576 2455
101 100 4/10/2011 2 0 4 0 2 0.426667 0.426737 0.8575 0.146767 1188 1707 2895
102 101 4/11/2011 2 0 4 1 2 0.595652 0.565217 0.716956 0.324474 855 2493 3348
103 102 4/12/2011 2 0 4 2 2 0.5025 0.493054 0.739167 0.274879 257 1777 2034
104 103 4/13/2011 2 0 4 3 2 0.4125 0.417283 0.819167 0.250617 209 1953 2162
105 104 4/14/2011 2 0 4 4 1 0.4675 0.462742 0.540417 0.1107 529 2738 3267
106 105 4/15/2011 2 0 4 5 1 0.446667 0.441913 0.67125 0.226375 642 2484 3126
107 106 4/16/2011 2 0 4 6 3 0.430833 0.425492 0.888333 0.340808 121 674 795
108 107 4/17/2011 2 0 4 0 1 0.456667 0.445696 0.479583 0.303496 1558 2186 3744
109 108 4/18/2011 2 0 4 1 1 0.5125 0.503146 0.5425 0.163567 669 2760 3429
110 109 4/19/2011 2 0 4 2 2 0.505833 0.489258 0.665833 0.157971 409 2795 3204
111 110 4/20/2011 2 0 4 3 1 0.595 0.564392 0.614167 0.241925 613 3331 3944
112 111 4/21/2011 2 0 4 4 1 0.459167 0.453892 0.407083 0.325258 745 3444 4189
113 112 4/22/2011 2 0 4 5 2 0.336667 0.321954 0.729583 0.219521 177 1506 1683
114 113 4/23/2011 2 0 4 6 2 0.46 0.450121 0.887917 0.230725 1462 2574 4036
115 114 4/24/2011 2 0 4 0 2 0.581667 0.551763 0.810833 0.192175 1710 2481 4191
116 115 4/25/2011 2 0 4 1 1 0.606667 0.5745 0.776667 0.185333 773 3300 4073
117 116 4/26/2011 2 0 4 2 1 0.631667 0.594083 0.729167 0.3265 678 3722 4400
118 117 4/27/2011 2 0 4 3 2 0.62 0.575142 0.835417 0.3122 547 3325 3872
119 118 4/28/2011 2 0 4 4 2 0.6175 0.578929 0.700833 0.320908 569 3489 4058
120 119 4/29/2011 2 0 4 5 1 0.51 0.497463 0.457083 0.240063 878 3717 4595
121 120 4/30/2011 2 0 4 6 1 0.4725 0.464021 0.503333 0.235075 1965 3347 5312
122 121 5/1/2011 2 0 5 0 2 0.451667 0.448204 0.762083 0.106354 1138 2213 3351
123 122 5/2/2011 2 0 5 1 2 0.549167 0.532833 0.73 0.183454 847 3554 4401
124 123 5/3/2011 2 0 5 2 2 0.616667 0.582079 0.697083 0.342667 603 3848 4451
125 124 5/4/2011 2 0 5 3 2 0.414167 0.40465 0.737083 0.328996 255 2378 2633
126 125 5/5/2011 2 0 5 4 1 0.459167 0.441917 0.444167 0.295392 614 3819 4433
127 126 5/6/2011 2 0 5 5 1 0.479167 0.474117 0.59 0.228246 894 3714 4608
128 127 5/7/2011 2 0 5 6 1 0.52 0.512621 0.54125 0.16045 1612 3102 4714
129 128 5/8/2011 2 0 5 0 1 0.528333 0.518933 0.631667 0.0746375 1401 2932 4333
130 129 5/9/2011 2 0 5 1 1 0.5325 0.525246 0.58875 0.176 664 3698 4362
131 130 5/10/2011 2 0 5 2 1 0.5325 0.522721 0.489167 0.115671 694 4109 4803
132 131 5/11/2011 2 0 5 3 1 0.5425 0.5284 0.632917 0.120642 550 3632 4182
133 132 5/12/2011 2 0 5 4 1 0.535 0.523363 0.7475 0.189667 695 4169 4864
134 133 5/13/2011 2 0 5 5 2 0.5125 0.4943 0.863333 0.179725 692 3413 4105
135 134 5/14/2011 2 0 5 6 2 0.520833 0.500629 0.9225 0.13495 902 2507 3409
136 135 5/15/2011 2 0 5 0 2 0.5625 0.536 0.867083 0.152979 1582 2971 4553
137 136 5/16/2011 2 0 5 1 1 0.5775 0.550512 0.787917 0.126871 773 3185 3958
138 137 5/17/2011 2 0 5 2 2 0.561667 0.538529 0.837917 0.277354 678 3445 4123
139 138 5/18/2011 2 0 5 3 2 0.55 0.527158 0.87 0.201492 536 3319 3855
140 139 5/19/2011 2 0 5 4 2 0.530833 0.510742 0.829583 0.108213 735 3840 4575
141 140 5/20/2011 2 0 5 5 1 0.536667 0.529042 0.719583 0.125013 909 4008 4917
142 141 5/21/2011 2 0 5 6 1 0.6025 0.571975 0.626667 0.12065 2258 3547 5805
143 142 5/22/2011 2 0 5 0 1 0.604167 0.5745 0.749583 0.148008 1576 3084 4660
144 143 5/23/2011 2 0 5 1 2 0.631667 0.590296 0.81 0.233842 836 3438 4274
145 144 5/24/2011 2 0 5 2 2 0.66 0.604813 0.740833 0.207092 659 3833 4492
146 145 5/25/2011 2 0 5 3 1 0.660833 0.615542 0.69625 0.154233 740 4238 4978
147 146 5/26/2011 2 0 5 4 1 0.708333 0.654688 0.6775 0.199642 758 3919 4677
148 147 5/27/2011 2 0 5 5 1 0.681667 0.637008 0.65375 0.240679 871 3808 4679
149 148 5/28/2011 2 0 5 6 1 0.655833 0.612379 0.729583 0.230092 2001 2757 4758
150 149 5/29/2011 2 0 5 0 1 0.6675 0.61555 0.81875 0.213938 2355 2433 4788
151 150 5/30/2011 2 0 5 1 1 0.733333 0.671092 0.685 0.131225 1549 2549 4098
152 151 5/31/2011 2 0 5 2 1 0.775 0.725383 0.636667 0.111329 673 3309 3982
153 152 6/1/2011 2 0 6 3 2 0.764167 0.720967 0.677083 0.207092 513 3461 3974
154 153 6/2/2011 2 0 6 4 1 0.715 0.643942 0.305 0.292287 736 4232 4968
155 154 6/3/2011 2 0 6 5 1 0.62 0.587133 0.354167 0.253121 898 4414 5312
156 155 6/4/2011 2 0 6 6 1 0.635 0.594696 0.45625 0.123142 1869 3473 5342
157 156 6/5/2011 2 0 6 0 2 0.648333 0.616804 0.6525 0.138692 1685 3221 4906
158 157 6/6/2011 2 0 6 1 1 0.678333 0.621858 0.6 0.121896 673 3875 4548
159 158 6/7/2011 2 0 6 2 1 0.7075 0.65595 0.597917 0.187808 763 4070 4833
160 159 6/8/2011 2 0 6 3 1 0.775833 0.727279 0.622083 0.136817 676 3725 4401
161 160 6/9/2011 2 0 6 4 2 0.808333 0.757579 0.568333 0.149883 563 3352 3915
162 161 6/10/2011 2 0 6 5 1 0.755 0.703292 0.605 0.140554 815 3771 4586
163 162 6/11/2011 2 0 6 6 1 0.725 0.678038 0.654583 0.15485 1729 3237 4966
164 163 6/12/2011 2 0 6 0 1 0.6925 0.643325 0.747917 0.163567 1467 2993 4460
165 164 6/13/2011 2 0 6 1 1 0.635 0.601654 0.494583 0.30535 863 4157 5020
166 165 6/14/2011 2 0 6 2 1 0.604167 0.591546 0.507083 0.269283 727 4164 4891
167 166 6/15/2011 2 0 6 3 1 0.626667 0.587754 0.471667 0.167912 769 4411 5180
168 167 6/16/2011 2 0 6 4 2 0.628333 0.595346 0.688333 0.206471 545 3222 3767
169 168 6/17/2011 2 0 6 5 1 0.649167 0.600383 0.735833 0.143029 863 3981 4844
170 169 6/18/2011 2 0 6 6 1 0.696667 0.643954 0.670417 0.119408 1807 3312 5119
171 170 6/19/2011 2 0 6 0 2 0.699167 0.645846 0.666667 0.102 1639 3105 4744
172 171 6/20/2011 2 0 6 1 2 0.635 0.595346 0.74625 0.155475 699 3311 4010
173 172 6/21/2011 3 0 6 2 2 0.680833 0.637646 0.770417 0.171025 774 4061 4835
174 173 6/22/2011 3 0 6 3 1 0.733333 0.693829 0.7075 0.172262 661 3846 4507
175 174 6/23/2011 3 0 6 4 2 0.728333 0.693833 0.703333 0.238804 746 4044 4790
176 175 6/24/2011 3 0 6 5 1 0.724167 0.656583 0.573333 0.222025 969 4022 4991
177 176 6/25/2011 3 0 6 6 1 0.695 0.643313 0.483333 0.209571 1782 3420 5202
178 177 6/26/2011 3 0 6 0 1 0.68 0.637629 0.513333 0.0945333 1920 3385 5305
179 178 6/27/2011 3 0 6 1 2 0.6825 0.637004 0.658333 0.107588 854 3854 4708
180 179 6/28/2011 3 0 6 2 1 0.744167 0.692558 0.634167 0.144283 732 3916 4648
181 180 6/29/2011 3 0 6 3 1 0.728333 0.654688 0.497917 0.261821 848 4377 5225
182 181 6/30/2011 3 0 6 4 1 0.696667 0.637008 0.434167 0.185312 1027 4488 5515
183 182 7/1/2011 3 0 7 5 1 0.7225 0.652162 0.39625 0.102608 1246 4116 5362
184 183 7/2/2011 3 0 7 6 1 0.738333 0.667308 0.444583 0.115062 2204 2915 5119
185 184 7/3/2011 3 0 7 0 2 0.716667 0.668575 0.6825 0.228858 2282 2367 4649
186 185 7/4/2011 3 0 7 1 2 0.726667 0.665417 0.637917 0.0814792 3065 2978 6043
187 186 7/5/2011 3 0 7 2 1 0.746667 0.696338 0.590417 0.126258 1031 3634 4665
188 187 7/6/2011 3 0 7 3 1 0.72 0.685633 0.743333 0.149883 784 3845 4629
189 188 7/7/2011 3 0 7 4 1 0.75 0.686871 0.65125 0.1592 754 3838 4592
190 189 7/8/2011 3 0 7 5 2 0.709167 0.670483 0.757917 0.225129 692 3348 4040
191 190 7/9/2011 3 0 7 6 1 0.733333 0.664158 0.609167 0.167912 1988 3348 5336
192 191 7/10/2011 3 0 7 0 1 0.7475 0.690025 0.578333 0.183471 1743 3138 4881
193 192 7/11/2011 3 0 7 1 1 0.7625 0.729804 0.635833 0.282337 723 3363 4086
194 193 7/12/2011 3 0 7 2 1 0.794167 0.739275 0.559167 0.200254 662 3596 4258
195 194 7/13/2011 3 0 7 3 1 0.746667 0.689404 0.631667 0.146133 748 3594 4342
196 195 7/14/2011 3 0 7 4 1 0.680833 0.635104 0.47625 0.240667 888 4196 5084
197 196 7/15/2011 3 0 7 5 1 0.663333 0.624371 0.59125 0.182833 1318 4220 5538
198 197 7/16/2011 3 0 7 6 1 0.686667 0.638263 0.585 0.208342 2418 3505 5923
199 198 7/17/2011 3 0 7 0 1 0.719167 0.669833 0.604167 0.245033 2006 3296 5302
200 199 7/18/2011 3 0 7 1 1 0.746667 0.703925 0.65125 0.215804 841 3617 4458
201 200 7/19/2011 3 0 7 2 1 0.776667 0.747479 0.650417 0.1306 752 3789 4541
202 201 7/20/2011 3 0 7 3 1 0.768333 0.74685 0.707083 0.113817 644 3688 4332
203 202 7/21/2011 3 0 7 4 2 0.815 0.826371 0.69125 0.222021 632 3152 3784
204 203 7/22/2011 3 0 7 5 1 0.848333 0.840896 0.580417 0.1331 562 2825 3387
205 204 7/23/2011 3 0 7 6 1 0.849167 0.804287 0.5 0.131221 987 2298 3285
206 205 7/24/2011 3 0 7 0 1 0.83 0.794829 0.550833 0.169171 1050 2556 3606
207 206 7/25/2011 3 0 7 1 1 0.743333 0.720958 0.757083 0.0908083 568 3272 3840
208 207 7/26/2011 3 0 7 2 1 0.771667 0.696979 0.540833 0.200258 750 3840 4590
209 208 7/27/2011 3 0 7 3 1 0.775 0.690667 0.402917 0.183463 755 3901 4656
210 209 7/28/2011 3 0 7 4 1 0.779167 0.7399 0.583333 0.178479 606 3784 4390
211 210 7/29/2011 3 0 7 5 1 0.838333 0.785967 0.5425 0.174138 670 3176 3846
212 211 7/30/2011 3 0 7 6 1 0.804167 0.728537 0.465833 0.168537 1559 2916 4475
213 212 7/31/2011 3 0 7 0 1 0.805833 0.729796 0.480833 0.164813 1524 2778 4302
214 213 8/1/2011 3 0 8 1 1 0.771667 0.703292 0.550833 0.156717 729 3537 4266
215 214 8/2/2011 3 0 8 2 1 0.783333 0.707071 0.49125 0.20585 801 4044 4845
216 215 8/3/2011 3 0 8 3 2 0.731667 0.679937 0.6575 0.135583 467 3107 3574
217 216 8/4/2011 3 0 8 4 2 0.71 0.664788 0.7575 0.19715 799 3777 4576
218 217 8/5/2011 3 0 8 5 1 0.710833 0.656567 0.630833 0.184696 1023 3843 4866
219 218 8/6/2011 3 0 8 6 2 0.716667 0.676154 0.755 0.22825 1521 2773 4294
220 219 8/7/2011 3 0 8 0 1 0.7425 0.715292 0.752917 0.201487 1298 2487 3785
221 220 8/8/2011 3 0 8 1 1 0.765 0.703283 0.592083 0.192175 846 3480 4326
222 221 8/9/2011 3 0 8 2 1 0.775 0.724121 0.570417 0.151121 907 3695 4602
223 222 8/10/2011 3 0 8 3 1 0.766667 0.684983 0.424167 0.200258 884 3896 4780
224 223 8/11/2011 3 0 8 4 1 0.7175 0.651521 0.42375 0.164796 812 3980 4792
225 224 8/12/2011 3 0 8 5 1 0.708333 0.654042 0.415 0.125621 1051 3854 4905
226 225 8/13/2011 3 0 8 6 2 0.685833 0.645858 0.729583 0.211454 1504 2646 4150
227 226 8/14/2011 3 0 8 0 2 0.676667 0.624388 0.8175 0.222633 1338 2482 3820
228 227 8/15/2011 3 0 8 1 1 0.665833 0.616167 0.712083 0.208954 775 3563 4338
229 228 8/16/2011 3 0 8 2 1 0.700833 0.645837 0.578333 0.236329 721 4004 4725
230 229 8/17/2011 3 0 8 3 1 0.723333 0.666671 0.575417 0.143667 668 4026 4694
231 230 8/18/2011 3 0 8 4 1 0.711667 0.662258 0.654583 0.233208 639 3166 3805
232 231 8/19/2011 3 0 8 5 2 0.685 0.633221 0.722917 0.139308 797 3356 4153
233 232 8/20/2011 3 0 8 6 1 0.6975 0.648996 0.674167 0.104467 1914 3277 5191
234 233 8/21/2011 3 0 8 0 1 0.710833 0.675525 0.77 0.248754 1249 2624 3873
235 234 8/22/2011 3 0 8 1 1 0.691667 0.638254 0.47 0.27675 833 3925 4758
236 235 8/23/2011 3 0 8 2 1 0.640833 0.606067 0.455417 0.146763 1281 4614 5895
237 236 8/24/2011 3 0 8 3 1 0.673333 0.630692 0.605 0.253108 949 4181 5130
238 237 8/25/2011 3 0 8 4 2 0.684167 0.645854 0.771667 0.210833 435 3107 3542
239 238 8/26/2011 3 0 8 5 1 0.7 0.659733 0.76125 0.0839625 768 3893 4661
240 239 8/27/2011 3 0 8 6 2 0.68 0.635556 0.85 0.375617 226 889 1115
241 240 8/28/2011 3 0 8 0 1 0.707059 0.647959 0.561765 0.304659 1415 2919 4334
242 241 8/29/2011 3 0 8 1 1 0.636667 0.607958 0.554583 0.159825 729 3905 4634
243 242 8/30/2011 3 0 8 2 1 0.639167 0.594704 0.548333 0.125008 775 4429 5204
244 243 8/31/2011 3 0 8 3 1 0.656667 0.611121 0.597917 0.0833333 688 4370 5058
245 244 9/1/2011 3 0 9 4 1 0.655 0.614921 0.639167 0.141796 783 4332 5115
246 245 9/2/2011 3 0 9 5 2 0.643333 0.604808 0.727083 0.139929 875 3852 4727
247 246 9/3/2011 3 0 9 6 1 0.669167 0.633213 0.716667 0.185325 1935 2549 4484
248 247 9/4/2011 3 0 9 0 1 0.709167 0.665429 0.742083 0.206467 2521 2419 4940
249 248 9/5/2011 3 0 9 1 2 0.673333 0.625646 0.790417 0.212696 1236 2115 3351
250 249 9/6/2011 3 0 9 2 3 0.54 0.5152 0.886957 0.343943 204 2506 2710
251 250 9/7/2011 3 0 9 3 3 0.599167 0.544229 0.917083 0.0970208 118 1878 1996
252 251 9/8/2011 3 0 9 4 3 0.633913 0.555361 0.939565 0.192748 153 1689 1842
253 252 9/9/2011 3 0 9 5 2 0.65 0.578946 0.897917 0.124379 417 3127 3544
254 253 9/10/2011 3 0 9 6 1 0.66 0.607962 0.75375 0.153608 1750 3595 5345
255 254 9/11/2011 3 0 9 0 1 0.653333 0.609229 0.71375 0.115054 1633 3413 5046
256 255 9/12/2011 3 0 9 1 1 0.644348 0.60213 0.692174 0.088913 690 4023 4713
257 256 9/13/2011 3 0 9 2 1 0.650833 0.603554 0.7125 0.141804 701 4062 4763
258 257 9/14/2011 3 0 9 3 1 0.673333 0.6269 0.697083 0.1673 647 4138 4785
259 258 9/15/2011 3 0 9 4 2 0.5775 0.553671 0.709167 0.271146 428 3231 3659
260 259 9/16/2011 3 0 9 5 2 0.469167 0.461475 0.590417 0.164183 742 4018 4760
261 260 9/17/2011 3 0 9 6 2 0.491667 0.478512 0.718333 0.189675 1434 3077 4511
262 261 9/18/2011 3 0 9 0 1 0.5075 0.490537 0.695 0.178483 1353 2921 4274
263 262 9/19/2011 3 0 9 1 2 0.549167 0.529675 0.69 0.151742 691 3848 4539
264 263 9/20/2011 3 0 9 2 2 0.561667 0.532217 0.88125 0.134954 438 3203 3641
265 264 9/21/2011 3 0 9 3 2 0.595 0.550533 0.9 0.0964042 539 3813 4352
266 265 9/22/2011 3 0 9 4 2 0.628333 0.554963 0.902083 0.128125 555 4240 4795
267 266 9/23/2011 4 0 9 5 2 0.609167 0.522125 0.9725 0.0783667 258 2137 2395
268 267 9/24/2011 4 0 9 6 2 0.606667 0.564412 0.8625 0.0783833 1776 3647 5423
269 268 9/25/2011 4 0 9 0 2 0.634167 0.572637 0.845 0.0503792 1544 3466 5010
270 269 9/26/2011 4 0 9 1 2 0.649167 0.589042 0.848333 0.1107 684 3946 4630
271 270 9/27/2011 4 0 9 2 2 0.636667 0.574525 0.885417 0.118171 477 3643 4120
272 271 9/28/2011 4 0 9 3 2 0.635 0.575158 0.84875 0.148629 480 3427 3907
273 272 9/29/2011 4 0 9 4 1 0.616667 0.574512 0.699167 0.172883 653 4186 4839
274 273 9/30/2011 4 0 9 5 1 0.564167 0.544829 0.6475 0.206475 830 4372 5202
275 274 10/1/2011 4 0 10 6 2 0.41 0.412863 0.75375 0.292296 480 1949 2429
276 275 10/2/2011 4 0 10 0 2 0.356667 0.345317 0.791667 0.222013 616 2302 2918
277 276 10/3/2011 4 0 10 1 2 0.384167 0.392046 0.760833 0.0833458 330 3240 3570
278 277 10/4/2011 4 0 10 2 1 0.484167 0.472858 0.71 0.205854 486 3970 4456
279 278 10/5/2011 4 0 10 3 1 0.538333 0.527138 0.647917 0.17725 559 4267 4826
280 279 10/6/2011 4 0 10 4 1 0.494167 0.480425 0.620833 0.134954 639 4126 4765
281 280 10/7/2011 4 0 10 5 1 0.510833 0.504404 0.684167 0.0223917 949 4036 4985
282 281 10/8/2011 4 0 10 6 1 0.521667 0.513242 0.70125 0.0454042 2235 3174 5409
283 282 10/9/2011 4 0 10 0 1 0.540833 0.523983 0.7275 0.06345 2397 3114 5511
284 283 10/10/2011 4 0 10 1 1 0.570833 0.542925 0.73375 0.0423042 1514 3603 5117
285 284 10/11/2011 4 0 10 2 2 0.566667 0.546096 0.80875 0.143042 667 3896 4563
286 285 10/12/2011 4 0 10 3 3 0.543333 0.517717 0.90625 0.24815 217 2199 2416
287 286 10/13/2011 4 0 10 4 2 0.589167 0.551804 0.896667 0.141787 290 2623 2913
288 287 10/14/2011 4 0 10 5 2 0.550833 0.529675 0.71625 0.223883 529 3115 3644
289 288 10/15/2011 4 0 10 6 1 0.506667 0.498725 0.483333 0.258083 1899 3318 5217
290 289 10/16/2011 4 0 10 0 1 0.511667 0.503154 0.486667 0.281717 1748 3293 5041
291 290 10/17/2011 4 0 10 1 1 0.534167 0.510725 0.579583 0.175379 713 3857 4570
292 291 10/18/2011 4 0 10 2 2 0.5325 0.522721 0.701667 0.110087 637 4111 4748
293 292 10/19/2011 4 0 10 3 3 0.541739 0.513848 0.895217 0.243339 254 2170 2424
294 293 10/20/2011 4 0 10 4 1 0.475833 0.466525 0.63625 0.422275 471 3724 4195
295 294 10/21/2011 4 0 10 5 1 0.4275 0.423596 0.574167 0.221396 676 3628 4304
296 295 10/22/2011 4 0 10 6 1 0.4225 0.425492 0.629167 0.0926667 1499 2809 4308
297 296 10/23/2011 4 0 10 0 1 0.421667 0.422333 0.74125 0.0995125 1619 2762 4381
298 297 10/24/2011 4 0 10 1 1 0.463333 0.457067 0.772083 0.118792 699 3488 4187
299 298 10/25/2011 4 0 10 2 1 0.471667 0.463375 0.622917 0.166658 695 3992 4687
300 299 10/26/2011 4 0 10 3 2 0.484167 0.472846 0.720417 0.148642 404 3490 3894
301 300 10/27/2011 4 0 10 4 2 0.47 0.457046 0.812917 0.197763 240 2419 2659
302 301 10/28/2011 4 0 10 5 2 0.330833 0.318812 0.585833 0.229479 456 3291 3747
303 302 10/29/2011 4 0 10 6 3 0.254167 0.227913 0.8825 0.351371 57 570 627
304 303 10/30/2011 4 0 10 0 1 0.319167 0.321329 0.62375 0.176617 885 2446 3331
305 304 10/31/2011 4 0 10 1 1 0.34 0.356063 0.703333 0.10635 362 3307 3669
306 305 11/1/2011 4 0 11 2 1 0.400833 0.397088 0.68375 0.135571 410 3658 4068
307 306 11/2/2011 4 0 11 3 1 0.3775 0.390133 0.71875 0.0820917 370 3816 4186
308 307 11/3/2011 4 0 11 4 1 0.408333 0.405921 0.702083 0.136817 318 3656 3974
309 308 11/4/2011 4 0 11 5 2 0.403333 0.403392 0.6225 0.271779 470 3576 4046
310 309 11/5/2011 4 0 11 6 1 0.326667 0.323854 0.519167 0.189062 1156 2770 3926
311 310 11/6/2011 4 0 11 0 1 0.348333 0.362358 0.734583 0.0920542 952 2697 3649
312 311 11/7/2011 4 0 11 1 1 0.395 0.400871 0.75875 0.057225 373 3662 4035
313 312 11/8/2011 4 0 11 2 1 0.408333 0.412246 0.721667 0.0690375 376 3829 4205
314 313 11/9/2011 4 0 11 3 1 0.4 0.409079 0.758333 0.0621958 305 3804 4109
315 314 11/10/2011 4 0 11 4 2 0.38 0.373721 0.813333 0.189067 190 2743 2933
316 315 11/11/2011 4 0 11 5 1 0.324167 0.306817 0.44625 0.314675 440 2928 3368
317 316 11/12/2011 4 0 11 6 1 0.356667 0.357942 0.552917 0.212062 1275 2792 4067
318 317 11/13/2011 4 0 11 0 1 0.440833 0.43055 0.458333 0.281721 1004 2713 3717
319 318 11/14/2011 4 0 11 1 1 0.53 0.524612 0.587083 0.306596 595 3891 4486
320 319 11/15/2011 4 0 11 2 2 0.53 0.507579 0.68875 0.199633 449 3746 4195
321 320 11/16/2011 4 0 11 3 3 0.456667 0.451988 0.93 0.136829 145 1672 1817
322 321 11/17/2011 4 0 11 4 2 0.341667 0.323221 0.575833 0.305362 139 2914 3053
323 322 11/18/2011 4 0 11 5 1 0.274167 0.272721 0.41 0.168533 245 3147 3392
324 323 11/19/2011 4 0 11 6 1 0.329167 0.324483 0.502083 0.224496 943 2720 3663
325 324 11/20/2011 4 0 11 0 2 0.463333 0.457058 0.684583 0.18595 787 2733 3520
326 325 11/21/2011 4 0 11 1 3 0.4475 0.445062 0.91 0.138054 220 2545 2765
327 326 11/22/2011 4 0 11 2 3 0.416667 0.421696 0.9625 0.118792 69 1538 1607
328 327 11/23/2011 4 0 11 3 2 0.440833 0.430537 0.757917 0.335825 112 2454 2566
329 328 11/24/2011 4 0 11 4 1 0.373333 0.372471 0.549167 0.167304 560 935 1495
330 329 11/25/2011 4 0 11 5 1 0.375 0.380671 0.64375 0.0988958 1095 1697 2792
331 330 11/26/2011 4 0 11 6 1 0.375833 0.385087 0.681667 0.0684208 1249 1819 3068
332 331 11/27/2011 4 0 11 0 1 0.459167 0.4558 0.698333 0.208954 810 2261 3071
333 332 11/28/2011 4 0 11 1 1 0.503478 0.490122 0.743043 0.142122 253 3614 3867
334 333 11/29/2011 4 0 11 2 2 0.458333 0.451375 0.830833 0.258092 96 2818 2914
335 334 11/30/2011 4 0 11 3 1 0.325 0.311221 0.613333 0.271158 188 3425 3613
336 335 12/1/2011 4 0 12 4 1 0.3125 0.305554 0.524583 0.220158 182 3545 3727
337 336 12/2/2011 4 0 12 5 1 0.314167 0.331433 0.625833 0.100754 268 3672 3940
338 337 12/3/2011 4 0 12 6 1 0.299167 0.310604 0.612917 0.0957833 706 2908 3614
339 338 12/4/2011 4 0 12 0 1 0.330833 0.3491 0.775833 0.0839583 634 2851 3485
340 339 12/5/2011 4 0 12 1 2 0.385833 0.393925 0.827083 0.0622083 233 3578 3811
341 340 12/6/2011 4 0 12 2 3 0.4625 0.4564 0.949583 0.232583 126 2468 2594
342 341 12/7/2011 4 0 12 3 3 0.41 0.400246 0.970417 0.266175 50 655 705
343 342 12/8/2011 4 0 12 4 1 0.265833 0.256938 0.58 0.240058 150 3172 3322
344 343 12/9/2011 4 0 12 5 1 0.290833 0.317542 0.695833 0.0827167 261 3359 3620
345 344 12/10/2011 4 0 12 6 1 0.275 0.266412 0.5075 0.233221 502 2688 3190
346 345 12/11/2011 4 0 12 0 1 0.220833 0.253154 0.49 0.0665417 377 2366 2743
347 346 12/12/2011 4 0 12 1 1 0.238333 0.270196 0.670833 0.06345 143 3167 3310
348 347 12/13/2011 4 0 12 2 1 0.2825 0.301138 0.59 0.14055 155 3368 3523
349 348 12/14/2011 4 0 12 3 2 0.3175 0.338362 0.66375 0.0609583 178 3562 3740
350 349 12/15/2011 4 0 12 4 2 0.4225 0.412237 0.634167 0.268042 181 3528 3709
351 350 12/16/2011 4 0 12 5 2 0.375 0.359825 0.500417 0.260575 178 3399 3577
352 351 12/17/2011 4 0 12 6 2 0.258333 0.249371 0.560833 0.243167 275 2464 2739
353 352 12/18/2011 4 0 12 0 1 0.238333 0.245579 0.58625 0.169779 220 2211 2431
354 353 12/19/2011 4 0 12 1 1 0.276667 0.280933 0.6375 0.172896 260 3143 3403
355 354 12/20/2011 4 0 12 2 2 0.385833 0.396454 0.595417 0.0615708 216 3534 3750
356 355 12/21/2011 1 0 12 3 2 0.428333 0.428017 0.858333 0.2214 107 2553 2660
357 356 12/22/2011 1 0 12 4 2 0.423333 0.426121 0.7575 0.047275 227 2841 3068
358 357 12/23/2011 1 0 12 5 1 0.373333 0.377513 0.68625 0.274246 163 2046 2209
359 358 12/24/2011 1 0 12 6 1 0.3025 0.299242 0.5425 0.190304 155 856 1011
360 359 12/25/2011 1 0 12 0 1 0.274783 0.279961 0.681304 0.155091 303 451 754
361 360 12/26/2011 1 0 12 1 1 0.321739 0.315535 0.506957 0.239465 430 887 1317
362 361 12/27/2011 1 0 12 2 2 0.325 0.327633 0.7625 0.18845 103 1059 1162
363 362 12/28/2011 1 0 12 3 1 0.29913 0.279974 0.503913 0.293961 255 2047 2302
364 363 12/29/2011 1 0 12 4 1 0.248333 0.263892 0.574167 0.119412 254 2169 2423
365 364 12/30/2011 1 0 12 5 1 0.311667 0.318812 0.636667 0.134337 491 2508 2999
366 365 12/31/2011 1 0 12 6 1 0.41 0.414121 0.615833 0.220154 665 1820 2485
367 366 1/1/2012 1 1 1 0 1 0.37 0.375621 0.6925 0.192167 686 1608 2294
368 367 1/2/2012 1 1 1 1 1 0.273043 0.252304 0.381304 0.329665 244 1707 1951
369 368 1/3/2012 1 1 1 2 1 0.15 0.126275 0.44125 0.365671 89 2147 2236
370 369 1/4/2012 1 1 1 3 2 0.1075 0.119337 0.414583 0.1847 95 2273 2368
371 370 1/5/2012 1 1 1 4 1 0.265833 0.278412 0.524167 0.129987 140 3132 3272
372 371 1/6/2012 1 1 1 5 1 0.334167 0.340267 0.542083 0.167908 307 3791 4098
373 372 1/7/2012 1 1 1 6 1 0.393333 0.390779 0.531667 0.174758 1070 3451 4521
374 373 1/8/2012 1 1 1 0 1 0.3375 0.340258 0.465 0.191542 599 2826 3425
375 374 1/9/2012 1 1 1 1 2 0.224167 0.247479 0.701667 0.0989 106 2270 2376
376 375 1/10/2012 1 1 1 2 1 0.308696 0.318826 0.646522 0.187552 173 3425 3598
377 376 1/11/2012 1 1 1 3 2 0.274167 0.282821 0.8475 0.131221 92 2085 2177
378 377 1/12/2012 1 1 1 4 2 0.3825 0.381938 0.802917 0.180967 269 3828 4097
379 378 1/13/2012 1 1 1 5 1 0.274167 0.249362 0.5075 0.378108 174 3040 3214
380 379 1/14/2012 1 1 1 6 1 0.18 0.183087 0.4575 0.187183 333 2160 2493
381 380 1/15/2012 1 1 1 0 1 0.166667 0.161625 0.419167 0.251258 284 2027 2311
382 381 1/16/2012 1 1 1 1 1 0.19 0.190663 0.5225 0.231358 217 2081 2298
383 382 1/17/2012 1 1 1 2 2 0.373043 0.364278 0.716087 0.34913 127 2808 2935
384 383 1/18/2012 1 1 1 3 1 0.303333 0.275254 0.443333 0.415429 109 3267 3376
385 384 1/19/2012 1 1 1 4 1 0.19 0.190038 0.4975 0.220158 130 3162 3292
386 385 1/20/2012 1 1 1 5 2 0.2175 0.220958 0.45 0.20275 115 3048 3163
387 386 1/21/2012 1 1 1 6 2 0.173333 0.174875 0.83125 0.222642 67 1234 1301
388 387 1/22/2012 1 1 1 0 2 0.1625 0.16225 0.79625 0.199638 196 1781 1977
389 388 1/23/2012 1 1 1 1 2 0.218333 0.243058 0.91125 0.110708 145 2287 2432
390 389 1/24/2012 1 1 1 2 1 0.3425 0.349108 0.835833 0.123767 439 3900 4339
391 390 1/25/2012 1 1 1 3 1 0.294167 0.294821 0.64375 0.161071 467 3803 4270
392 391 1/26/2012 1 1 1 4 2 0.341667 0.35605 0.769583 0.0733958 244 3831 4075
393 392 1/27/2012 1 1 1 5 2 0.425 0.415383 0.74125 0.342667 269 3187 3456
394 393 1/28/2012 1 1 1 6 1 0.315833 0.326379 0.543333 0.210829 775 3248 4023
395 394 1/29/2012 1 1 1 0 1 0.2825 0.272721 0.31125 0.24005 558 2685 3243
396 395 1/30/2012 1 1 1 1 1 0.269167 0.262625 0.400833 0.215792 126 3498 3624
397 396 1/31/2012 1 1 1 2 1 0.39 0.381317 0.416667 0.261817 324 4185 4509
398 397 2/1/2012 1 1 2 3 1 0.469167 0.466538 0.507917 0.189067 304 4275 4579
399 398 2/2/2012 1 1 2 4 2 0.399167 0.398971 0.672917 0.187187 190 3571 3761
400 399 2/3/2012 1 1 2 5 1 0.313333 0.309346 0.526667 0.178496 310 3841 4151
401 400 2/4/2012 1 1 2 6 2 0.264167 0.272725 0.779583 0.121896 384 2448 2832
402 401 2/5/2012 1 1 2 0 2 0.265833 0.264521 0.687917 0.175996 318 2629 2947
403 402 2/6/2012 1 1 2 1 1 0.282609 0.296426 0.622174 0.1538 206 3578 3784
404 403 2/7/2012 1 1 2 2 1 0.354167 0.361104 0.49625 0.147379 199 4176 4375
405 404 2/8/2012 1 1 2 3 2 0.256667 0.266421 0.722917 0.133721 109 2693 2802
406 405 2/9/2012 1 1 2 4 1 0.265 0.261988 0.562083 0.194037 163 3667 3830
407 406 2/10/2012 1 1 2 5 2 0.280833 0.293558 0.54 0.116929 227 3604 3831
408 407 2/11/2012 1 1 2 6 3 0.224167 0.210867 0.73125 0.289796 192 1977 2169
409 408 2/12/2012 1 1 2 0 1 0.1275 0.101658 0.464583 0.409212 73 1456 1529
410 409 2/13/2012 1 1 2 1 1 0.2225 0.227913 0.41125 0.167283 94 3328 3422
411 410 2/14/2012 1 1 2 2 2 0.319167 0.333946 0.50875 0.141179 135 3787 3922
412 411 2/15/2012 1 1 2 3 1 0.348333 0.351629 0.53125 0.1816 141 4028 4169
413 412 2/16/2012 1 1 2 4 2 0.316667 0.330162 0.752917 0.091425 74 2931 3005
414 413 2/17/2012 1 1 2 5 1 0.343333 0.351629 0.634583 0.205846 349 3805 4154
415 414 2/18/2012 1 1 2 6 1 0.346667 0.355425 0.534583 0.190929 1435 2883 4318
416 415 2/19/2012 1 1 2 0 2 0.28 0.265788 0.515833 0.253112 618 2071 2689
417 416 2/20/2012 1 1 2 1 1 0.28 0.273391 0.507826 0.229083 502 2627 3129
418 417 2/21/2012 1 1 2 2 1 0.287826 0.295113 0.594348 0.205717 163 3614 3777
419 418 2/22/2012 1 1 2 3 1 0.395833 0.392667 0.567917 0.234471 394 4379 4773
420 419 2/23/2012 1 1 2 4 1 0.454167 0.444446 0.554583 0.190913 516 4546 5062
421 420 2/24/2012 1 1 2 5 2 0.4075 0.410971 0.7375 0.237567 246 3241 3487
422 421 2/25/2012 1 1 2 6 1 0.290833 0.255675 0.395833 0.421642 317 2415 2732
423 422 2/26/2012 1 1 2 0 1 0.279167 0.268308 0.41 0.205229 515 2874 3389
424 423 2/27/2012 1 1 2 1 1 0.366667 0.357954 0.490833 0.268033 253 4069 4322
425 424 2/28/2012 1 1 2 2 1 0.359167 0.353525 0.395833 0.193417 229 4134 4363
426 425 2/29/2012 1 1 2 3 2 0.344348 0.34847 0.804783 0.179117 65 1769 1834
427 426 3/1/2012 1 1 3 4 1 0.485833 0.475371 0.615417 0.226987 325 4665 4990
428 427 3/2/2012 1 1 3 5 2 0.353333 0.359842 0.657083 0.144904 246 2948 3194
429 428 3/3/2012 1 1 3 6 2 0.414167 0.413492 0.62125 0.161079 956 3110 4066
430 429 3/4/2012 1 1 3 0 1 0.325833 0.303021 0.403333 0.334571 710 2713 3423
431 430 3/5/2012 1 1 3 1 1 0.243333 0.241171 0.50625 0.228858 203 3130 3333
432 431 3/6/2012 1 1 3 2 1 0.258333 0.255042 0.456667 0.200875 221 3735 3956
433 432 3/7/2012 1 1 3 3 1 0.404167 0.3851 0.513333 0.345779 432 4484 4916
434 433 3/8/2012 1 1 3 4 1 0.5275 0.524604 0.5675 0.441563 486 4896 5382
435 434 3/9/2012 1 1 3 5 2 0.410833 0.397083 0.407083 0.4148 447 4122 4569
436 435 3/10/2012 1 1 3 6 1 0.2875 0.277767 0.350417 0.22575 968 3150 4118
437 436 3/11/2012 1 1 3 0 1 0.361739 0.35967 0.476957 0.222587 1658 3253 4911
438 437 3/12/2012 1 1 3 1 1 0.466667 0.459592 0.489167 0.207713 838 4460 5298
439 438 3/13/2012 1 1 3 2 1 0.565 0.542929 0.6175 0.23695 762 5085 5847
440 439 3/14/2012 1 1 3 3 1 0.5725 0.548617 0.507083 0.115062 997 5315 6312
441 440 3/15/2012 1 1 3 4 1 0.5575 0.532825 0.579583 0.149883 1005 5187 6192
442 441 3/16/2012 1 1 3 5 2 0.435833 0.436229 0.842083 0.113192 548 3830 4378
443 442 3/17/2012 1 1 3 6 2 0.514167 0.505046 0.755833 0.110704 3155 4681 7836
444 443 3/18/2012 1 1 3 0 2 0.4725 0.464 0.81 0.126883 2207 3685 5892
445 444 3/19/2012 1 1 3 1 1 0.545 0.532821 0.72875 0.162317 982 5171 6153
446 445 3/20/2012 1 1 3 2 1 0.560833 0.538533 0.807917 0.121271 1051 5042 6093
447 446 3/21/2012 2 1 3 3 2 0.531667 0.513258 0.82125 0.0895583 1122 5108 6230
448 447 3/22/2012 2 1 3 4 1 0.554167 0.531567 0.83125 0.117562 1334 5537 6871
449 448 3/23/2012 2 1 3 5 2 0.601667 0.570067 0.694167 0.1163 2469 5893 8362
450 449 3/24/2012 2 1 3 6 2 0.5025 0.486733 0.885417 0.192783 1033 2339 3372
451 450 3/25/2012 2 1 3 0 2 0.4375 0.437488 0.880833 0.220775 1532 3464 4996
452 451 3/26/2012 2 1 3 1 1 0.445833 0.43875 0.477917 0.386821 795 4763 5558
453 452 3/27/2012 2 1 3 2 1 0.323333 0.315654 0.29 0.187192 531 4571 5102
454 453 3/28/2012 2 1 3 3 1 0.484167 0.47095 0.48125 0.291671 674 5024 5698
455 454 3/29/2012 2 1 3 4 1 0.494167 0.482304 0.439167 0.31965 834 5299 6133
456 455 3/30/2012 2 1 3 5 2 0.37 0.375621 0.580833 0.138067 796 4663 5459
457 456 3/31/2012 2 1 3 6 2 0.424167 0.421708 0.738333 0.250617 2301 3934 6235
458 457 4/1/2012 2 1 4 0 2 0.425833 0.417287 0.67625 0.172267 2347 3694 6041
459 458 4/2/2012 2 1 4 1 1 0.433913 0.427513 0.504348 0.312139 1208 4728 5936
460 459 4/3/2012 2 1 4 2 1 0.466667 0.461483 0.396667 0.100133 1348 5424 6772
461 460 4/4/2012 2 1 4 3 1 0.541667 0.53345 0.469583 0.180975 1058 5378 6436
462 461 4/5/2012 2 1 4 4 1 0.435 0.431163 0.374167 0.219529 1192 5265 6457
463 462 4/6/2012 2 1 4 5 1 0.403333 0.390767 0.377083 0.300388 1807 4653 6460
464 463 4/7/2012 2 1 4 6 1 0.4375 0.426129 0.254167 0.274871 3252 3605 6857
465 464 4/8/2012 2 1 4 0 1 0.5 0.492425 0.275833 0.232596 2230 2939 5169
466 465 4/9/2012 2 1 4 1 1 0.489167 0.476638 0.3175 0.358196 905 4680 5585
467 466 4/10/2012 2 1 4 2 1 0.446667 0.436233 0.435 0.249375 819 5099 5918
468 467 4/11/2012 2 1 4 3 1 0.348696 0.337274 0.469565 0.295274 482 4380 4862
469 468 4/12/2012 2 1 4 4 1 0.3975 0.387604 0.46625 0.290429 663 4746 5409
470 469 4/13/2012 2 1 4 5 1 0.4425 0.431808 0.408333 0.155471 1252 5146 6398
471 470 4/14/2012 2 1 4 6 1 0.495 0.487996 0.502917 0.190917 2795 4665 7460
472 471 4/15/2012 2 1 4 0 1 0.606667 0.573875 0.507917 0.225129 2846 4286 7132
473 472 4/16/2012 2 1 4 1 1 0.664167 0.614925 0.561667 0.284829 1198 5172 6370
474 473 4/17/2012 2 1 4 2 1 0.608333 0.598487 0.390417 0.273629 989 5702 6691
475 474 4/18/2012 2 1 4 3 2 0.463333 0.457038 0.569167 0.167912 347 4020 4367
476 475 4/19/2012 2 1 4 4 1 0.498333 0.493046 0.6125 0.0659292 846 5719 6565
477 476 4/20/2012 2 1 4 5 1 0.526667 0.515775 0.694583 0.149871 1340 5950 7290
478 477 4/21/2012 2 1 4 6 1 0.57 0.542921 0.682917 0.283587 2541 4083 6624
479 478 4/22/2012 2 1 4 0 3 0.396667 0.389504 0.835417 0.344546 120 907 1027
480 479 4/23/2012 2 1 4 1 2 0.321667 0.301125 0.766667 0.303496 195 3019 3214
481 480 4/24/2012 2 1 4 2 1 0.413333 0.405283 0.454167 0.249383 518 5115 5633
482 481 4/25/2012 2 1 4 3 1 0.476667 0.470317 0.427917 0.118792 655 5541 6196
483 482 4/26/2012 2 1 4 4 2 0.498333 0.483583 0.756667 0.176625 475 4551 5026
484 483 4/27/2012 2 1 4 5 1 0.4575 0.452637 0.400833 0.347633 1014 5219 6233
485 484 4/28/2012 2 1 4 6 2 0.376667 0.377504 0.489583 0.129975 1120 3100 4220
486 485 4/29/2012 2 1 4 0 1 0.458333 0.450121 0.587083 0.116908 2229 4075 6304
487 486 4/30/2012 2 1 4 1 2 0.464167 0.457696 0.57 0.171638 665 4907 5572
488 487 5/1/2012 2 1 5 2 2 0.613333 0.577021 0.659583 0.156096 653 5087 5740
489 488 5/2/2012 2 1 5 3 1 0.564167 0.537896 0.797083 0.138058 667 5502 6169
490 489 5/3/2012 2 1 5 4 2 0.56 0.537242 0.768333 0.133696 764 5657 6421
491 490 5/4/2012 2 1 5 5 1 0.6275 0.590917 0.735417 0.162938 1069 5227 6296
492 491 5/5/2012 2 1 5 6 2 0.621667 0.584608 0.756667 0.152992 2496 4387 6883
493 492 5/6/2012 2 1 5 0 2 0.5625 0.546737 0.74 0.149879 2135 4224 6359
494 493 5/7/2012 2 1 5 1 2 0.5375 0.527142 0.664167 0.230721 1008 5265 6273
495 494 5/8/2012 2 1 5 2 2 0.581667 0.557471 0.685833 0.296029 738 4990 5728
496 495 5/9/2012 2 1 5 3 2 0.575 0.553025 0.744167 0.216412 620 4097 4717
497 496 5/10/2012 2 1 5 4 1 0.505833 0.491783 0.552083 0.314063 1026 5546 6572
498 497 5/11/2012 2 1 5 5 1 0.533333 0.520833 0.360417 0.236937 1319 5711 7030
499 498 5/12/2012 2 1 5 6 1 0.564167 0.544817 0.480417 0.123133 2622 4807 7429
500 499 5/13/2012 2 1 5 0 1 0.6125 0.585238 0.57625 0.225117 2172 3946 6118
501 500 5/14/2012 2 1 5 1 2 0.573333 0.5499 0.789583 0.212692 342 2501 2843
502 501 5/15/2012 2 1 5 2 2 0.611667 0.576404 0.794583 0.147392 625 4490 5115
503 502 5/16/2012 2 1 5 3 1 0.636667 0.595975 0.697917 0.122512 991 6433 7424
504 503 5/17/2012 2 1 5 4 1 0.593333 0.572613 0.52 0.229475 1242 6142 7384
505 504 5/18/2012 2 1 5 5 1 0.564167 0.551121 0.523333 0.136817 1521 6118 7639
506 505 5/19/2012 2 1 5 6 1 0.6 0.566908 0.45625 0.083975 3410 4884 8294
507 506 5/20/2012 2 1 5 0 1 0.620833 0.583967 0.530417 0.254367 2704 4425 7129
508 507 5/21/2012 2 1 5 1 2 0.598333 0.565667 0.81125 0.233204 630 3729 4359
509 508 5/22/2012 2 1 5 2 2 0.615 0.580825 0.765833 0.118167 819 5254 6073
510 509 5/23/2012 2 1 5 3 2 0.621667 0.584612 0.774583 0.102 766 4494 5260
511 510 5/24/2012 2 1 5 4 1 0.655 0.6067 0.716667 0.172896 1059 5711 6770
512 511 5/25/2012 2 1 5 5 1 0.68 0.627529 0.747083 0.14055 1417 5317 6734
513 512 5/26/2012 2 1 5 6 1 0.6925 0.642696 0.7325 0.198992 2855 3681 6536
514 513 5/27/2012 2 1 5 0 1 0.69 0.641425 0.697083 0.215171 3283 3308 6591
515 514 5/28/2012 2 1 5 1 1 0.7125 0.6793 0.67625 0.196521 2557 3486 6043
516 515 5/29/2012 2 1 5 2 1 0.7225 0.672992 0.684583 0.2954 880 4863 5743
517 516 5/30/2012 2 1 5 3 2 0.656667 0.611129 0.67 0.134329 745 6110 6855
518 517 5/31/2012 2 1 5 4 1 0.68 0.631329 0.492917 0.195279 1100 6238 7338
519 518 6/1/2012 2 1 6 5 2 0.654167 0.607962 0.755417 0.237563 533 3594 4127
520 519 6/2/2012 2 1 6 6 1 0.583333 0.566288 0.549167 0.186562 2795 5325 8120
521 520 6/3/2012 2 1 6 0 1 0.6025 0.575133 0.493333 0.184087 2494 5147 7641
522 521 6/4/2012 2 1 6 1 1 0.5975 0.578283 0.487083 0.284833 1071 5927 6998
523 522 6/5/2012 2 1 6 2 2 0.540833 0.525892 0.613333 0.209575 968 6033 7001
524 523 6/6/2012 2 1 6 3 1 0.554167 0.542292 0.61125 0.077125 1027 6028 7055
525 524 6/7/2012 2 1 6 4 1 0.6025 0.569442 0.567083 0.15735 1038 6456 7494
526 525 6/8/2012 2 1 6 5 1 0.649167 0.597862 0.467917 0.175383 1488 6248 7736
527 526 6/9/2012 2 1 6 6 1 0.710833 0.648367 0.437083 0.144287 2708 4790 7498
528 527 6/10/2012 2 1 6 0 1 0.726667 0.663517 0.538333 0.133721 2224 4374 6598
529 528 6/11/2012 2 1 6 1 2 0.720833 0.659721 0.587917 0.207713 1017 5647 6664
530 529 6/12/2012 2 1 6 2 2 0.653333 0.597875 0.833333 0.214546 477 4495 4972
531 530 6/13/2012 2 1 6 3 1 0.655833 0.611117 0.582083 0.343279 1173 6248 7421
532 531 6/14/2012 2 1 6 4 1 0.648333 0.624383 0.569583 0.253733 1180 6183 7363
533 532 6/15/2012 2 1 6 5 1 0.639167 0.599754 0.589583 0.176617 1563 6102 7665
534 533 6/16/2012 2 1 6 6 1 0.631667 0.594708 0.504167 0.166667 2963 4739 7702
535 534 6/17/2012 2 1 6 0 1 0.5925 0.571975 0.59875 0.144904 2634 4344 6978
536 535 6/18/2012 2 1 6 1 2 0.568333 0.544842 0.777917 0.174746 653 4446 5099
537 536 6/19/2012 2 1 6 2 1 0.688333 0.654692 0.69 0.148017 968 5857 6825
538 537 6/20/2012 2 1 6 3 1 0.7825 0.720975 0.592083 0.113812 872 5339 6211
539 538 6/21/2012 3 1 6 4 1 0.805833 0.752542 0.567917 0.118787 778 5127 5905
540 539 6/22/2012 3 1 6 5 1 0.7775 0.724121 0.57375 0.182842 964 4859 5823
541 540 6/23/2012 3 1 6 6 1 0.731667 0.652792 0.534583 0.179721 2657 4801 7458
542 541 6/24/2012 3 1 6 0 1 0.743333 0.674254 0.479167 0.145525 2551 4340 6891
543 542 6/25/2012 3 1 6 1 1 0.715833 0.654042 0.504167 0.300383 1139 5640 6779
544 543 6/26/2012 3 1 6 2 1 0.630833 0.594704 0.373333 0.347642 1077 6365 7442
545 544 6/27/2012 3 1 6 3 1 0.6975 0.640792 0.36 0.271775 1077 6258 7335
546 545 6/28/2012 3 1 6 4 1 0.749167 0.675512 0.4225 0.17165 921 5958 6879
547 546 6/29/2012 3 1 6 5 1 0.834167 0.786613 0.48875 0.165417 829 4634 5463
548 547 6/30/2012 3 1 6 6 1 0.765 0.687508 0.60125 0.161071 1455 4232 5687
549 548 7/1/2012 3 1 7 0 1 0.815833 0.750629 0.51875 0.168529 1421 4110 5531
550 549 7/2/2012 3 1 7 1 1 0.781667 0.702038 0.447083 0.195267 904 5323 6227
551 550 7/3/2012 3 1 7 2 1 0.780833 0.70265 0.492083 0.126237 1052 5608 6660
552 551 7/4/2012 3 1 7 3 1 0.789167 0.732337 0.53875 0.13495 2562 4841 7403
553 552 7/5/2012 3 1 7 4 1 0.8275 0.761367 0.457917 0.194029 1405 4836 6241
554 553 7/6/2012 3 1 7 5 1 0.828333 0.752533 0.450833 0.146142 1366 4841 6207
555 554 7/7/2012 3 1 7 6 1 0.861667 0.804913 0.492083 0.163554 1448 3392 4840
556 555 7/8/2012 3 1 7 0 1 0.8225 0.790396 0.57375 0.125629 1203 3469 4672
557 556 7/9/2012 3 1 7 1 2 0.710833 0.654054 0.683333 0.180975 998 5571 6569
558 557 7/10/2012 3 1 7 2 2 0.720833 0.664796 0.6675 0.151737 954 5336 6290
559 558 7/11/2012 3 1 7 3 1 0.716667 0.650271 0.633333 0.151733 975 6289 7264
560 559 7/12/2012 3 1 7 4 1 0.715833 0.654683 0.529583 0.146775 1032 6414 7446
561 560 7/13/2012 3 1 7 5 2 0.731667 0.667933 0.485833 0.08085 1511 5988 7499
562 561 7/14/2012 3 1 7 6 2 0.703333 0.666042 0.699167 0.143679 2355 4614 6969
563 562 7/15/2012 3 1 7 0 1 0.745833 0.705196 0.717917 0.166667 1920 4111 6031
564 563 7/16/2012 3 1 7 1 1 0.763333 0.724125 0.645 0.164187 1088 5742 6830
565 564 7/17/2012 3 1 7 2 1 0.818333 0.755683 0.505833 0.114429 921 5865 6786
566 565 7/18/2012 3 1 7 3 1 0.793333 0.745583 0.577083 0.137442 799 4914 5713
567 566 7/19/2012 3 1 7 4 1 0.77 0.714642 0.600417 0.165429 888 5703 6591
568 567 7/20/2012 3 1 7 5 2 0.665833 0.613025 0.844167 0.208967 747 5123 5870
569 568 7/21/2012 3 1 7 6 3 0.595833 0.549912 0.865417 0.2133 1264 3195 4459
570 569 7/22/2012 3 1 7 0 2 0.6675 0.623125 0.7625 0.0939208 2544 4866 7410
571 570 7/23/2012 3 1 7 1 1 0.741667 0.690017 0.694167 0.138683 1135 5831 6966
572 571 7/24/2012 3 1 7 2 1 0.750833 0.70645 0.655 0.211454 1140 6452 7592
573 572 7/25/2012 3 1 7 3 1 0.724167 0.654054 0.45 0.1648 1383 6790 8173
574 573 7/26/2012 3 1 7 4 1 0.776667 0.739263 0.596667 0.284813 1036 5825 6861
575 574 7/27/2012 3 1 7 5 1 0.781667 0.734217 0.594583 0.152992 1259 5645 6904
576 575 7/28/2012 3 1 7 6 1 0.755833 0.697604 0.613333 0.15735 2234 4451 6685
577 576 7/29/2012 3 1 7 0 1 0.721667 0.667933 0.62375 0.170396 2153 4444 6597
578 577 7/30/2012 3 1 7 1 1 0.730833 0.684987 0.66875 0.153617 1040 6065 7105
579 578 7/31/2012 3 1 7 2 1 0.713333 0.662896 0.704167 0.165425 968 6248 7216
580 579 8/1/2012 3 1 8 3 1 0.7175 0.667308 0.6775 0.141179 1074 6506 7580
581 580 8/2/2012 3 1 8 4 1 0.7525 0.707088 0.659583 0.129354 983 6278 7261
582 581 8/3/2012 3 1 8 5 2 0.765833 0.722867 0.6425 0.215792 1328 5847 7175
583 582 8/4/2012 3 1 8 6 1 0.793333 0.751267 0.613333 0.257458 2345 4479 6824
584 583 8/5/2012 3 1 8 0 1 0.769167 0.731079 0.6525 0.290421 1707 3757 5464
585 584 8/6/2012 3 1 8 1 2 0.7525 0.710246 0.654167 0.129354 1233 5780 7013
586 585 8/7/2012 3 1 8 2 2 0.735833 0.697621 0.70375 0.116908 1278 5995 7273
587 586 8/8/2012 3 1 8 3 2 0.75 0.707717 0.672917 0.1107 1263 6271 7534
588 587 8/9/2012 3 1 8 4 1 0.755833 0.699508 0.620417 0.1561 1196 6090 7286
589 588 8/10/2012 3 1 8 5 2 0.715833 0.667942 0.715833 0.238813 1065 4721 5786
590 589 8/11/2012 3 1 8 6 2 0.6925 0.638267 0.732917 0.206479 2247 4052 6299
591 590 8/12/2012 3 1 8 0 1 0.700833 0.644579 0.530417 0.122512 2182 4362 6544
592 591 8/13/2012 3 1 8 1 1 0.720833 0.662254 0.545417 0.136212 1207 5676 6883
593 592 8/14/2012 3 1 8 2 1 0.726667 0.676779 0.686667 0.169158 1128 5656 6784
594 593 8/15/2012 3 1 8 3 1 0.706667 0.654037 0.619583 0.169771 1198 6149 7347
595 594 8/16/2012 3 1 8 4 1 0.719167 0.654688 0.519167 0.141796 1338 6267 7605
596 595 8/17/2012 3 1 8 5 1 0.723333 0.2424 0.570833 0.231354 1483 5665 7148
597 596 8/18/2012 3 1 8 6 1 0.678333 0.618071 0.603333 0.177867 2827 5038 7865
598 597 8/19/2012 3 1 8 0 2 0.635833 0.603554 0.711667 0.08645 1208 3341 4549
599 598 8/20/2012 3 1 8 1 2 0.635833 0.595967 0.734167 0.129979 1026 5504 6530
600 599 8/21/2012 3 1 8 2 1 0.649167 0.601025 0.67375 0.0727708 1081 5925 7006
601 600 8/22/2012 3 1 8 3 1 0.6675 0.621854 0.677083 0.0702833 1094 6281 7375
602 601 8/23/2012 3 1 8 4 1 0.695833 0.637008 0.635833 0.0845958 1363 6402 7765
603 602 8/24/2012 3 1 8 5 2 0.7025 0.6471 0.615 0.0721458 1325 6257 7582
604 603 8/25/2012 3 1 8 6 2 0.661667 0.618696 0.712917 0.244408 1829 4224 6053
605 604 8/26/2012 3 1 8 0 2 0.653333 0.595996 0.845833 0.228858 1483 3772 5255
606 605 8/27/2012 3 1 8 1 1 0.703333 0.654688 0.730417 0.128733 989 5928 6917
607 606 8/28/2012 3 1 8 2 1 0.728333 0.66605 0.62 0.190925 935 6105 7040
608 607 8/29/2012 3 1 8 3 1 0.685 0.635733 0.552083 0.112562 1177 6520 7697
609 608 8/30/2012 3 1 8 4 1 0.706667 0.652779 0.590417 0.0771167 1172 6541 7713
610 609 8/31/2012 3 1 8 5 1 0.764167 0.6894 0.5875 0.168533 1433 5917 7350
611 610 9/1/2012 3 1 9 6 2 0.753333 0.702654 0.638333 0.113187 2352 3788 6140
612 611 9/2/2012 3 1 9 0 2 0.696667 0.649 0.815 0.0640708 2613 3197 5810
613 612 9/3/2012 3 1 9 1 1 0.7075 0.661629 0.790833 0.151121 1965 4069 6034
614 613 9/4/2012 3 1 9 2 1 0.725833 0.686888 0.755 0.236321 867 5997 6864
615 614 9/5/2012 3 1 9 3 1 0.736667 0.708983 0.74125 0.187808 832 6280 7112
616 615 9/6/2012 3 1 9 4 2 0.696667 0.655329 0.810417 0.142421 611 5592 6203
617 616 9/7/2012 3 1 9 5 1 0.703333 0.657204 0.73625 0.171646 1045 6459 7504
618 617 9/8/2012 3 1 9 6 2 0.659167 0.611121 0.799167 0.281104 1557 4419 5976
619 618 9/9/2012 3 1 9 0 1 0.61 0.578925 0.5475 0.224496 2570 5657 8227
620 619 9/10/2012 3 1 9 1 1 0.583333 0.565654 0.50375 0.258713 1118 6407 7525
621 620 9/11/2012 3 1 9 2 1 0.5775 0.554292 0.52 0.0920542 1070 6697 7767
622 621 9/12/2012 3 1 9 3 1 0.599167 0.570075 0.577083 0.131846 1050 6820 7870
623 622 9/13/2012 3 1 9 4 1 0.6125 0.579558 0.637083 0.0827208 1054 6750 7804
624 623 9/14/2012 3 1 9 5 1 0.633333 0.594083 0.6725 0.103863 1379 6630 8009
625 624 9/15/2012 3 1 9 6 1 0.608333 0.585867 0.501667 0.247521 3160 5554 8714
626 625 9/16/2012 3 1 9 0 1 0.58 0.563125 0.57 0.0901833 2166 5167 7333
627 626 9/17/2012 3 1 9 1 2 0.580833 0.55305 0.734583 0.151742 1022 5847 6869
628 627 9/18/2012 3 1 9 2 2 0.623333 0.565067 0.8725 0.357587 371 3702 4073
629 628 9/19/2012 3 1 9 3 1 0.5525 0.540404 0.536667 0.215175 788 6803 7591
630 629 9/20/2012 3 1 9 4 1 0.546667 0.532192 0.618333 0.118167 939 6781 7720
631 630 9/21/2012 3 1 9 5 1 0.599167 0.571971 0.66875 0.154229 1250 6917 8167
632 631 9/22/2012 3 1 9 6 1 0.65 0.610488 0.646667 0.283583 2512 5883 8395
633 632 9/23/2012 4 1 9 0 1 0.529167 0.518933 0.467083 0.223258 2454 5453 7907
634 633 9/24/2012 4 1 9 1 1 0.514167 0.502513 0.492917 0.142404 1001 6435 7436
635 634 9/25/2012 4 1 9 2 1 0.55 0.544179 0.57 0.236321 845 6693 7538
636 635 9/26/2012 4 1 9 3 1 0.635 0.596613 0.630833 0.2444 787 6946 7733
637 636 9/27/2012 4 1 9 4 2 0.65 0.607975 0.690833 0.134342 751 6642 7393
638 637 9/28/2012 4 1 9 5 2 0.619167 0.585863 0.69 0.164179 1045 6370 7415
639 638 9/29/2012 4 1 9 6 1 0.5425 0.530296 0.542917 0.227604 2589 5966 8555
640 639 9/30/2012 4 1 9 0 1 0.526667 0.517663 0.583333 0.134958 2015 4874 6889
641 640 10/1/2012 4 1 10 1 2 0.520833 0.512 0.649167 0.0908042 763 6015 6778
642 641 10/2/2012 4 1 10 2 3 0.590833 0.542333 0.871667 0.104475 315 4324 4639
643 642 10/3/2012 4 1 10 3 2 0.6575 0.599133 0.79375 0.0665458 728 6844 7572
644 643 10/4/2012 4 1 10 4 2 0.6575 0.607975 0.722917 0.117546 891 6437 7328
645 644 10/5/2012 4 1 10 5 1 0.615 0.580187 0.6275 0.10635 1516 6640 8156
646 645 10/6/2012 4 1 10 6 1 0.554167 0.538521 0.664167 0.268025 3031 4934 7965
647 646 10/7/2012 4 1 10 0 2 0.415833 0.419813 0.708333 0.141162 781 2729 3510
648 647 10/8/2012 4 1 10 1 2 0.383333 0.387608 0.709583 0.189679 874 4604 5478
649 648 10/9/2012 4 1 10 2 2 0.446667 0.438112 0.761667 0.1903 601 5791 6392
650 649 10/10/2012 4 1 10 3 1 0.514167 0.503142 0.630833 0.187821 780 6911 7691
651 650 10/11/2012 4 1 10 4 1 0.435 0.431167 0.463333 0.181596 834 6736 7570
652 651 10/12/2012 4 1 10 5 1 0.4375 0.433071 0.539167 0.235092 1060 6222 7282
653 652 10/13/2012 4 1 10 6 1 0.393333 0.391396 0.494583 0.146142 2252 4857 7109
654 653 10/14/2012 4 1 10 0 1 0.521667 0.508204 0.640417 0.278612 2080 4559 6639
655 654 10/15/2012 4 1 10 1 2 0.561667 0.53915 0.7075 0.296037 760 5115 5875
656 655 10/16/2012 4 1 10 2 1 0.468333 0.460846 0.558333 0.182221 922 6612 7534
657 656 10/17/2012 4 1 10 3 1 0.455833 0.450108 0.692917 0.101371 979 6482 7461
658 657 10/18/2012 4 1 10 4 2 0.5225 0.512625 0.728333 0.236937 1008 6501 7509
659 658 10/19/2012 4 1 10 5 2 0.563333 0.537896 0.815 0.134954 753 4671 5424
660 659 10/20/2012 4 1 10 6 1 0.484167 0.472842 0.572917 0.117537 2806 5284 8090
661 660 10/21/2012 4 1 10 0 1 0.464167 0.456429 0.51 0.166054 2132 4692 6824
662 661 10/22/2012 4 1 10 1 1 0.4875 0.482942 0.568333 0.0814833 830 6228 7058
663 662 10/23/2012 4 1 10 2 1 0.544167 0.530304 0.641667 0.0945458 841 6625 7466
664 663 10/24/2012 4 1 10 3 1 0.5875 0.558721 0.63625 0.0727792 795 6898 7693
665 664 10/25/2012 4 1 10 4 2 0.55 0.529688 0.800417 0.124375 875 6484 7359
666 665 10/26/2012 4 1 10 5 2 0.545833 0.52275 0.807083 0.132467 1182 6262 7444
667 666 10/27/2012 4 1 10 6 2 0.53 0.515133 0.72 0.235692 2643 5209 7852
668 667 10/28/2012 4 1 10 0 2 0.4775 0.467771 0.694583 0.398008 998 3461 4459
669 668 10/29/2012 4 1 10 1 3 0.44 0.4394 0.88 0.3582 2 20 22
670 669 10/30/2012 4 1 10 2 2 0.318182 0.309909 0.825455 0.213009 87 1009 1096
671 670 10/31/2012 4 1 10 3 2 0.3575 0.3611 0.666667 0.166667 419 5147 5566
672 671 11/1/2012 4 1 11 4 2 0.365833 0.369942 0.581667 0.157346 466 5520 5986
673 672 11/2/2012 4 1 11 5 1 0.355 0.356042 0.522083 0.266175 618 5229 5847
674 673 11/3/2012 4 1 11 6 2 0.343333 0.323846 0.49125 0.270529 1029 4109 5138
675 674 11/4/2012 4 1 11 0 1 0.325833 0.329538 0.532917 0.179108 1201 3906 5107
676 675 11/5/2012 4 1 11 1 1 0.319167 0.308075 0.494167 0.236325 378 4881 5259
677 676 11/6/2012 4 1 11 2 1 0.280833 0.281567 0.567083 0.173513 466 5220 5686
678 677 11/7/2012 4 1 11 3 2 0.295833 0.274621 0.5475 0.304108 326 4709 5035
679 678 11/8/2012 4 1 11 4 1 0.352174 0.341891 0.333478 0.347835 340 4975 5315
680 679 11/9/2012 4 1 11 5 1 0.361667 0.355413 0.540833 0.214558 709 5283 5992
681 680 11/10/2012 4 1 11 6 1 0.389167 0.393937 0.645417 0.0578458 2090 4446 6536
682 681 11/11/2012 4 1 11 0 1 0.420833 0.421713 0.659167 0.1275 2290 4562 6852
683 682 11/12/2012 4 1 11 1 1 0.485 0.475383 0.741667 0.173517 1097 5172 6269
684 683 11/13/2012 4 1 11 2 2 0.343333 0.323225 0.662917 0.342046 327 3767 4094
685 684 11/14/2012 4 1 11 3 1 0.289167 0.281563 0.552083 0.199625 373 5122 5495
686 685 11/15/2012 4 1 11 4 2 0.321667 0.324492 0.620417 0.152987 320 5125 5445
687 686 11/16/2012 4 1 11 5 1 0.345 0.347204 0.524583 0.171025 484 5214 5698
688 687 11/17/2012 4 1 11 6 1 0.325 0.326383 0.545417 0.179729 1313 4316 5629
689 688 11/18/2012 4 1 11 0 1 0.3425 0.337746 0.692917 0.227612 922 3747 4669
690 689 11/19/2012 4 1 11 1 2 0.380833 0.375621 0.623333 0.235067 449 5050 5499
691 690 11/20/2012 4 1 11 2 2 0.374167 0.380667 0.685 0.082725 534 5100 5634
692 691 11/21/2012 4 1 11 3 1 0.353333 0.364892 0.61375 0.103246 615 4531 5146
693 692 11/22/2012 4 1 11 4 1 0.34 0.350371 0.580417 0.0528708 955 1470 2425
694 693 11/23/2012 4 1 11 5 1 0.368333 0.378779 0.56875 0.148021 1603 2307 3910
695 694 11/24/2012 4 1 11 6 1 0.278333 0.248742 0.404583 0.376871 532 1745 2277
696 695 11/25/2012 4 1 11 0 1 0.245833 0.257583 0.468333 0.1505 309 2115 2424
697 696 11/26/2012 4 1 11 1 1 0.313333 0.339004 0.535417 0.04665 337 4750 5087
698 697 11/27/2012 4 1 11 2 2 0.291667 0.281558 0.786667 0.237562 123 3836 3959
699 698 11/28/2012 4 1 11 3 1 0.296667 0.289762 0.50625 0.210821 198 5062 5260
700 699 11/29/2012 4 1 11 4 1 0.28087 0.298422 0.555652 0.115522 243 5080 5323
701 700 11/30/2012 4 1 11 5 1 0.298333 0.323867 0.649583 0.0584708 362 5306 5668
702 701 12/1/2012 4 1 12 6 2 0.298333 0.316904 0.806667 0.0597042 951 4240 5191
703 702 12/2/2012 4 1 12 0 2 0.3475 0.359208 0.823333 0.124379 892 3757 4649
704 703 12/3/2012 4 1 12 1 1 0.4525 0.455796 0.7675 0.0827208 555 5679 6234
705 704 12/4/2012 4 1 12 2 1 0.475833 0.469054 0.73375 0.174129 551 6055 6606
706 705 12/5/2012 4 1 12 3 1 0.438333 0.428012 0.485 0.324021 331 5398 5729
707 706 12/6/2012 4 1 12 4 1 0.255833 0.258204 0.50875 0.174754 340 5035 5375
708 707 12/7/2012 4 1 12 5 2 0.320833 0.321958 0.764167 0.1306 349 4659 5008
709 708 12/8/2012 4 1 12 6 2 0.381667 0.389508 0.91125 0.101379 1153 4429 5582
710 709 12/9/2012 4 1 12 0 2 0.384167 0.390146 0.905417 0.157975 441 2787 3228
711 710 12/10/2012 4 1 12 1 2 0.435833 0.435575 0.925 0.190308 329 4841 5170
712 711 12/11/2012 4 1 12 2 2 0.353333 0.338363 0.596667 0.296037 282 5219 5501
713 712 12/12/2012 4 1 12 3 2 0.2975 0.297338 0.538333 0.162937 310 5009 5319
714 713 12/13/2012 4 1 12 4 1 0.295833 0.294188 0.485833 0.174129 425 5107 5532
715 714 12/14/2012 4 1 12 5 1 0.281667 0.294192 0.642917 0.131229 429 5182 5611
716 715 12/15/2012 4 1 12 6 1 0.324167 0.338383 0.650417 0.10635 767 4280 5047
717 716 12/16/2012 4 1 12 0 2 0.3625 0.369938 0.83875 0.100742 538 3248 3786
718 717 12/17/2012 4 1 12 1 2 0.393333 0.4015 0.907083 0.0982583 212 4373 4585
719 718 12/18/2012 4 1 12 2 1 0.410833 0.409708 0.66625 0.221404 433 5124 5557
720 719 12/19/2012 4 1 12 3 1 0.3325 0.342162 0.625417 0.184092 333 4934 5267
721 720 12/20/2012 4 1 12 4 2 0.33 0.335217 0.667917 0.132463 314 3814 4128
722 721 12/21/2012 1 1 12 5 2 0.326667 0.301767 0.556667 0.374383 221 3402 3623
723 722 12/22/2012 1 1 12 6 1 0.265833 0.236113 0.44125 0.407346 205 1544 1749
724 723 12/23/2012 1 1 12 0 1 0.245833 0.259471 0.515417 0.133083 408 1379 1787
725 724 12/24/2012 1 1 12 1 2 0.231304 0.2589 0.791304 0.0772304 174 746 920
726 725 12/25/2012 1 1 12 2 2 0.291304 0.294465 0.734783 0.168726 440 573 1013
727 726 12/26/2012 1 1 12 3 3 0.243333 0.220333 0.823333 0.316546 9 432 441
728 727 12/27/2012 1 1 12 4 2 0.254167 0.226642 0.652917 0.350133 247 1867 2114
729 728 12/28/2012 1 1 12 5 2 0.253333 0.255046 0.59 0.155471 644 2451 3095
730 729 12/29/2012 1 1 12 6 2 0.253333 0.2424 0.752917 0.124383 159 1182 1341
731 730 12/30/2012 1 1 12 0 1 0.255833 0.2317 0.483333 0.350754 364 1432 1796
732 731 12/31/2012 1 1 12 1 2 0.215833 0.223487 0.5775 0.154846 439 2290 2729

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -37,7 +44,8 @@
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Testing the fitted model"
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
]
},
{
@@ -122,12 +130,22 @@
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# let's take note of what columns means what in the data\n",
"time_column_name = 'timeStamp'\n",
"target_column_name = 'demand'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the data to train and test\n",
"\n"
"### Split the data into train and test sets\n"
]
},
{
@@ -136,50 +154,10 @@
"metadata": {},
"outputs": [],
"source": [
"train = data[data['timeStamp'] < '2017-02-01']\n",
"test = data[data['timeStamp'] >= '2017-02-01']\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare the test data, we will feed X_test to the fitted model and get prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_test = test.pop('demand').values\n",
"X_test = test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the train data to train and valid\n",
"\n",
"Use one month's data as valid data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = train[train['timeStamp'] < '2017-01-01']\n",
"X_valid = train[train['timeStamp'] >= '2017-01-01']\n",
"y_train = X_train.pop('demand').values\n",
"y_valid = X_valid.pop('demand').values\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_valid.shape)\n",
"print(y_valid.shape)"
"X_train = data[data[time_column_name] < '2017-02-01']\n",
"X_test = data[data[time_column_name] >= '2017-02-01']\n",
"y_train = X_train.pop(target_column_name).values\n",
"y_test = X_test.pop(target_column_name).values"
]
},
{
@@ -197,9 +175,8 @@
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**X_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
@@ -209,9 +186,8 @@
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'timeStamp'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
" \"time_column_name\": time_column_name \n",
"}\n",
"\n",
"\n",
@@ -222,8 +198,7 @@
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" X_valid = X_valid,\n",
" y_valid = y_valid,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
@@ -233,7 +208,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
"Submitting the configuration will start a new run in this experiment. For local runs, the execution is synchronous. Depending on the data and number of iterations, this can run for a while. Parameters controlling concurrency may speed up the process, depending on your hardware.\n",
"\n",
"You will see the currently running iterations printing to the console."
]
},
@@ -273,13 +249,34 @@
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the time-series featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values."
"For forecasting, we will use the `forecast` function instead of the `predict` function. There are two reasons for this.\n",
"\n",
"We need to pass the recent values of the target variable `y`, whereas the scikit-compatible `predict` function only takes the non-target variables `X`. In our case, the test data immediately follows the training data, and we fill the `y` variable with `NaN`. The `NaN` serves as a question mark for the forecaster to fill with the actuals. Using the forecast function will produce forecasts using the shortest possible forecast horizon. The last time at which a definite (non-NaN) value is seen is the _forecast origin_ - the last time when the value of the target is known. \n",
"\n",
"Using the `predict` method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use."
]
},
{
@@ -288,15 +285,64 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"y_pred"
"# Replace ALL values in y_pred by NaN. \n",
"# The forecast origin will be at the beginning of the first forecast period\n",
"# (which is the same time as the end of the last training period).\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# limit the evaluation to data where y_test has actuals\n",
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n",
"df_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use the Check Data Function to remove the nan values from y_test to avoid error when calculate metrics "
"Looking at `X_trans` is also useful to see what featurization happened to the data."
]
},
{
@@ -305,29 +351,14 @@
"metadata": {},
"outputs": [],
"source": [
"if len(y_test) != len(y_pred):\n",
" raise ValueError(\n",
" 'the true values and prediction values do not have equal length.')\n",
"elif len(y_test) == 0:\n",
" raise ValueError(\n",
" 'y_true and y_pred are empty.')\n",
"\n",
"# if there is any non-numeric element in the y_true or y_pred,\n",
"# the ValueError exception will be thrown.\n",
"y_test_f = np.array(y_test).astype(float)\n",
"y_pred_f = np.array(y_pred).astype(float)\n",
"\n",
"# remove entries both in y_true and y_pred where at least\n",
"# one element in y_true or y_pred is missing\n",
"y_test = y_test_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]\n",
"y_pred = y_pred_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]"
"X_trans"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n"
"### Calculate accuracy metrics\n"
]
},
{
@@ -336,26 +367,180 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"# Explained variance score: 1 is perfect prediction\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('R2 score: %.2f' % r2_score(y_test, y_pred))\n",
"\n",
"\n",
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred, color='b')\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The distribution looks a little heavy tailed: we underestimate the excursions of the extremes. A normal-quantile transform of the target might help, but let's first try using some past data with the lags and rolling window transforms.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using lags and rolling window features to improve the forecast"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data.\n",
"\n",
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings_lags = {\n",
" 'time_column_name': time_column_name,\n",
" 'target_lags': 1,\n",
" 'target_rolling_window_size': 5,\n",
" # you MUST set the max_horizon when using lags and rolling windows\n",
" # it is optional when looking-back features are not used \n",
" 'max_horizon': len(y_test), # only one grain\n",
"}\n",
"\n",
"\n",
"automl_config_lags = AutoMLConfig(task = 'forecasting',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings_lags)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run_lags = experiment.submit(automl_config_lags, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run_lags, fitted_model_lags = local_run_lags.get_output()\n",
"y_fcst_lags, X_trans_lags = fitted_model_lags.forecast(X_test, y_query)\n",
"df_lags = align_outputs(y_fcst_lags, X_trans_lags, X_test, y_test)\n",
"df_lags.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_trans_lags"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Forecasting model with lags\")\n",
"rmse = np.sqrt(mean_squared_error(df_lags[target_column_name], df_lags['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_lags[target_column_name], df_lags['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_lags[target_column_name], df_lags['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_lags[target_column_name], df_lags['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What features matter for the forecast?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"# feature names are everything in the transformed data except the target\n",
"features = X_trans.columns[:-1]\n",
"expl = explain_model(fitted_model, X_train, X_test, features = features, best_run=best_run_lags, y_train = y_train)\n",
"# unpack the tuple\n",
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
"best_run_lags"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please go to the Azure Portal's best run to see the top features chart.\n",
"\n",
"The informative features make all sorts of intuitive sense. Temperature is a strong driver of heating and cooling demand in NYC. Apart from that, the daily life cycle, expressed by `hour`, and the weekly cycle, expressed by `wday` drives people's energy use habits."
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga"
"name": "xiaga, tosingli"
}
],
"kernelspec": {
@@ -373,7 +558,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.7"
}
},
"nbformat": 4,

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -20,7 +27,9 @@
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)"
"1. [Train](#Train)\n",
"1. [Predict](#Predict)\n",
"1. [Operationalize](#Operationalize)"
]
},
{
@@ -85,9 +94,9 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-ojsalesforecasting'\n",
"experiment_name = 'automl-ojforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-ojsalesforecasting'\n",
"project_folder = './sample_projects/automl-local-ojforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -260,12 +269,12 @@
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity'],\n",
" 'max_horizon': n_test_periods\n",
" 'max_horizon': n_test_periods # optional\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" primary_metric='normalized_mean_absolute_error',\n",
" iterations=10,\n",
" X=X_train,\n",
" y=y_train,\n",
@@ -293,15 +302,6 @@
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -324,7 +324,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make Predictions from the Best Fitted Model\n",
"# Predict\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
]
},
@@ -352,7 +352,7 @@
"source": [
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data. \n",
"\n",
"The target predictions can be retrieved by calling the `predict` method on the best model:"
"We will first create a query `y_query`, which is aligned index-for-index to `X_test`. This is a vector of target values where each `NaN` serves the function of the question mark to be replaced by forecast. Passing definite values in the `y` argument allows the `forecast` function to make predictions on data that does not immediately follow the train data which contains `y`. In each grain, the last time point where the model sees a definite value of `y` is that grain's _forecast origin_."
]
},
{
@@ -361,15 +361,76 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_pipeline.predict(X_test)"
"# Replace ALL values in y_pred by NaN.\n",
"# The forecast origin will be at the beginning of the first forecast period.\n",
"# (Which is the same time as the end of the last training period.)\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_pred, X_trans = fitted_pipeline.forecast(X_test, y_query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate evaluation metrics for the prediction\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE)."
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
"\n",
"The [energy demand forecasting notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) demonstrates the use of the forecast function in more detail in the context of using lags and rolling window features. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate\n",
"\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). \n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods in y\n",
" \"\"\"\n",
" \n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_pred, X_trans, X_test, y_test)"
]
},
{
@@ -388,18 +449,392 @@
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('MAPE: %.2f' % MAPE(y_test, y_pred))"
"# Plot outputs\n",
"import matplotlib.pyplot as plt\n",
"\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Operationalize"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Operationalization_ means getting the model into the cloud so that other can run it after you close the notebook. We will create a docker running on Azure Container Instances with the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML OJ forecaster'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"\n",
"print(local_run.model_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Develop the scoring script\n",
"\n",
"Serializing and deserializing complex data frames may be tricky. We first develop the `run()` function of the scoring script locally, then write it into a scoring script. It is much easier to debug any quirks of the scoring function without crossing two compute environments. For this exercise, we handle a common quirk of how pandas dataframes serialize time stamp values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this is where we test the run function of the scoring script interactively\n",
"# before putting it in the scoring script\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# test the run function here before putting in the scoring script\n",
"import json\n",
"\n",
"test_sample = json.dumps({'X': X_test.to_json(), 'y' : y_query.tolist()})\n",
"response = run(test_sample, fitted_pipeline)\n",
"\n",
"# unpack the response, dealing with the timestamp serialization again\n",
"res_dict = json.loads(response)\n",
"y_fcst_all = pd.read_json(res_dict['index'])\n",
"y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
"y_fcst_all['forecast'] = res_dict['forecast']\n",
"y_fcst_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that the function works locally in the notebook, let's write it down into the scoring script. The scoring script is authored by the data scientist. Adjust it to taste, adding inputs, outputs and processing as needed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score_fcast.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"import pandas as pd\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" # prepare to send over wire as json\n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the model\n",
"from azureml.train.automl.run import AutoMLRun\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)\n",
"best_iteration = int(str.split(best_run.id,'_')[-1]) # the iteration number is a postfix of the run ID."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the best model's dependencies and write them into this file\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_env_file_name = 'fcast_env.yml'\n",
"\n",
"dependencies = ml_run.get_run_sdk_dependencies(iteration = best_iteration)\n",
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this is the script file name we wrote a few cells above\n",
"script_file_name = 'score_fcast.py'\n",
"\n",
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', local_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Image for automl forecasting sample\")\n",
"\n",
"image = Image.create(name = \"automl-fcast-image\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 2, \n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Automl forecasting sample service\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-forecast-01'\n",
"print(aci_service_name)\n",
"\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Call the service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# we send the data to the service serialized into a json string\n",
"test_sample = json.dumps({'X':X_test.to_json(), 'y' : y_query.tolist()})\n",
"response = aci_service.run(input_data = test_sample)\n",
"\n",
"# translate from networkese to datascientese\n",
"try: \n",
" res_dict = json.loads(response)\n",
" y_fcst_all = pd.read_json(res_dict['index'])\n",
" y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
" y_fcst_all['forecast'] = res_dict['forecast'] \n",
"except:\n",
" print(res_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_fcst_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete the web service if desired"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"serv = Webservice(ws, 'automl-forecast-01')\n",
"# serv.delete() # don't do it accidentally"
]
}
],
"metadata": {
"authors": [
{
"name": "erwright"
"name": "erwright, tosingli"
}
],
"kernelspec": {
@@ -417,7 +852,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.7"
}
},
"nbformat": 4,

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -37,8 +44,9 @@
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model.\n",
"5. Explore the results.\n",
"3. Train the model.\n",
"4. Explore the results.\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
@@ -154,12 +162,11 @@
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
@@ -174,7 +181,6 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 20,\n",
" n_cross_validations = 5,\n",
" preprocess = True,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
@@ -318,6 +324,45 @@
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/model-explanation/auto-ml-model-explanation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -140,9 +147,9 @@
"|**max_time_sec**|Time limit in minutes for each iterations|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**model_explainability**|Indicate to explain each trained pipeline or not |\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. |"
]
@@ -254,7 +261,9 @@
"3.\toverall_summary: The model level feature importance values sorted in descending order\n",
"4.\toverall_imp: The feature names sorted in the same order as in overall_summary\n",
"5.\tper_class_summary: The class level feature importance values sorted in descending order. Only available for the classification case\n",
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case"
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case\n",
"\n",
"Note:- The **retrieve_model_explanation()** API only works in case AutoML has been configured with **'model_explainability'** flag set to **True**. "
]
},
{
@@ -305,7 +314,7 @@
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" explain_model(fitted_model, X_train, X_test)"
" explain_model(fitted_model, X_train, X_test, features=features)"
]
},
{

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -137,7 +144,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/remote-amlcompute/auto-ml-remote-amlcompute.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -129,7 +136,7 @@
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"amlcompute_cluster_name = \"cpu-cluster\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
@@ -138,30 +145,23 @@
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"\n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
"\n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
@@ -220,7 +220,7 @@
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
@@ -267,7 +267,7 @@
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 2,\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",

View File

@@ -1,515 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using attach**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML to handle text data with remote attach.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`\n",
"- Handling **text** data using the `preprocess` flag"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-attach'\n",
"project_folder = './sample_projects/automl-remote-attach'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Attach a Remote Linux DSVM\n",
"To use a remote Docker compute target:\n",
"1. Create a Linux DSVM in Azure, following these [quick instructions](https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/how-to-create-dsvm-hdi). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
"2. Enter the IP address, user name and password below.\n",
"\n",
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on changing SSH ports for security reasons."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
"import time\n",
"\n",
"# Add your VM information below\n",
"# If a compute with the specified compute_name already exists, it will be used and the dsvm_ip_addr, dsvm_ssh_port, \n",
"# dsvm_username and dsvm_password will be ignored.\n",
"compute_name = 'mydsvmb'\n",
"dsvm_ip_addr = '<<ip_addr>>'\n",
"dsvm_ssh_port = 22\n",
"dsvm_username = '<<username>>'\n",
"dsvm_password = '<<password>>'\n",
"\n",
"if compute_name in ws.compute_targets:\n",
" print('Using existing compute.')\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
"else:\n",
" attach_config = RemoteCompute.attach_configuration(address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
" ComputeTarget.attach(workspace=ws, name=compute_name, attach_configuration=attach_config)\n",
"\n",
" while ws.compute_targets[compute_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
"\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
" \n",
" if dsvm_compute.provisioning_state == 'Failed':\n",
" print('Attached failed.')\n",
" print(dsvm_compute.provisioning_errors)\n",
" dsvm_compute.detach()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns a [dictionary](README.md#getdata)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import numpy as np\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"def get_data():\n",
" remove = ('headers', 'footers', 'quotes')\n",
" categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
" data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
" X_train = np.array(data_train.data).reshape((len(data_train.data),1))\n",
" y_train = np.array(data_train.target)\n",
" \n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.\n",
"|**max_cores_per_iteration**|Indicates how many cores on the compute target would be used to train a single pipeline.<br>Default is *1*; you can set it to *-1* to use all cores.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 2\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"zero_run, zero_model = remote_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,583 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution with DataStore**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
"1. DataStore secures the access details.\n",
"2. DataStore supports read, write to blob and file store\n",
"3. AutoML natively supports copying data from DataStore to DSVM\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Storing data in DataStore.\n",
"2. get_data returning data from DataStore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-remote-datastore-file'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-remote-datastore-file'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
"\n",
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on this."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[compute_target_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(workspace=ws, name=compute_target_name)\n",
" print('found existing:', dsvm_compute.name)\n",
"except:\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size=\"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output=True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"### Copy data file to local\n",
"\n",
"Download the data file.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"import csv\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to the cloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The datastore is a convenient construct associated with your workspace for you to upload/download data, and interact with it from your remote compute targets. It is backed by Azure blob storage account.\n",
"\n",
"The data.tsv files are uploaded into a directory named data at the root of the datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#blob_datastore = Datastore(ws, blob_datastore_name)\n",
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ds.upload_files(\"data.tsv\")\n",
"ds.upload(src_dir='./data', target_path='data', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run\n",
"\n",
"First let's create a DataReferenceConfigruation object to inform the system what data folder to download to the compute target.\n",
"The path_on_compute should be an absolute path to ensure that the data files are downloaded only once. The get_data method should use this same path to access the data files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Get Data File\n",
"For remote executions you should author a get_data.py file containing a get_data() function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"\n",
"The *get_data()* function returns a [dictionary](README.md#getdata).\n",
"\n",
"The read_csv uses the path_on_compute value specified in the DataReferenceConfiguration call plus the path_on_datastore folder and then the actual file name."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
"\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to AutoMLConfig.</i>\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains a specific pipeline with the data|\n",
"|**n_cross_validations**|Number of cross validation splits|\n",
"|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM\n",
"|**preprocess**| *True/False* <br>Setting this to *True* enables Auto ML to perform preprocessing <br>on the input to handle *missing data*, and perform some common *feature extraction*|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.|\n",
"|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> Default is *1*, you can set it to *-1* to use all cores|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 1,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path=project_folder,\n",
" run_configuration=conda_run_config,\n",
" #compute_target = dsvm_compute,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under /tmp/azureml_run/{iterationid}/azureml-logs\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use sdk methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Canceling Runs\n",
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method returns the best run and the fitted model. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model based on any other metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric=lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a specific iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 1\n",
"# best_run, fitted_model = remote_run.get_output(iteration=iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sample-weight/auto-ml-sample-weight.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -156,9 +163,9 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.<br>**Note:** If input data is sparse, you cannot use *True*.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features] for the custom validation set.|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification for the custom validation set.|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/subsampling/auto-ml-subsampling-local.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -22,8 +22,12 @@ Notebook 6 is an Automated ML sample notebook for Classification.
Learn more about [how to use Azure Databricks as a development environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment#azure-databricks) for Azure Machine Learning service.
**Databricks as a Compute Target from AML Pipelines**
You can use Azure Databricks as a compute target from [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines). Take a look at this notebook for details: [aml-pipelines-use-databricks-as-compute-target.ipynb](aml-pipelines-use-databricks-as-compute-target.ipynb).
You can use Azure Databricks as a compute target from [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines). Take a look at this notebook for details: [aml-pipelines-use-databricks-as-compute-target.ipynb](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb).
For more on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
**Please let us know your feedback.**
**Please let us know your feedback.**
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/README.png)

View File

@@ -1,714 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n",
"The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
"2. Running an arbitrary Python script that the customer has in DBFS\n",
"3. Running an arbitrary Python script that is available on local computer (will upload to DBFS, and then run in Databricks) \n",
"4. Running a JAR job that the customer has in DBFS.\n",
"\n",
"## Before you begin:\n",
"\n",
"1. **Create an Azure Databricks workspace** in the same subscription where you have your Azure Machine Learning workspace. You will need details of this workspace later on to define DatabricksStep. [Click here](https://ms.portal.azure.com/#blade/HubsExtension/Resources/resourceType/Microsoft.Databricks%2Fworkspaces) for more information.\n",
"2. **Create PAT (access token)**: Manually create a Databricks access token at the Azure Databricks portal. See [this](https://docs.databricks.com/api/latest/authentication.html#generate-a-token) for more information.\n",
"3. **Add demo notebook to ADB**: This notebook has a sample you can use as is. Launch Azure Databricks attached to your Azure Machine Learning workspace and add a new notebook. \n",
"4. **Create/attach a Blob storage** for use from ADB"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add demo notebook to ADB Workspace\n",
"Copy and paste the below code to create a new notebook in your ADB workspace."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# direct access\n",
"dbutils.widgets.get(\"myparam\")\n",
"p = getArgument(\"myparam\")\n",
"print (\"Param -\\'myparam':\")\n",
"print (p)\n",
"\n",
"dbutils.widgets.get(\"input\")\n",
"i = getArgument(\"input\")\n",
"print (\"Param -\\'input':\")\n",
"print (i)\n",
"\n",
"dbutils.widgets.get(\"output\")\n",
"o = getArgument(\"output\")\n",
"print (\"Param -\\'output':\")\n",
"print (o)\n",
"\n",
"n = i + \"/testdata.txt\"\n",
"df = spark.read.csv(n)\n",
"\n",
"display (df)\n",
"\n",
"data = [('value1', 'value2')]\n",
"df2 = spark.createDataFrame(data)\n",
"\n",
"z = o + \"/output.txt\"\n",
"df2.write.csv(z)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core.runconfig import JarLibrary\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import DatabricksStep\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach Databricks compute target\n",
"Next, you need to add your Databricks workspace to Azure Machine Learning as a compute target and give it a name. You will use this name to refer to your Databricks workspace compute target inside Azure Machine Learning.\n",
"\n",
"- **Resource Group** - The resource group name of your Azure Machine Learning workspace\n",
"- **Databricks Workspace Name** - The workspace name of your Azure Databricks workspace\n",
"- **Databricks Access Token** - The access token you created in ADB\n",
"\n",
"**The Databricks workspace need to be present in the same subscription as your AML workspace**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Replace with your account info before running.\n",
" \n",
"db_compute_name=os.getenv(\"DATABRICKS_COMPUTE_NAME\", \"<my-databricks-compute-name>\") # Databricks compute name\n",
"db_resource_group=os.getenv(\"DATABRICKS_RESOURCE_GROUP\", \"<my-db-resource-group>\") # Databricks resource group\n",
"db_workspace_name=os.getenv(\"DATABRICKS_WORKSPACE_NAME\", \"<my-db-workspace-name>\") # Databricks workspace name\n",
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
" \n",
"try:\n",
" databricks_compute = DatabricksCompute(workspace=ws, name=db_compute_name)\n",
" print('Compute target {} already exists'.format(db_compute_name))\n",
"except ComputeTargetException:\n",
" print('Compute not found, will use below parameters to attach new one')\n",
" print('db_compute_name {}'.format(db_compute_name))\n",
" print('db_resource_group {}'.format(db_resource_group))\n",
" print('db_workspace_name {}'.format(db_workspace_name))\n",
" print('db_access_token {}'.format(db_access_token))\n",
" \n",
" config = DatabricksCompute.attach_configuration(\n",
" resource_group = db_resource_group,\n",
" workspace_name = db_workspace_name,\n",
" access_token= db_access_token)\n",
" databricks_compute=ComputeTarget.attach(ws, db_compute_name, config)\n",
" databricks_compute.wait_for_completion(True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Connections with Inputs and Outputs\n",
"The DatabricksStep supports Azure Bloband ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.azuredatabricks.net/user-guide/secrets/index.html) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"\n",
"- Databricks documentation on [Azure Blob](https://docs.azuredatabricks.net/spark/latest/data-sources/azure/azure-storage.html)\n",
"- Databricks documentation on [ADLS](https://docs.databricks.com/spark/latest/data-sources/azure/azure-datalake.html)\n",
"\n",
"### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
"- **Direct Access**: Databricks allows you to interact with Azure Blob or ADLS URIs directly. The input or output URIs will be mapped to a Databricks widget param in the Databricks notebook.\n",
"- **Mounting**: You will be supplied with additional parameters and secrets that will enable you to mount your ADLS or Azure Blob input or output location in your Databricks notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Direct Access: Python sample code\n",
"If you have a data reference named \"input\" it will represent the URI of the input and you can access it directly in the Databricks python notebook like so:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"dbutils.widgets.get(\"input\")\n",
"y = getArgument(\"input\")\n",
"df = spark.read.csv(y)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for Azure Blob\n",
"Given an Azure Blob data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\")\n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# How to get the input datastore name inside ADB notebook\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contians an access key or sas for the Azure Blob input (this name is obtained by appending \n",
"# the name of the input with \"_blob_secretname\". \n",
"dbutils.widgets.get(\"input_blob_secretname\") \n",
"myinput_blob_secretname = getArgument(\"input_blob_secretname\")\n",
"\n",
"# This contains the required configuration for mounting\n",
"dbutils.widgets.get(\"input_blob_config\")\n",
"myinput_blob_config = getArgument(\"input_blob_config\")\n",
"\n",
"# Usage\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/input\",\n",
" extra_configs = {myinput_blob_config:dbutils.secrets.get(scope = \"amlscope\", key = myinput_blob_secretname)})\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for ADLS\n",
"Given an ADLS data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\") \n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# This contains the client id for the service principal \n",
"# that has access to the adls input\n",
"dbutils.widgets.get(\"input_adls_clientid\") \n",
"myinput_adls_clientid = getArgument(\"input_adls_clientid\")\n",
"\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contains the secret for the above mentioned service principal\n",
"dbutils.widgets.get(\"input_adls_secretname\") \n",
"myinput_adls_secretname = getArgument(\"input_adls_secretname\")\n",
"\n",
"# This contains the refresh url for the mounting configs\n",
"dbutils.widgets.get(\"input_adls_refresh_url\") \n",
"myinput_adls_refresh_url = getArgument(\"input_adls_refresh_url\")\n",
"\n",
"# Usage \n",
"configs = {\"dfs.adls.oauth2.access.token.provider.type\": \"ClientCredential\",\n",
" \"dfs.adls.oauth2.client.id\": myinput_adls_clientid,\n",
" \"dfs.adls.oauth2.credential\": dbutils.secrets.get(scope = \"amlscope\", key =myinput_adls_secretname),\n",
" \"dfs.adls.oauth2.refresh.url\": myinput_adls_refresh_url}\n",
"\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/output\",\n",
" extra_configs = configs)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Databricks from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from Azure Machine Learning Pipeline, a DatabricksStep is used. Let's define a datasource (via DataReference) and intermediate data (via PipelineData) to be used in DatabricksStep."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default blob storage\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
"\n",
"# We are uploading a sample file in the local directory to be used as a datasource\n",
"def_blob_store.upload_files(files=[\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
"\n",
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
" data_reference_name=\"input\")\n",
"\n",
"step_1_output = PipelineData(\"output\", datastore=def_blob_store)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add a DatabricksStep\n",
"Adds a Databricks notebook as a step in a Pipeline.\n",
"- ***name:** Name of the Module\n",
"- **inputs:** List of input connections for data consumed by this step. Fetch this inside the notebook using dbutils.widgets.get(\"input\")\n",
"- **outputs:** List of output port definitions for outputs produced by this step. Fetch this inside the notebook using dbutils.widgets.get(\"output\")\n",
"- **existing_cluster_id:** Cluster ID of an existing Interactive cluster on the Databricks workspace. If you are providing this, do not provide any of the parameters below that are used to create a new cluster such as spark_version, node_type, etc.\n",
"- **spark_version:** Version of spark for the databricks run cluster. default value: 4.0.x-scala2.11\n",
"- **node_type:** Azure vm node types for the databricks run cluster. default value: Standard_D3_v2\n",
"- **num_workers:** Specifies a static number of workers for the databricks run cluster\n",
"- **min_workers:** Specifies a min number of workers to use for auto-scaling the databricks run cluster\n",
"- **max_workers:** Specifies a max number of workers to use for auto-scaling the databricks run cluster\n",
"- **spark_env_variables:** Spark environment variables for the databricks run cluster (dictionary of {str:str}). default value: {'PYSPARK_PYTHON': '/databricks/python3/bin/python3'}\n",
"- **notebook_path:** Path to the notebook in the databricks instance. If you are providing this, do not provide python script related paramaters or JAR related parameters.\n",
"- **notebook_params:** Parameters for the databricks notebook (dictionary of {str:str}). Fetch this inside the notebook using dbutils.widgets.get(\"myparam\")\n",
"- **python_script_path:** The path to the python script in the DBFS or S3. If you are providing this, do not provide python_script_name which is used for uploading script from local machine.\n",
"- **python_script_params:** Parameters for the python script (list of str)\n",
"- **main_class_name:** The name of the entry point in a JAR module. If you are providing this, do not provide any python script or notebook related parameters.\n",
"- **jar_params:** Parameters for the JAR module (list of str)\n",
"- **python_script_name:** name of a python script on your local machine (relative to source_directory). If you are providing this do not provide python_script_path which is used to execute a remote python script; or any of the JAR or notebook related parameters.\n",
"- **source_directory:** folder that contains the script and other files\n",
"- **hash_paths:** list of paths to hash to detect a change in source_directory (script file is always hashed)\n",
"- **run_name:** Name in databricks for this run\n",
"- **timeout_seconds:** Timeout for the databricks run\n",
"- **runconfig:** Runconfig to use. Either pass runconfig or each library type as a separate parameter but do not mix the two\n",
"- **maven_libraries:** maven libraries for the databricks run\n",
"- **pypi_libraries:** pypi libraries for the databricks run\n",
"- **egg_libraries:** egg libraries for the databricks run\n",
"- **jar_libraries:** jar libraries for the databricks run\n",
"- **rcran_libraries:** rcran libraries for the databricks run\n",
"- **compute_target:** Azure Databricks compute\n",
"- **allow_reuse:** Whether the step should reuse previous results when run with the same settings/inputs\n",
"- **version:** Optional version tag to denote a change in functionality for the step\n",
"\n",
"\\* *denotes required fields* \n",
"*You must provide exactly one of num_workers or min_workers and max_workers paramaters* \n",
"*You must provide exactly one of databricks_compute or databricks_compute_name parameters*\n",
"\n",
"## Use runconfig to specify library dependencies\n",
"You can use a runconfig to specify the library dependencies for your cluster in Databricks. The runconfig will contain a databricks section as follows:\n",
"\n",
"```yaml\n",
"environment:\n",
"# Databricks details\n",
" databricks:\n",
"# List of maven libraries.\n",
" mavenLibraries:\n",
" - coordinates: org.jsoup:jsoup:1.7.1\n",
" repo: ''\n",
" exclusions:\n",
" - slf4j:slf4j\n",
" - '*:hadoop-client'\n",
"# List of PyPi libraries\n",
" pypiLibraries:\n",
" - package: beautifulsoup4\n",
" repo: ''\n",
"# List of RCran libraries\n",
" rcranLibraries:\n",
" -\n",
"# Coordinates.\n",
" package: ada\n",
"# Repo\n",
" repo: http://cran.us.r-project.org\n",
"# List of JAR libraries\n",
" jarLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.jar\n",
"# List of Egg libraries\n",
" eggLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.egg\n",
"```\n",
"\n",
"You can then create a RunConfiguration object using this file and pass it as the runconfig parameter to DatabricksStep.\n",
"```python\n",
"from azureml.core.runconfig import RunConfiguration\n",
"\n",
"runconfig = RunConfiguration()\n",
"runconfig.load(path='<directory_where_runconfig_is_stored>', name='<runconfig_file_name>')\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Running the demo notebook already added to the Databricks workspace\n",
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable notebook_path when you run the code cell below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"notebook_path=os.getenv(\"DATABRICKS_NOTEBOOK_PATH\", \"<my-databricks-notebook-path>\") # Databricks notebook path\n",
"\n",
"dbNbStep = DatabricksStep(\n",
" name=\"DBNotebookInWS\",\n",
" inputs=[step_1_input],\n",
" outputs=[step_1_output],\n",
" num_workers=1,\n",
" notebook_path=notebook_path,\n",
" notebook_params={'myparam': 'testparam'},\n",
" run_name='DB_Notebook_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbNbStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_Notebook_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n",
"\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
"```\n",
"\n",
"The code in the below cell assumes that you have completed the previous step of uploading the script `train-db-dbfs.py` to the root folder in DBFS."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_path = os.getenv(\"DATABRICKS_PYTHON_SCRIPT_PATH\", \"<my-databricks-python-script-path>\") # Databricks python script path\n",
"\n",
"dbPythonInDbfsStep = DatabricksStep(\n",
" name=\"DBPythonInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_path=python_script_path,\n",
" python_script_params={'--input_data'},\n",
" run_name='DB_Python_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbPythonInDbfsStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_Python_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Running a Python script in Databricks that currenlty is in local computer\n",
"To run a Python script that is currently in your local computer, follow the instructions below. \n",
"\n",
"The commented out code below code assumes that you have `train-db-local.py` in the `scripts` subdirectory under the current working directory.\n",
"\n",
"In this case, the Python script will be uploaded first to DBFS, and then the script will be run in Databricks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_name = \"train-db-local.py\"\n",
"source_directory = \".\"\n",
"\n",
"dbPythonInLocalMachineStep = DatabricksStep(\n",
" name=\"DBPythonInLocalMachine\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_name=python_script_name,\n",
" source_directory=source_directory,\n",
" run_name='DB_Python_Local_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbPythonInLocalMachineStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Python_Local_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Running a JAR job that is alreay added in DBFS\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.jar dbfs:/train-db-dbfs.jar\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"main_jar_class_name = \"com.microsoft.aeva.Main\"\n",
"jar_library_dbfs_path = os.getenv(\"DATABRICKS_JAR_LIB_PATH\", \"<my-databricks-jar-lib-path>\") # Databricks jar library path\n",
"\n",
"dbJarInDbfsStep = DatabricksStep(\n",
" name=\"DBJarInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" main_class_name=main_jar_class_name,\n",
" jar_params={'arg1', 'arg2'},\n",
" run_name='DB_JAR_demo',\n",
" jar_libraries=[JarLibrary(jar_library_dbfs_path)],\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbJarInDbfsStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_JAR_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](./aml-pipelines-use-adla-as-compute-target.ipynb) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
]
}
],
"metadata": {
"authors": [
{
"name": "diray"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/build-model-run-history-03.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -333,6 +340,13 @@
"source": [
"dbutils.notebook.exit(\"success\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/deploy-to-aci-04.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -277,6 +284,13 @@
"#comment to not delete the web service\n",
"myservice.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -203,6 +210,13 @@
"#model.delete()\n",
"aks_target.delete() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/ingest-data-02.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -139,6 +146,13 @@
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/installation-and-configuration-01.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -143,6 +150,13 @@
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.png)"
]
}
],
"metadata": {

View File

@@ -23,7 +23,8 @@
"3. Configure Automated ML using `AutoMLConfig`.\n",
"4. Train the model using Azure Databricks.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"6. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"7. Test the best fitted model.\n",
"\n",
"Before running this notebook, please follow the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks\" target=\"_blank\">readme for using Automated ML on Azure Databricks</a> for installing necessary libraries to your cluster."
]
@@ -271,11 +272,14 @@
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"container_name = 'digits' \n",
"account_name = 'automlpublicdatasets'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = 'automl-notebook-data', \n",
" account_name = 'dprepdata'\n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
")"
]
},
@@ -340,10 +344,10 @@
"import azureml.dataprep as dprep\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"datastore = Datastore.get(workspace = ws, name = datastore_name)\n",
"datastore = Datastore.get(workspace = ws, datastore_name = datastore_name)\n",
"\n",
"X_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'X.csv')) \n",
"y_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
"X_train = dprep.read_csv(datastore.path('X.csv'))\n",
"y_train = dprep.read_csv(datastore.path('y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
@@ -407,7 +411,7 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 5,\n",
" iterations = 3,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
@@ -433,7 +437,27 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = False) # for higher runs please use show_output=False and use the below"
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Continue experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run.continue_experiment(iterations=2,\n",
" X=X_train, \n",
" y=y_train,\n",
" spark_context=sc,\n",
" show_output=True)"
]
},
{
@@ -533,6 +557,45 @@
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -548,11 +611,11 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"blob_location = \"https://{}.blob.core.windows.net/{}\".format(account_name, container_name)\n",
"X_test = pd.read_csv(\"{}./X_valid.csv\".format(blob_location), header=0)\n",
"y_test = pd.read_csv(\"{}/y_valid.csv\".format(blob_location), header=0)\n",
"images = pd.read_csv(\"{}/images.csv\".format(blob_location), header=None)\n",
"images = np.reshape(images.values, (100,8,8))"
]
},
{
@@ -573,9 +636,9 @@
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" label = y_test.values[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
@@ -597,6 +660,13 @@
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.png)"
]
}
],
"metadata": {
@@ -605,7 +675,7 @@
"name": "savitam"
},
{
"name": "wamartin"
"name": "sasum"
}
],
"kernelspec": {

View File

@@ -207,6 +207,7 @@
"import os\n",
"import random\n",
"import time\n",
"import json\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
@@ -288,11 +289,14 @@
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"container_name = 'digits' \n",
"account_name = 'automlpublicdatasets'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = 'automl-notebook-data', \n",
" account_name = 'dprepdata'\n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
")"
]
},
@@ -357,10 +361,10 @@
"import azureml.dataprep as dprep\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"datastore = Datastore.get(workspace = ws, name = datastore_name)\n",
"datastore = Datastore.get(workspace = ws, datastore_name = datastore_name)\n",
"\n",
"X_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'X.csv')) \n",
"y_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
"X_train = dprep.read_csv(datastore.path('X.csv'))\n",
"y_train = dprep.read_csv(datastore.path('y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
@@ -424,7 +428,7 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 30,\n",
" iterations = 5,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
@@ -450,7 +454,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = False) # for higher runs please use show_output=False and use the below"
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
@@ -588,22 +592,21 @@
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import numpy as np\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"import pandas as pd\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" model_path = Model.get_model_path(model_name = '<<model_id>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" data = (pd.DataFrame(np.array(json.loads(raw_data)['data']), columns=[str(i) for i in range(0,64)]))\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
@@ -611,6 +614,22 @@
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Replace <<model_id>>\n",
"content = \"\"\n",
"with open(\"score.py\", \"r\") as fo:\n",
" content = fo.read()\n",
"\n",
"new_content = content.replace(\"<<model_id>>\", local_run.model_id)\n",
"with open(\"score.py\", \"w\") as fw:\n",
" fw.write(new_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -669,16 +688,19 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"# this will take 10-15 minutes to finish\n",
"\n",
"service_name = \"<<servicename>>\"\n",
"import uuid\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"guid = str(uuid.uuid4()).split(\"-\")[0]\n",
"service_name = \"myservice-{}\".format(guid)\n",
"print(\"Creating service with name: {}\".format(service_name))\n",
"runtime = \"spark-py\" \n",
"driver_file = \"score.py\"\n",
"my_conda_file = \"mydeployenv.yml\"\n",
"\n",
"# image creation\n",
"from azureml.core.image import ContainerImage\n",
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
" runtime = runtime, \n",
" conda_file = 'mydeployenv.yml')\n",
@@ -720,11 +742,11 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"blob_location = \"https://{}.blob.core.windows.net/{}\".format(account_name, container_name)\n",
"X_test = pd.read_csv(\"{}./X_valid.csv\".format(blob_location), header=0)\n",
"y_test = pd.read_csv(\"{}/y_valid.csv\".format(blob_location), header=0)\n",
"images = pd.read_csv(\"{}/images.csv\".format(blob_location), header=None)\n",
"images = np.reshape(images.values, (100,8,8))"
]
},
{
@@ -741,18 +763,46 @@
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" test_sample = json.dumps({'data':X_test[index:index + 1].values.tolist()})\n",
" predicted = myservice.run(input_data = test_sample)\n",
" label = y_test.values[index]\n",
" predictedDict = json.loads(predicted)\n",
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0]) \n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Delete the service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"myservice.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.png)"
]
}
],
"metadata": {
@@ -761,7 +811,7 @@
"name": "savitam"
},
{
"name": "wamartin"
"name": "sasum"
}
],
"kernelspec": {

Some files were not shown because too many files have changed in this diff Show More