mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 17:45:10 -05:00
Compare commits
62 Commits
azureml-sd
...
azureml-sd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a7c3a0fdb8 | ||
|
|
6d11cdfa0a | ||
|
|
11e8ed2bab | ||
|
|
12c06a4168 | ||
|
|
1f75dc9725 | ||
|
|
1a1a42d525 | ||
|
|
879a272a8d | ||
|
|
bc65bde097 | ||
|
|
690bdfbdbe | ||
|
|
3c02bd8782 | ||
|
|
5c14610a1c | ||
|
|
4e3afae6fb | ||
|
|
a2144aa083 | ||
|
|
0e6334178f | ||
|
|
4ec9178d22 | ||
|
|
2aa7c53b0c | ||
|
|
553fa43e17 | ||
|
|
e98131729e | ||
|
|
fd2b09e2c2 | ||
|
|
7970209069 | ||
|
|
24f8651bb5 | ||
|
|
b881f78e46 | ||
|
|
057e22b253 | ||
|
|
c520bd1d41 | ||
|
|
d3f1212440 | ||
|
|
b95a65eef4 | ||
|
|
2218af619f | ||
|
|
0401128638 | ||
|
|
59fcb54998 | ||
|
|
e0ea99a6bb | ||
|
|
b06f5ce269 | ||
|
|
ed0ce9e895 | ||
|
|
71053d705b | ||
|
|
77f98bf75f | ||
|
|
e443fd1342 | ||
|
|
2165cf308e | ||
|
|
3d6caa10a3 | ||
|
|
4df079db1c | ||
|
|
67d0b02ef9 | ||
|
|
4e7b3784d5 | ||
|
|
ed91e39d7e | ||
|
|
a09a1a16a7 | ||
|
|
9662505517 | ||
|
|
8e103c02ff | ||
|
|
ecb5157add | ||
|
|
d7d23d5e7c | ||
|
|
83a21ba53a | ||
|
|
3c9cb89c1a | ||
|
|
cca7c2e26f | ||
|
|
e895d7c2bf | ||
|
|
3588eb9665 | ||
|
|
a09e726f31 | ||
|
|
4fb1d9ee5b | ||
|
|
b05ff80e9d | ||
|
|
512630472b | ||
|
|
ae1337fe70 | ||
|
|
c95f970dc8 | ||
|
|
9b9d112719 | ||
|
|
fe8fcd4b48 | ||
|
|
296ae01587 | ||
|
|
8f4efe15eb | ||
|
|
d179080467 |
11
README.md
11
README.md
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
|
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
|
||||||
## Quick installation
|
## Quick installation
|
||||||
@@ -13,15 +13,15 @@ Read more detailed instructions on [how to set up your environment](./NBSETUP.md
|
|||||||
|
|
||||||
## How to navigate and use the example notebooks?
|
## How to navigate and use the example notebooks?
|
||||||
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
|
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
|
||||||
This [index](.index.md) should assist in navigating the Azure Machine Learning notebook samples and encourage efficient retrieval of topics and content.
|
This [index](./index.md) should assist in navigating the Azure Machine Learning notebook samples and encourage efficient retrieval of topics and content.
|
||||||
|
|
||||||
If you want to...
|
If you want to...
|
||||||
|
|
||||||
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/img-classification-part2-deploy.ipynb).
|
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/image-classification-mnist-data/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/image-classification-mnist-data/img-classification-part2-deploy.ipynb).
|
||||||
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
|
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
|
||||||
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
|
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
|
||||||
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
|
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
|
||||||
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
|
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
|
||||||
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb).
|
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb).
|
||||||
|
|
||||||
## Tutorials
|
## Tutorials
|
||||||
@@ -40,6 +40,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
|
|||||||
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
|
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
|
||||||
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
|
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
|
||||||
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
|
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
|
||||||
|
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
|
||||||
|
|
||||||
---
|
---
|
||||||
## Documentation
|
## Documentation
|
||||||
|
|||||||
@@ -103,7 +103,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"import azureml.core\n",
|
"import azureml.core\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"This notebook was created using version 1.0.79 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) not
|
|||||||
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
|
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
|
||||||
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
|
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
|
||||||
* [logging-api](./track-and-monitor-experiments/logging-api): Learn about the details of logging metrics to run history.
|
* [logging-api](./track-and-monitor-experiments/logging-api): Learn about the details of logging metrics to run history.
|
||||||
* [register-model-create-image-deploy-service](./deployment/register-model-create-image-deploy-service): Learn about the details of model management.
|
|
||||||
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
|
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
|
||||||
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
|
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
|
||||||
|
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
# Table of Contents
|
# Table of Contents
|
||||||
1. [Automated ML Introduction](#introduction)
|
1. [Automated ML Introduction](#introduction)
|
||||||
1. [Setup using Azure Notebooks](#jupyter)
|
1. [Setup using Compute Instances](#jupyter)
|
||||||
1. [Setup using Azure Databricks](#databricks)
|
|
||||||
1. [Setup using a Local Conda environment](#localconda)
|
1. [Setup using a Local Conda environment](#localconda)
|
||||||
|
1. [Setup using Azure Databricks](#databricks)
|
||||||
1. [Automated ML SDK Sample Notebooks](#samples)
|
1. [Automated ML SDK Sample Notebooks](#samples)
|
||||||
1. [Documentation](#documentation)
|
1. [Documentation](#documentation)
|
||||||
1. [Running using python command](#pythoncommand)
|
1. [Running using python command](#pythoncommand)
|
||||||
@@ -21,13 +21,13 @@ Below are the three execution environments supported by automated ML.
|
|||||||
|
|
||||||
|
|
||||||
<a name="jupyter"></a>
|
<a name="jupyter"></a>
|
||||||
## Setup using Notebook VMs - Jupyter based notebooks from a Azure VM
|
## Setup using Compute Instances - Jupyter based notebooks from a Azure Virtual Machine
|
||||||
|
|
||||||
1. Open the [ML Azure portal](https://ml.azure.com)
|
1. Open the [ML Azure portal](https://ml.azure.com)
|
||||||
1. Select Compute
|
1. Select Compute
|
||||||
1. Select Notebook VMs
|
1. Select Compute Instances
|
||||||
1. Click New
|
1. Click New
|
||||||
1. Type a name for the Vm and select a VM type
|
1. Type a Compute Name, select a Virtual Machine type and select a Virtual Machine size
|
||||||
1. Click Create
|
1. Click Create
|
||||||
|
|
||||||
<a name="localconda"></a>
|
<a name="localconda"></a>
|
||||||
@@ -117,7 +117,7 @@ jupyter notebook
|
|||||||
- Simple example of using automated ML for regression
|
- Simple example of using automated ML for regression
|
||||||
- Uses azure compute for training
|
- Uses azure compute for training
|
||||||
|
|
||||||
- [auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb](regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb)
|
- [auto-ml-regression-explanation-featurization.ipynb](regression-explanation-featurization/auto-ml-regression-explanation-featurization.ipynb)
|
||||||
- Dataset: Hardware Performance Dataset
|
- Dataset: Hardware Performance Dataset
|
||||||
- Shows featurization and excplanation
|
- Shows featurization and excplanation
|
||||||
- Uses azure compute for training
|
- Uses azure compute for training
|
||||||
@@ -144,7 +144,7 @@ jupyter notebook
|
|||||||
- Dataset: forecasting for a bike-sharing
|
- Dataset: forecasting for a bike-sharing
|
||||||
- Example of training an automated ML forecasting model on multiple time-series
|
- Example of training an automated ML forecasting model on multiple time-series
|
||||||
|
|
||||||
- [automl-forecasting-function.ipynb](forecasting-high-frequency/automl-forecasting-function.ipynb)
|
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
|
||||||
- Example of training an automated ML forecasting model on multiple time-series
|
- Example of training an automated ML forecasting model on multiple time-series
|
||||||
|
|
||||||
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
|
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
|
||||||
@@ -152,7 +152,7 @@ jupyter notebook
|
|||||||
- Beer Production Forecasting
|
- Beer Production Forecasting
|
||||||
|
|
||||||
- [auto-ml-continuous-retraining.ipynb](continuous-retraining/auto-ml-continuous-retraining.ipynb)
|
- [auto-ml-continuous-retraining.ipynb](continuous-retraining/auto-ml-continuous-retraining.ipynb)
|
||||||
- Continous retraining using Pipelines and Time-Series TabularDataset
|
- Continuous retraining using Pipelines and Time-Series TabularDataset
|
||||||
|
|
||||||
- [auto-ml-classification-text-dnn.ipynb](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)
|
- [auto-ml-classification-text-dnn.ipynb](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)
|
||||||
- Classification with text data using deep learning in AutoML
|
- Classification with text data using deep learning in AutoML
|
||||||
@@ -197,6 +197,17 @@ If automl_setup_linux.sh fails on Ubuntu Linux with the error: `unable to execut
|
|||||||
4) Check that the region is one of the supported regions: `eastus2`, `eastus`, `westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`
|
4) Check that the region is one of the supported regions: `eastus2`, `eastus`, `westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`
|
||||||
5) Check that you have access to the region using the Azure Portal.
|
5) Check that you have access to the region using the Azure Portal.
|
||||||
|
|
||||||
|
## import AutoMLConfig fails after upgrade from before 1.0.76 to 1.0.76 or later
|
||||||
|
There were package changes in automated machine learning version 1.0.76, which require the previous version to be uninstalled before upgrading to the new version.
|
||||||
|
If you have manually upgraded from a version of automated machine learning before 1.0.76 to 1.0.76 or later, you may get the error:
|
||||||
|
`ImportError: cannot import name 'AutoMLConfig'`
|
||||||
|
|
||||||
|
This can be resolved by running:
|
||||||
|
`pip uninstall azureml-train-automl` and then
|
||||||
|
`pip install azureml-train-automl`
|
||||||
|
|
||||||
|
The automl_setup.cmd script does this automatically.
|
||||||
|
|
||||||
## workspace.from_config fails
|
## workspace.from_config fails
|
||||||
If the call `ws = Workspace.from_config()` fails:
|
If the call `ws = Workspace.from_config()` fails:
|
||||||
1) Make sure that you have run the `configuration.ipynb` notebook successfully.
|
1) Make sure that you have run the `configuration.ipynb` notebook successfully.
|
||||||
|
|||||||
@@ -2,21 +2,20 @@ name: azure_automl
|
|||||||
dependencies:
|
dependencies:
|
||||||
# The python interpreter version.
|
# The python interpreter version.
|
||||||
# Currently Azure ML only supports 3.5.2 and later.
|
# Currently Azure ML only supports 3.5.2 and later.
|
||||||
- pip
|
- pip<=19.3.1
|
||||||
- python>=3.5.2,<3.6.8
|
- python>=3.5.2,<3.6.8
|
||||||
- nb_conda
|
- nb_conda
|
||||||
- matplotlib==2.1.0
|
- matplotlib==2.1.0
|
||||||
- numpy>=1.16.0,<=1.16.2
|
- numpy>=1.16.0,<=1.16.2
|
||||||
- cython
|
- cython
|
||||||
- urllib3<1.24
|
- urllib3<1.24
|
||||||
- scipy>=1.0.0,<=1.1.0
|
- scipy==1.4.1
|
||||||
- scikit-learn>=0.19.0,<=0.20.3
|
- scikit-learn>=0.19.0,<=0.20.3
|
||||||
- pandas>=0.22.0,<=0.23.4
|
- pandas>=0.22.0,<=0.23.4
|
||||||
- py-xgboost<=0.80
|
- py-xgboost<=0.90
|
||||||
- pyarrow>=0.11.0
|
- conda-forge::fbprophet==0.5
|
||||||
- fbprophet==0.5
|
- pytorch::pytorch=1.4.0
|
||||||
- pytorch=1.1.0
|
- cudatoolkit=10.1.243
|
||||||
- cudatoolkit=9.0
|
|
||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
@@ -24,15 +23,9 @@ dependencies:
|
|||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-train
|
- azureml-train
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-pipeline
|
- azureml-pipeline
|
||||||
- azureml-contrib-interpret
|
|
||||||
- pytorch-transformers==1.0.0
|
- pytorch-transformers==1.0.0
|
||||||
- spacy==2.1.8
|
- spacy==2.1.8
|
||||||
- joblib
|
- pyarrow==0.17.0
|
||||||
- onnxruntime==0.4.0
|
|
||||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
|
|
||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
- pytorch
|
|
||||||
|
|||||||
@@ -2,7 +2,7 @@ name: azure_automl
|
|||||||
dependencies:
|
dependencies:
|
||||||
# The python interpreter version.
|
# The python interpreter version.
|
||||||
# Currently Azure ML only supports 3.5.2 and later.
|
# Currently Azure ML only supports 3.5.2 and later.
|
||||||
- pip
|
- pip<=19.3.1
|
||||||
- nomkl
|
- nomkl
|
||||||
- python>=3.5.2,<3.6.8
|
- python>=3.5.2,<3.6.8
|
||||||
- nb_conda
|
- nb_conda
|
||||||
@@ -10,13 +10,12 @@ dependencies:
|
|||||||
- numpy>=1.16.0,<=1.16.2
|
- numpy>=1.16.0,<=1.16.2
|
||||||
- cython
|
- cython
|
||||||
- urllib3<1.24
|
- urllib3<1.24
|
||||||
- scipy>=1.0.0,<=1.1.0
|
- scipy==1.4.1
|
||||||
- scikit-learn>=0.19.0,<=0.20.3
|
- scikit-learn>=0.19.0,<=0.20.3
|
||||||
- pandas>=0.22.0,<0.23.0
|
- pandas>=0.22.0,<=0.23.4
|
||||||
- py-xgboost<=0.80
|
- py-xgboost<=0.90
|
||||||
- pyarrow>=0.11.0
|
- conda-forge::fbprophet==0.5
|
||||||
- fbprophet==0.5
|
- pytorch::pytorch=1.4.0
|
||||||
- pytorch=1.1.0
|
|
||||||
- cudatoolkit=9.0
|
- cudatoolkit=9.0
|
||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
@@ -25,15 +24,8 @@ dependencies:
|
|||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-train
|
- azureml-train
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-pipeline
|
- azureml-pipeline
|
||||||
- azureml-contrib-interpret
|
|
||||||
- pytorch-transformers==1.0.0
|
- pytorch-transformers==1.0.0
|
||||||
- spacy==2.1.8
|
- spacy==2.1.8
|
||||||
- joblib
|
- pyarrow==0.17.0
|
||||||
- onnxruntime==0.4.0
|
|
||||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
|
|
||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
- pytorch
|
|
||||||
|
|||||||
@@ -41,7 +41,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"In this example we use the UCI Bank Marketing dataset to showcase how you can use AutoML for a classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if the client will subscribe to a term deposit with the bank.\n",
|
"In this example we use the UCI Bank Marketing dataset to showcase how you can use AutoML for a classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if the client will subscribe to a term deposit with the bank.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
|
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -92,6 +92,49 @@
|
|||||||
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
|
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Accessing the Azure ML workspace requires authentication with Azure.\n",
|
||||||
|
"\n",
|
||||||
|
"The default authentication is interactive authentication using the default tenant. Executing the `ws = Workspace.from_config()` line in the cell below will prompt for authentication the first time that it is run.\n",
|
||||||
|
"\n",
|
||||||
|
"If you have multiple Azure tenants, you can specify the tenant by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
|
||||||
|
"\n",
|
||||||
|
"```\n",
|
||||||
|
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
|
||||||
|
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
|
||||||
|
"ws = Workspace.from_config(auth = auth)\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
|
||||||
|
"\n",
|
||||||
|
"```\n",
|
||||||
|
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
|
||||||
|
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
|
||||||
|
"ws = Workspace.from_config(auth = auth)\n",
|
||||||
|
"```\n",
|
||||||
|
"For more details, see [aka.ms/aml-notebook-auth](http://aka.ms/aml-notebook-auth)"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -106,7 +149,6 @@
|
|||||||
"experiment=Experiment(ws, experiment_name)\n",
|
"experiment=Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -134,35 +176,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-4\"\n",
|
"cpu_cluster_name = \"cpu-cluster-4\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=6)\n",
|
" max_nodes=6)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
" \n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -288,13 +317,12 @@
|
|||||||
"|**blacklist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
|
"|**blacklist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
|
||||||
"| **whitelist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blacklist_models** allowed for **whitelist_models**.|\n",
|
"| **whitelist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blacklist_models** allowed for **whitelist_models**.|\n",
|
||||||
"|**experiment_exit_score**| Value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
|
"|**experiment_exit_score**| Value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
|
||||||
"|**experiment_timeout_minutes**| Maximum amount of time in minutes that all iterations combined can take before the experiment terminates.|\n",
|
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
|
||||||
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
|
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
|
||||||
"|**featurization**| 'auto' / 'off' Indicator for whether featurization step should be done automatically or not. Note: If the input data is sparse, featurization cannot be turned on.|\n",
|
"|**featurization**| 'auto' / 'off' Indicator for whether featurization step should be done automatically or not. Note: If the input data is sparse, featurization cannot be turned on.|\n",
|
||||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||||
"|**label_column_name**|The name of the label column.|\n",
|
"|**label_column_name**|The name of the label column.|\n",
|
||||||
"|**model_explainability**|Indicate to explain each trained pipeline or not.|\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||||
]
|
]
|
||||||
@@ -306,7 +334,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"experiment_timeout_minutes\" : 20,\n",
|
" \"experiment_timeout_hours\" : 0.3,\n",
|
||||||
" \"enable_early_stopping\" : True,\n",
|
" \"enable_early_stopping\" : True,\n",
|
||||||
" \"iteration_timeout_minutes\": 5,\n",
|
" \"iteration_timeout_minutes\": 5,\n",
|
||||||
" \"max_concurrent_iterations\": 4,\n",
|
" \"max_concurrent_iterations\": 4,\n",
|
||||||
@@ -326,7 +354,6 @@
|
|||||||
" training_data = train_data,\n",
|
" training_data = train_data,\n",
|
||||||
" label_column_name = label,\n",
|
" label_column_name = label,\n",
|
||||||
" validation_data = validation_dataset,\n",
|
" validation_data = validation_dataset,\n",
|
||||||
" model_explainability=True,\n",
|
|
||||||
" **automl_settings\n",
|
" **automl_settings\n",
|
||||||
" )"
|
" )"
|
||||||
]
|
]
|
||||||
@@ -370,8 +397,6 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#from azureml.train.automl.run import AutoMLRun\n",
|
"#from azureml.train.automl.run import AutoMLRun\n",
|
||||||
"#experiment_name = 'automl-classification-bmarketing'\n",
|
|
||||||
"#experiment = Experiment(ws, experiment_name)\n",
|
|
||||||
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
|
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
|
||||||
"#remote_run"
|
"#remote_run"
|
||||||
]
|
]
|
||||||
@@ -474,11 +499,11 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Wait for the best model explanation run to complete\n",
|
"# Wait for the best model explanation run to complete\n",
|
||||||
"from azureml.train.automl.run import AutoMLRun\n",
|
"from azureml.core.run import Run\n",
|
||||||
"model_explainability_run_id = remote_run.get_properties().get('ModelExplainRunId')\n",
|
"model_explainability_run_id = remote_run.get_properties().get('ModelExplainRunId')\n",
|
||||||
"print(model_explainability_run_id)\n",
|
"print(model_explainability_run_id)\n",
|
||||||
"if model_explainability_run_id is not None:\n",
|
"if model_explainability_run_id is not None:\n",
|
||||||
" model_explainability_run = AutoMLRun(experiment=experiment, run_id=model_explainability_run_id)\n",
|
" model_explainability_run = Run(experiment=experiment, run_id=model_explainability_run_id)\n",
|
||||||
" model_explainability_run.wait_for_completion()\n",
|
" model_explainability_run.wait_for_completion()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Get the best run object\n",
|
"# Get the best run object\n",
|
||||||
@@ -618,7 +643,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"### Retrieve the Best Model\n",
|
"### Retrieve the Best Model\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -694,10 +719,10 @@
|
|||||||
"from azureml.core.webservice import AciWebservice\n",
|
"from azureml.core.webservice import AciWebservice\n",
|
||||||
"from azureml.core.webservice import Webservice\n",
|
"from azureml.core.webservice import Webservice\n",
|
||||||
"from azureml.core.model import Model\n",
|
"from azureml.core.model import Model\n",
|
||||||
|
"from azureml.core.environment import Environment\n",
|
||||||
"\n",
|
"\n",
|
||||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=conda_env_file_name)\n",
|
||||||
" entry_script = script_file_name,\n",
|
"inference_config = InferenceConfig(entry_script=script_file_name, environment=myenv)\n",
|
||||||
" conda_file = conda_env_file_name)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||||
" memory_gb = 1, \n",
|
" memory_gb = 1, \n",
|
||||||
|
|||||||
@@ -2,12 +2,7 @@ name: auto-ml-classification-bank-marketing-all-features
|
|||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- interpret
|
|
||||||
- azureml-defaults
|
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
- onnxruntime==1.0.0
|
||||||
- onnxruntime==0.4.0
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-contrib-interpret
|
|
||||||
|
|||||||
@@ -42,7 +42,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"This notebook is using remote compute to train the model.\n",
|
"This notebook is using remote compute to train the model.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this notebook you will learn how to:\n",
|
"In this notebook you will learn how to:\n",
|
||||||
"1. Create an experiment using an existing workspace.\n",
|
"1. Create an experiment using an existing workspace.\n",
|
||||||
@@ -80,6 +80,23 @@
|
|||||||
"from azureml.train.automl import AutoMLConfig"
|
"from azureml.train.automl import AutoMLConfig"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -94,7 +111,6 @@
|
|||||||
"experiment=Experiment(ws, experiment_name)\n",
|
"experiment=Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -122,35 +138,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your AmlCompute cluster.\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-1\"\n",
|
"cpu_cluster_name = \"cpu-cluster-1\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'cpu-cluster-1':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_DS12_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=6)\n",
|
" max_nodes=6)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
"\n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -210,10 +213,9 @@
|
|||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"n_cross_validations\": 3,\n",
|
" \"n_cross_validations\": 3,\n",
|
||||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||||
" \"preprocess\": True,\n",
|
|
||||||
" \"enable_early_stopping\": True,\n",
|
" \"enable_early_stopping\": True,\n",
|
||||||
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
|
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
|
||||||
" \"experiment_timeout_minutes\": 10, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
|
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
|
||||||
" \"verbosity\": logging.INFO,\n",
|
" \"verbosity\": logging.INFO,\n",
|
||||||
"}\n",
|
"}\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -283,7 +285,11 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"tags": [
|
||||||
|
"widget-rundetails-sample"
|
||||||
|
]
|
||||||
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.widgets import RunDetails\n",
|
"from azureml.widgets import RunDetails\n",
|
||||||
@@ -305,7 +311,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"#### Explain model\n",
|
"#### Explain model\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Automated ML models can be explained and visualized using the SDK Explainability library. [Learn how to use the explainer](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/model-explanation-remote-amlcompute/auto-ml-model-explanations-remote-compute.ipynb)."
|
"Automated ML models can be explained and visualized using the SDK Explainability library. "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -316,7 +322,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"### Retrieve the Best Model\n",
|
"### Retrieve the Best Model\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -334,17 +340,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Print the properties of the model\n",
|
"#### Print the properties of the model\n",
|
||||||
"The fitted_model is a python object and you can read the different properties of the object.\n",
|
"The fitted_model is a python object and you can read the different properties of the object.\n"
|
||||||
"See *Print the properties of the model* section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Deploy\n",
|
|
||||||
"\n",
|
|
||||||
"To deploy the model into a web service endpoint, see _Deploy_ section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -2,10 +2,6 @@ name: auto-ml-classification-credit-card-fraud
|
|||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- interpret
|
|
||||||
- azureml-defaults
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
|
|||||||
@@ -47,8 +47,8 @@
|
|||||||
"Notebook synopsis:\n",
|
"Notebook synopsis:\n",
|
||||||
"1. Creating an Experiment in an existing Workspace\n",
|
"1. Creating an Experiment in an existing Workspace\n",
|
||||||
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
|
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
|
||||||
"3. Evaluating the final model on a test set\n",
|
"3. Registering the best model for future use\n",
|
||||||
"4. Deploying the model on ACI"
|
"4. Evaluating the final model on a test set"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -84,6 +84,23 @@
|
|||||||
"from sklearn.datasets import fetch_20newsgroups"
|
"from sklearn.datasets import fetch_20newsgroups"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -105,7 +122,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace Name'] = ws.name\n",
|
"output['Workspace Name'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -121,9 +137,9 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Set up a compute cluster\n",
|
"## Set up a compute cluster\n",
|
||||||
"This section uses a user-provided compute cluster (named \"cpu-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
|
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively."
|
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -132,34 +148,25 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your cluster.\n",
|
||||||
"amlcompute_cluster_name = \"cpu-dnntext\"\n",
|
"amlcompute_cluster_name = \"dnntext-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_NC6\", # CPU for BiLSTM, such as \"STANDARD_D2_V2\" \n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
" # To use BERT (this is recommended for best performance), select a GPU such as \"STANDARD_NC6\" \n",
|
||||||
"\n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # CPU for BiLSTM\n",
|
|
||||||
" # To use BERT, select a GPU such as \"STANDARD_NC6\" \n",
|
|
||||||
" # or similar GPU option\n",
|
" # or similar GPU option\n",
|
||||||
" # available in your workspace\n",
|
" # available in your workspace\n",
|
||||||
" max_nodes = 6)\n",
|
" max_nodes = 1)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
"\n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
"\n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -187,8 +194,8 @@
|
|||||||
" '''\n",
|
" '''\n",
|
||||||
" remove = ('headers', 'footers', 'quotes')\n",
|
" remove = ('headers', 'footers', 'quotes')\n",
|
||||||
" categories = [\n",
|
" categories = [\n",
|
||||||
" 'alt.atheism',\n",
|
" 'rec.sport.baseball',\n",
|
||||||
" 'talk.religion.misc',\n",
|
" 'rec.sport.hockey',\n",
|
||||||
" 'comp.graphics',\n",
|
" 'comp.graphics',\n",
|
||||||
" 'sci.space',\n",
|
" 'sci.space',\n",
|
||||||
" ]\n",
|
" ]\n",
|
||||||
@@ -218,7 +225,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"Featch data and upload to datastore for use in training"
|
"#### Fetch data and upload to datastore for use in training"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -275,7 +282,6 @@
|
|||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"experiment_timeout_minutes\": 20,\n",
|
" \"experiment_timeout_minutes\": 20,\n",
|
||||||
" \"primary_metric\": 'accuracy',\n",
|
" \"primary_metric\": 'accuracy',\n",
|
||||||
" \"preprocess\": True,\n",
|
|
||||||
" \"max_concurrent_iterations\": 4, \n",
|
" \"max_concurrent_iterations\": 4, \n",
|
||||||
" \"max_cores_per_iteration\": -1,\n",
|
" \"max_cores_per_iteration\": -1,\n",
|
||||||
" \"enable_dnn\": True,\n",
|
" \"enable_dnn\": True,\n",
|
||||||
@@ -339,7 +345,8 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"You can test the model locally to get a feel of the input/output. This step may require additional package installations such as pytorch."
|
"You can test the model locally to get a feel of the input/output. When the model contains BERT, this step will require pytorch and pytorch-transformers installed in your local environment. The exact versions of these packages can be found in the **automl_env.yml** file located in the local copy of your MachineLearningNotebooks folder here:\n",
|
||||||
|
"MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/automl_env.yml"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -348,15 +355,34 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#best_run, fitted_model = automl_run.get_output()"
|
"best_run, fitted_model = automl_run.get_output()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"### Deploying the model\n",
|
"You can now see what text transformations are used to convert text data to features for this dataset, including deep learning transformations based on BiLSTM or Transformer (BERT is one implementation of a Transformer) models."
|
||||||
"We now use the best fitted model from the AutoML Run to make predictions on the test set. "
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text_transformations_used = []\n",
|
||||||
|
"for column_group in fitted_model.named_steps['datatransformer'].get_featurization_summary():\n",
|
||||||
|
" text_transformations_used.extend(column_group['Transformations'])\n",
|
||||||
|
"text_transformations_used"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Registering the best model\n",
|
||||||
|
"We now register the best fitted model from the AutoML Run for use in future deployments. "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -456,7 +482,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
||||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||||
"shutil.copy2('infer.py', script_folder)"
|
"shutil.copy('infer.py', script_folder)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -519,12 +545,12 @@
|
|||||||
"name": "anshirga"
|
"name": "anshirga"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"datasets": [
|
|
||||||
"None"
|
|
||||||
],
|
|
||||||
"compute": [
|
"compute": [
|
||||||
"AML Compute"
|
"AML Compute"
|
||||||
],
|
],
|
||||||
|
"datasets": [
|
||||||
|
"None"
|
||||||
|
],
|
||||||
"deployment": [
|
"deployment": [
|
||||||
"None"
|
"None"
|
||||||
],
|
],
|
||||||
|
|||||||
@@ -3,8 +3,10 @@ dependencies:
|
|||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-train
|
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
- https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl
|
||||||
- statsmodels
|
- sentencepiece==0.1.82
|
||||||
|
- pytorch-transformers==1.0
|
||||||
|
- spacy==2.1.8
|
||||||
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
|
|||||||
@@ -2,8 +2,7 @@ import numpy as np
|
|||||||
import argparse
|
import argparse
|
||||||
from azureml.core import Run
|
from azureml.core import Run
|
||||||
from sklearn.externals import joblib
|
from sklearn.externals import joblib
|
||||||
from azureml.automl.core._vendor.automl.client.core.common import metrics
|
from azureml.automl.core.shared import constants, metrics
|
||||||
from automl.client.core.common import constants
|
|
||||||
from azureml.core.model import Model
|
from azureml.core.model import Model
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -20,7 +20,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"# Automated Machine Learning \n",
|
"# Automated Machine Learning \n",
|
||||||
"**Continous retraining using Pipelines and Time-Series TabularDataset**\n",
|
"**Continuous retraining using Pipelines and Time-Series TabularDataset**\n",
|
||||||
"## Contents\n",
|
"## Contents\n",
|
||||||
"1. [Introduction](#Introduction)\n",
|
"1. [Introduction](#Introduction)\n",
|
||||||
"2. [Setup](#Setup)\n",
|
"2. [Setup](#Setup)\n",
|
||||||
@@ -75,6 +75,23 @@
|
|||||||
"from azureml.train.automl import AutoMLConfig"
|
"from azureml.train.automl import AutoMLConfig"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -112,7 +129,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -143,33 +159,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-42\"\n",
|
"amlcompute_cluster_name = \"cont-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=4)\n",
|
" max_nodes=4)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
" compute_target.wait_for_completion(show_output = True, min_node_count = 0, timeout_in_minutes = 10)\n",
|
|
||||||
" \n",
|
|
||||||
" # For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -197,7 +202,7 @@
|
|||||||
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
||||||
"\n",
|
"\n",
|
||||||
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets'], \n",
|
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets'], \n",
|
||||||
" conda_packages=['numpy', 'py-xgboost'], \n",
|
" conda_packages=['numpy==1.16.2'], \n",
|
||||||
" pin_sdk_version=False)\n",
|
" pin_sdk_version=False)\n",
|
||||||
"#cd.add_pip_package('azureml-explain-model')\n",
|
"#cd.add_pip_package('azureml-explain-model')\n",
|
||||||
"conda_run_config.environment.python.conda_dependencies = cd\n",
|
"conda_run_config.environment.python.conda_dependencies = cd\n",
|
||||||
@@ -210,7 +215,24 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Data Ingestion Pipeline \n",
|
"## Data Ingestion Pipeline \n",
|
||||||
"For this demo, we will use NOAA weather data from [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/). You can replace this with your own dataset, or you can skip this pipeline if you already have a time-series based `TabularDataset`.\n",
|
"For this demo, we will use NOAA weather data from [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/). You can replace this with your own dataset, or you can skip this pipeline if you already have a time-series based `TabularDataset`.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# The name and target column of the Dataset to create \n",
|
||||||
|
"dataset = \"NOAA-Weather-DS4\"\n",
|
||||||
|
"target_column_name = \"temperature\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"### Upload Data Step\n",
|
"### Upload Data Step\n",
|
||||||
"The data ingestion pipeline has a single step with a script to query the latest weather data and upload it to the blob store. During the first run, the script will create and register a time-series based `TabularDataset` with the past one week of weather data. For each subsequent run, the script will create a partition in the blob store by querying NOAA for new weather data since the last modified time of the dataset (`dataset.data_changed_time`) and creating a data.csv file."
|
"The data ingestion pipeline has a single step with a script to query the latest weather data and upload it to the blob store. During the first run, the script will create and register a time-series based `TabularDataset` with the past one week of weather data. For each subsequent run, the script will create a partition in the blob store by querying NOAA for new weather data since the last modified time of the dataset (`dataset.data_changed_time`) and creating a data.csv file."
|
||||||
@@ -225,8 +247,6 @@
|
|||||||
"from azureml.pipeline.core import Pipeline, PipelineParameter\n",
|
"from azureml.pipeline.core import Pipeline, PipelineParameter\n",
|
||||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# The name of the Dataset to create \n",
|
|
||||||
"dataset = \"NOAA-Weather-DS4\"\n",
|
|
||||||
"ds_name = PipelineParameter(name=\"ds_name\", default_value=dataset)\n",
|
"ds_name = PipelineParameter(name=\"ds_name\", default_value=dataset)\n",
|
||||||
"upload_data_step = PythonScriptStep(script_name=\"upload_weather_data.py\", \n",
|
"upload_data_step = PythonScriptStep(script_name=\"upload_weather_data.py\", \n",
|
||||||
" allow_reuse=False,\n",
|
" allow_reuse=False,\n",
|
||||||
@@ -262,7 +282,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"data_pipeline_run.wait_for_completion()"
|
"data_pipeline_run.wait_for_completion(show_output=False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -272,7 +292,7 @@
|
|||||||
"## Training Pipeline\n",
|
"## Training Pipeline\n",
|
||||||
"### Prepare Training Data Step\n",
|
"### Prepare Training Data Step\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Script to bring data into common X,y format. We need to set allow_reuse flag to False to allow the pipeline to run even when inputs don't change. We also need the name of the model to check the time the model was last trained."
|
"Script to check if new data is available since the model was last trained. If no new data is available, we cancel the remaining pipeline steps. We need to set allow_reuse flag to False to allow the pipeline to run even when inputs don't change. We also need the name of the model to check the time the model was last trained."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -283,11 +303,8 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from azureml.pipeline.core import PipelineData\n",
|
"from azureml.pipeline.core import PipelineData\n",
|
||||||
"\n",
|
"\n",
|
||||||
"target_column = PipelineParameter(\"target_column\", default_value=\"y\")\n",
|
|
||||||
"# The model name with which to register the trained model in the workspace.\n",
|
"# The model name with which to register the trained model in the workspace.\n",
|
||||||
"model_name = PipelineParameter(\"model_name\", default_value=\"y\")\n",
|
"model_name = PipelineParameter(\"model_name\", default_value=\"noaaweatherds\")"
|
||||||
"output_x = PipelineData(\"output_x\", datastore=dstor)\n",
|
|
||||||
"output_y = PipelineData(\"output_y\", datastore=dstor)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -299,16 +316,23 @@
|
|||||||
"data_prep_step = PythonScriptStep(script_name=\"check_data.py\", \n",
|
"data_prep_step = PythonScriptStep(script_name=\"check_data.py\", \n",
|
||||||
" allow_reuse=False,\n",
|
" allow_reuse=False,\n",
|
||||||
" name=\"check_data\",\n",
|
" name=\"check_data\",\n",
|
||||||
" arguments=[\"--target_column\", target_column,\n",
|
" arguments=[\"--ds_name\", ds_name,\n",
|
||||||
" \"--output_x\", output_x,\n",
|
|
||||||
" \"--output_y\", output_y,\n",
|
|
||||||
" \"--ds_name\", ds_name,\n",
|
|
||||||
" \"--model_name\", model_name],\n",
|
" \"--model_name\", model_name],\n",
|
||||||
" outputs=[output_x, output_y], \n",
|
|
||||||
" compute_target=compute_target, \n",
|
" compute_target=compute_target, \n",
|
||||||
" runconfig=conda_run_config)"
|
" runconfig=conda_run_config)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core import Dataset\n",
|
||||||
|
"train_ds = Dataset.get_by_name(ws, dataset)\n",
|
||||||
|
"train_ds = train_ds.drop_columns([\"partition_date\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -324,14 +348,13 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.train.automl import AutoMLConfig\n",
|
"from azureml.train.automl import AutoMLConfig\n",
|
||||||
"from azureml.train.automl.runtime import AutoMLStep\n",
|
"from azureml.pipeline.steps import AutoMLStep\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"iteration_timeout_minutes\": 20,\n",
|
" \"iteration_timeout_minutes\": 10,\n",
|
||||||
" \"experiment_timeout_minutes\": 30,\n",
|
" \"experiment_timeout_hours\": 0.25,\n",
|
||||||
" \"n_cross_validations\": 3,\n",
|
" \"n_cross_validations\": 3,\n",
|
||||||
" \"primary_metric\": 'r2_score',\n",
|
" \"primary_metric\": 'r2_score',\n",
|
||||||
" \"preprocess\": True,\n",
|
|
||||||
" \"max_concurrent_iterations\": 3,\n",
|
" \"max_concurrent_iterations\": 3,\n",
|
||||||
" \"max_cores_per_iteration\": -1,\n",
|
" \"max_cores_per_iteration\": -1,\n",
|
||||||
" \"verbosity\": logging.INFO,\n",
|
" \"verbosity\": logging.INFO,\n",
|
||||||
@@ -342,8 +365,8 @@
|
|||||||
" debug_log = 'automl_errors.log',\n",
|
" debug_log = 'automl_errors.log',\n",
|
||||||
" path = \".\",\n",
|
" path = \".\",\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
" run_configuration=conda_run_config,\n",
|
" training_data = train_ds,\n",
|
||||||
" data_script = \"get_data.py\",\n",
|
" label_column_name = target_column_name,\n",
|
||||||
" **automl_settings\n",
|
" **automl_settings\n",
|
||||||
" )"
|
" )"
|
||||||
]
|
]
|
||||||
@@ -359,7 +382,7 @@
|
|||||||
"metrics_output_name = 'metrics_output'\n",
|
"metrics_output_name = 'metrics_output'\n",
|
||||||
"best_model_output_name = 'best_model_output'\n",
|
"best_model_output_name = 'best_model_output'\n",
|
||||||
"\n",
|
"\n",
|
||||||
"metirics_data = PipelineData(name='metrics_data',\n",
|
"metrics_data = PipelineData(name='metrics_data',\n",
|
||||||
" datastore=dstor,\n",
|
" datastore=dstor,\n",
|
||||||
" pipeline_output_name=metrics_output_name,\n",
|
" pipeline_output_name=metrics_output_name,\n",
|
||||||
" training_output=TrainingOutput(type='Metrics'))\n",
|
" training_output=TrainingOutput(type='Metrics'))\n",
|
||||||
@@ -378,8 +401,7 @@
|
|||||||
"automl_step = AutoMLStep(\n",
|
"automl_step = AutoMLStep(\n",
|
||||||
" name='automl_module',\n",
|
" name='automl_module',\n",
|
||||||
" automl_config=automl_config,\n",
|
" automl_config=automl_config,\n",
|
||||||
" inputs=[output_x, output_y],\n",
|
" outputs=[metrics_data, model_data],\n",
|
||||||
" outputs=[metirics_data, model_data],\n",
|
|
||||||
" allow_reuse=False)"
|
" allow_reuse=False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -432,7 +454,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"training_pipeline_run = experiment.submit(training_pipeline, pipeline_parameters={\n",
|
"training_pipeline_run = experiment.submit(training_pipeline, pipeline_parameters={\n",
|
||||||
" \"target_column\": \"temperature\", \"ds_name\": dataset, \"model_name\": \"noaaweatherds\"})"
|
" \"ds_name\": dataset, \"model_name\": \"noaaweatherds\"})"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -475,7 +497,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from azureml.pipeline.core import Schedule\n",
|
"from azureml.pipeline.core import Schedule\n",
|
||||||
"schedule = Schedule.create(workspace=ws, name=\"RetrainingSchedule\",\n",
|
"schedule = Schedule.create(workspace=ws, name=\"RetrainingSchedule\",\n",
|
||||||
" pipeline_parameters={\"target_column\": \"temperature\",\"ds_name\": dataset, \"model_name\": \"noaaweatherds\"},\n",
|
" pipeline_parameters={\"ds_name\": dataset, \"model_name\": \"noaaweatherds\"},\n",
|
||||||
" pipeline_id=published_pipeline.id, \n",
|
" pipeline_id=published_pipeline.id, \n",
|
||||||
" experiment_name=experiment_name, \n",
|
" experiment_name=experiment_name, \n",
|
||||||
" datastore=dstor,\n",
|
" datastore=dstor,\n",
|
||||||
|
|||||||
@@ -3,7 +3,6 @@ dependencies:
|
|||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-pipeline
|
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
- azureml-pipeline
|
||||||
|
|||||||
@@ -15,32 +15,16 @@ if type(run) == _OfflineRun:
|
|||||||
else:
|
else:
|
||||||
ws = run.experiment.workspace
|
ws = run.experiment.workspace
|
||||||
|
|
||||||
|
print("Check for new data.")
|
||||||
def write_output(df, path):
|
|
||||||
os.makedirs(path, exist_ok=True)
|
|
||||||
print("%s created" % path)
|
|
||||||
df.to_csv(path + "/part-00000", index=False)
|
|
||||||
|
|
||||||
|
|
||||||
print("Check for new data and prepare the data")
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser("split")
|
parser = argparse.ArgumentParser("split")
|
||||||
parser.add_argument("--target_column", type=str, help="input split features")
|
|
||||||
parser.add_argument("--ds_name", help="input dataset name")
|
parser.add_argument("--ds_name", help="input dataset name")
|
||||||
parser.add_argument("--model_name", help="name of the deployed model")
|
parser.add_argument("--model_name", help="name of the deployed model")
|
||||||
parser.add_argument("--output_x", type=str,
|
|
||||||
help="output features")
|
|
||||||
parser.add_argument("--output_y", type=str,
|
|
||||||
help="output labels")
|
|
||||||
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
print("Argument 1(ds_name): %s" % args.ds_name)
|
print("Argument 1(ds_name): %s" % args.ds_name)
|
||||||
print("Argument 2(target_column): %s" % args.target_column)
|
print("Argument 2(model_name): %s" % args.model_name)
|
||||||
print("Argument 3(model_name): %s" % args.model_name)
|
|
||||||
print("Argument 4(output_x): %s" % args.output_x)
|
|
||||||
print("Argument 5(output_y): %s" % args.output_y)
|
|
||||||
|
|
||||||
# Get the latest registered model
|
# Get the latest registered model
|
||||||
try:
|
try:
|
||||||
@@ -54,22 +38,9 @@ except Exception as e:
|
|||||||
train_ds = Dataset.get_by_name(ws, args.ds_name)
|
train_ds = Dataset.get_by_name(ws, args.ds_name)
|
||||||
dataset_changed_time = train_ds.data_changed_time
|
dataset_changed_time = train_ds.data_changed_time
|
||||||
|
|
||||||
if dataset_changed_time > last_train_time:
|
if not dataset_changed_time > last_train_time:
|
||||||
# New data is available since the model was last trained
|
|
||||||
print("Dataset was last updated on {0}. Retraining...".format(dataset_changed_time))
|
|
||||||
train_ds = train_ds.drop_columns(["partition_date"])
|
|
||||||
X_train = train_ds.drop_columns(
|
|
||||||
columns=[args.target_column]).to_pandas_dataframe()
|
|
||||||
y_train = train_ds.keep_columns(
|
|
||||||
columns=[args.target_column]).to_pandas_dataframe()
|
|
||||||
|
|
||||||
non_null = y_train[args.target_column].notnull()
|
|
||||||
y = y_train[non_null]
|
|
||||||
X = X_train[non_null]
|
|
||||||
|
|
||||||
if not (args.output_x is None and args.output_y is None):
|
|
||||||
write_output(X, args.output_x)
|
|
||||||
write_output(y, args.output_y)
|
|
||||||
else:
|
|
||||||
print("Cancelling run since there is no new data.")
|
print("Cancelling run since there is no new data.")
|
||||||
run.parent.cancel()
|
run.parent.cancel()
|
||||||
|
else:
|
||||||
|
# New data is available since the model was last trained
|
||||||
|
print("Dataset was last updated on {0}. Retraining...".format(dataset_changed_time))
|
||||||
|
|||||||
@@ -1,15 +0,0 @@
|
|||||||
import os
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
|
|
||||||
def get_data():
|
|
||||||
print("In get_data")
|
|
||||||
print(os.environ['AZUREML_DATAREFERENCE_output_x'])
|
|
||||||
X_train = pd.read_csv(
|
|
||||||
os.environ['AZUREML_DATAREFERENCE_output_x'] + "/part-00000")
|
|
||||||
y_train = pd.read_csv(
|
|
||||||
os.environ['AZUREML_DATAREFERENCE_output_y'] + "/part-00000")
|
|
||||||
|
|
||||||
print(X_train.head(3))
|
|
||||||
|
|
||||||
return {"X": X_train.values, "y": y_train.values.flatten()}
|
|
||||||
@@ -58,7 +58,7 @@ except Exception as e:
|
|||||||
print(traceback.format_exc())
|
print(traceback.format_exc())
|
||||||
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
|
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
|
||||||
register_dataset = True
|
register_dataset = True
|
||||||
end_time_last_slice = datetime.today() - relativedelta(weeks=1)
|
end_time_last_slice = datetime.today() - relativedelta(weeks=2)
|
||||||
|
|
||||||
end_time = datetime.utcnow()
|
end_time = datetime.utcnow()
|
||||||
train_df = get_noaa_data(end_time_last_slice, end_time)
|
train_df = get_noaa_data(end_time_last_slice, end_time)
|
||||||
@@ -80,10 +80,10 @@ if train_df.size > 0:
|
|||||||
target_path=folder_name,
|
target_path=folder_name,
|
||||||
overwrite=True,
|
overwrite=True,
|
||||||
show_progress=True)
|
show_progress=True)
|
||||||
|
else:
|
||||||
|
print("No new data since {0}.".format(end_time_last_slice))
|
||||||
|
|
||||||
if register_dataset:
|
if register_dataset:
|
||||||
ds = Dataset.Tabular.from_delimited_files(dstor.path("{}/**/*.csv".format(
|
ds = Dataset.Tabular.from_delimited_files(dstor.path("{}/**/*.csv".format(
|
||||||
args.ds_name)), partition_format='/{partition_date:yyyy/MM/dd/hh/mm/ss}/data.csv')
|
args.ds_name)), partition_format='/{partition_date:yyyy/MM/dd/HH/mm/ss}/data.csv')
|
||||||
ds.register(ws, name=args.ds_name)
|
ds.register(ws, name=args.ds_name)
|
||||||
else:
|
|
||||||
print("No new data since {0}.".format(end_time_last_slice))
|
|
||||||
|
|||||||
@@ -101,6 +101,23 @@
|
|||||||
"from azureml.train.estimator import Estimator"
|
"from azureml.train.estimator import Estimator"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@@ -128,7 +145,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -163,7 +179,7 @@
|
|||||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your CPU cluster\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"cpu_cluster_name = \"cpu-cluster\"\n",
|
"cpu_cluster_name = \"beer-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Verify that cluster does not exist already\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"try:\n",
|
"try:\n",
|
||||||
@@ -218,19 +234,18 @@
|
|||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
"from pandas import DataFrame\n",
|
"from pandas import DataFrame\n",
|
||||||
"from pandas import Grouper\n",
|
"from pandas import Grouper\n",
|
||||||
"from matplotlib import pyplot\n",
|
|
||||||
"from pandas import concat\n",
|
"from pandas import concat\n",
|
||||||
"from matplotlib import pyplot\n",
|
|
||||||
"from pandas.plotting import register_matplotlib_converters\n",
|
"from pandas.plotting import register_matplotlib_converters\n",
|
||||||
|
"\n",
|
||||||
"register_matplotlib_converters()\n",
|
"register_matplotlib_converters()\n",
|
||||||
"plt.tight_layout()\n",
|
|
||||||
"plt.figure(figsize=(20, 10))\n",
|
"plt.figure(figsize=(20, 10))\n",
|
||||||
|
"plt.tight_layout()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"plt.subplot(2, 1, 1)\n",
|
"plt.subplot(2, 1, 1)\n",
|
||||||
"plt.title('Beer Production By Year')\n",
|
"plt.title('Beer Production By Year')\n",
|
||||||
"df = pd.read_csv(\"Beer_no_valid_split_train.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
|
"df = pd.read_csv(\"Beer_no_valid_split_train.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
|
||||||
"test_df = pd.read_csv(\"Beer_no_valid_split_test.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
|
"test_df = pd.read_csv(\"Beer_no_valid_split_test.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
|
||||||
"pyplot.plot(df)\n",
|
"plt.plot(df)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"plt.subplot(2, 1, 2)\n",
|
"plt.subplot(2, 1, 2)\n",
|
||||||
"plt.title('Beer Production By Month')\n",
|
"plt.title('Beer Production By Month')\n",
|
||||||
@@ -239,7 +254,8 @@
|
|||||||
"months = DataFrame(months)\n",
|
"months = DataFrame(months)\n",
|
||||||
"months.columns = range(1,13)\n",
|
"months.columns = range(1,13)\n",
|
||||||
"months.boxplot()\n",
|
"months.boxplot()\n",
|
||||||
"pyplot.show()\n"
|
"\n",
|
||||||
|
"plt.show()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -358,7 +374,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||||
" experiment_timeout_minutes = 60,\n",
|
" experiment_timeout_hours = 1,\n",
|
||||||
" training_data=train_dataset,\n",
|
" training_data=train_dataset,\n",
|
||||||
" label_column_name=target_column_name,\n",
|
" label_column_name=target_column_name,\n",
|
||||||
" validation_data=valid_dataset, \n",
|
" validation_data=valid_dataset, \n",
|
||||||
@@ -538,7 +554,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"compute_target = ws.compute_targets['cpu-cluster']\n",
|
"compute_target = ws.compute_targets['beer-cluster']\n",
|
||||||
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
|
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -556,7 +572,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
||||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||||
"shutil.copy2('infer.py', script_folder)"
|
"shutil.copy('infer.py', script_folder)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -1,12 +1,11 @@
|
|||||||
name: auto-ml-forecasting-beer-remote
|
name: auto-ml-forecasting-beer-remote
|
||||||
dependencies:
|
dependencies:
|
||||||
- fbprophet==0.5
|
- py-xgboost<=0.90
|
||||||
- py-xgboost<=0.80
|
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
|
- numpy==1.16.2
|
||||||
|
- pandas==0.23.4
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-train
|
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
- azureml-train
|
||||||
- statsmodels
|
|
||||||
|
|||||||
@@ -76,9 +76,12 @@ def get_result_df(remote_run):
|
|||||||
def run_inference(test_experiment, compute_target, script_folder, train_run,
|
def run_inference(test_experiment, compute_target, script_folder, train_run,
|
||||||
test_dataset, lookback_dataset, max_horizon,
|
test_dataset, lookback_dataset, max_horizon,
|
||||||
target_column_name, time_column_name, freq):
|
target_column_name, time_column_name, freq):
|
||||||
train_run.download_file('outputs/model.pkl', 'inference/model.pkl')
|
model_base_name = 'model.pkl'
|
||||||
train_run.download_file('outputs/conda_env_v_1_0_0.yml',
|
if 'model_data_location' in train_run.properties:
|
||||||
'inference/condafile.yml')
|
model_location = train_run.properties['model_data_location']
|
||||||
|
_, model_base_name = model_location.rsplit('/', 1)
|
||||||
|
train_run.download_file('outputs/{}'.format(model_base_name), 'inference/{}'.format(model_base_name))
|
||||||
|
train_run.download_file('outputs/conda_env_v_1_0_0.yml', 'inference/condafile.yml')
|
||||||
|
|
||||||
inference_env = Environment("myenv")
|
inference_env = Environment("myenv")
|
||||||
inference_env.docker.enabled = True
|
inference_env.docker.enabled = True
|
||||||
@@ -91,7 +94,8 @@ def run_inference(test_experiment, compute_target, script_folder, train_run,
|
|||||||
'--max_horizon': max_horizon,
|
'--max_horizon': max_horizon,
|
||||||
'--target_column_name': target_column_name,
|
'--target_column_name': target_column_name,
|
||||||
'--time_column_name': time_column_name,
|
'--time_column_name': time_column_name,
|
||||||
'--frequency': freq
|
'--frequency': freq,
|
||||||
|
'--model_path': model_base_name
|
||||||
},
|
},
|
||||||
inputs=[test_dataset.as_named_input('test_data'),
|
inputs=[test_dataset.as_named_input('test_data'),
|
||||||
lookback_dataset.as_named_input('lookback_data')],
|
lookback_dataset.as_named_input('lookback_data')],
|
||||||
|
|||||||
@@ -4,8 +4,7 @@ import argparse
|
|||||||
from azureml.core import Run
|
from azureml.core import Run
|
||||||
from sklearn.externals import joblib
|
from sklearn.externals import joblib
|
||||||
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||||
from azureml.automl.core._vendor.automl.client.core.common import metrics
|
from azureml.automl.core.shared import constants, metrics
|
||||||
from automl.client.core.common import constants
|
|
||||||
from pandas.tseries.frequencies import to_offset
|
from pandas.tseries.frequencies import to_offset
|
||||||
|
|
||||||
|
|
||||||
@@ -232,6 +231,9 @@ parser.add_argument(
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'--frequency', type=str, dest='freq',
|
'--frequency', type=str, dest='freq',
|
||||||
help='Frequency of prediction')
|
help='Frequency of prediction')
|
||||||
|
parser.add_argument(
|
||||||
|
'--model_path', type=str, dest='model_path',
|
||||||
|
default='model.pkl', help='Filename of model to be loaded')
|
||||||
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@@ -239,6 +241,7 @@ max_horizon = args.max_horizon
|
|||||||
target_column_name = args.target_column_name
|
target_column_name = args.target_column_name
|
||||||
time_column_name = args.time_column_name
|
time_column_name = args.time_column_name
|
||||||
freq = args.freq
|
freq = args.freq
|
||||||
|
model_path = args.model_path
|
||||||
|
|
||||||
|
|
||||||
print('args passed are: ')
|
print('args passed are: ')
|
||||||
@@ -246,6 +249,7 @@ print(max_horizon)
|
|||||||
print(target_column_name)
|
print(target_column_name)
|
||||||
print(time_column_name)
|
print(time_column_name)
|
||||||
print(freq)
|
print(freq)
|
||||||
|
print(model_path)
|
||||||
|
|
||||||
run = Run.get_context()
|
run = Run.get_context()
|
||||||
# get input dataset by name
|
# get input dataset by name
|
||||||
@@ -267,7 +271,8 @@ X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
|
|||||||
y_lookback_df = lookback_dataset.with_timestamp_columns(
|
y_lookback_df = lookback_dataset.with_timestamp_columns(
|
||||||
None).keep_columns(columns=[target_column_name])
|
None).keep_columns(columns=[target_column_name])
|
||||||
|
|
||||||
fitted_model = joblib.load('model.pkl')
|
fitted_model = joblib.load(model_path)
|
||||||
|
|
||||||
|
|
||||||
if hasattr(fitted_model, 'get_lookback'):
|
if hasattr(fitted_model, 'get_lookback'):
|
||||||
lookback = fitted_model.get_lookback()
|
lookback = fitted_model.get_lookback()
|
||||||
|
|||||||
@@ -74,6 +74,23 @@
|
|||||||
"from datetime import datetime"
|
"from datetime import datetime"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -95,7 +112,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['SKU'] = ws.sku\n",
|
"output['SKU'] = ws.sku\n",
|
||||||
@@ -124,35 +140,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your cluster.\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-bike\"\n",
|
"amlcompute_cluster_name = \"bike-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=4)\n",
|
" max_nodes=4)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
" \n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -248,7 +251,7 @@
|
|||||||
"|**task**|forecasting|\n",
|
"|**task**|forecasting|\n",
|
||||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
||||||
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
|
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
|
||||||
"|**experiment_timeout_minutes**|Experimentation timeout in minutes.|\n",
|
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
|
||||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||||
"|**label_column_name**|The name of the label column.|\n",
|
"|**label_column_name**|The name of the label column.|\n",
|
||||||
"|**compute_target**|The remote compute for training.|\n",
|
"|**compute_target**|The remote compute for training.|\n",
|
||||||
@@ -260,7 +263,7 @@
|
|||||||
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
|
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
|
||||||
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
|
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_minutes parameter value to get results."
|
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -305,7 +308,7 @@
|
|||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||||
" blacklist_models = ['ExtremeRandomTrees'], \n",
|
" blacklist_models = ['ExtremeRandomTrees'], \n",
|
||||||
" experiment_timeout_minutes=20,\n",
|
" experiment_timeout_hours=0.3,\n",
|
||||||
" training_data=train,\n",
|
" training_data=train,\n",
|
||||||
" label_column_name=target_column_name,\n",
|
" label_column_name=target_column_name,\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
@@ -450,8 +453,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"script_folder = os.path.join(os.getcwd(), 'forecast')\n",
|
"script_folder = os.path.join(os.getcwd(), 'forecast')\n",
|
||||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||||
"shutil.copy2('forecasting_script.py', script_folder)\n",
|
"shutil.copy('forecasting_script.py', script_folder)\n",
|
||||||
"shutil.copy2('forecasting_helper.py', script_folder)"
|
"shutil.copy('forecasting_helper.py', script_folder)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -507,17 +510,16 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
"from azureml.automl.core.shared import constants\n",
|
||||||
|
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
|
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
|
||||||
"from matplotlib import pyplot as plt\n",
|
"from matplotlib import pyplot as plt\n",
|
||||||
"from automl.client.core.common import constants\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# use automl metrics module\n",
|
"# use automl metrics module\n",
|
||||||
"scores = metrics.compute_metrics_regression(\n",
|
"scores = scoring.score_regression(\n",
|
||||||
" df_all['predicted'],\n",
|
" y_test=df_all[target_column_name],\n",
|
||||||
" df_all[target_column_name],\n",
|
" y_pred=df_all['predicted'],\n",
|
||||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||||
" None, None, None)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"[Test data scores]\\n\")\n",
|
"print(\"[Test data scores]\\n\")\n",
|
||||||
"for key, value in scores.items(): \n",
|
"for key, value in scores.items(): \n",
|
||||||
|
|||||||
@@ -1,11 +1,10 @@
|
|||||||
name: auto-ml-forecasting-bike-share
|
name: auto-ml-forecasting-bike-share
|
||||||
dependencies:
|
dependencies:
|
||||||
- fbprophet==0.5
|
- py-xgboost<=0.90
|
||||||
- py-xgboost<=0.80
|
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
|
- numpy==1.16.2
|
||||||
|
- pandas==0.23.4
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
- statsmodels
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import azureml.train.automl
|
import azureml.train.automl
|
||||||
from azureml.automl.runtime._vendor.automl.client.core.runtime import forecasting_models
|
from azureml.automl.runtime.shared import forecasting_models
|
||||||
from azureml.core import Run
|
from azureml.core import Run
|
||||||
from sklearn.externals import joblib
|
from sklearn.externals import joblib
|
||||||
import forecasting_helper
|
import forecasting_helper
|
||||||
|
|||||||
@@ -28,7 +28,6 @@
|
|||||||
"1. [Setup](#Setup)\n",
|
"1. [Setup](#Setup)\n",
|
||||||
"1. [Data and Forecasting Configurations](#Data)\n",
|
"1. [Data and Forecasting Configurations](#Data)\n",
|
||||||
"1. [Train](#Train)\n",
|
"1. [Train](#Train)\n",
|
||||||
"1. [Results](#Results)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"Advanced Forecasting\n",
|
"Advanced Forecasting\n",
|
||||||
"1. [Advanced Training](#advanced_training)\n",
|
"1. [Advanced Training](#advanced_training)\n",
|
||||||
@@ -43,7 +42,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"In this example we use the associated New York City energy demand dataset to showcase how you can use AutoML for a simple forecasting problem and explore the results. The goal is predict the energy demand for the next 48 hours based on historic time-series data.\n",
|
"In this example we use the associated New York City energy demand dataset to showcase how you can use AutoML for a simple forecasting problem and explore the results. The goal is predict the energy demand for the next 48 hours based on historic time-series data.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first, if you haven't already, to establish your connection to the AzureML Workspace.\n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first, if you haven't already, to establish your connection to the AzureML Workspace.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this notebook you will learn how to:\n",
|
"In this notebook you will learn how to:\n",
|
||||||
"1. Creating an Experiment using an existing Workspace\n",
|
"1. Creating an Experiment using an existing Workspace\n",
|
||||||
@@ -85,6 +84,23 @@
|
|||||||
"from datetime import datetime"
|
"from datetime import datetime"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -109,7 +125,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -140,35 +155,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your cluster.\n",
|
||||||
"amlcompute_cluster_name = \"aml-compute\"\n",
|
"amlcompute_cluster_name = \"energy-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
"\n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_DS12_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=6)\n",
|
" max_nodes=6)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\\n\",\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
"\n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
"\n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -253,7 +255,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# split into train based on time\n",
|
"# split into train based on time\n",
|
||||||
"train = dataset.time_before(datetime(2017, 8, 8, 5), include_boundary=True)\n",
|
"train = dataset.time_before(datetime(2017, 8, 8, 5), include_boundary=True)\n",
|
||||||
"train.to_pandas_dataframe().sort_values(time_column_name).tail(5).reset_index(drop=True)"
|
"train.to_pandas_dataframe().reset_index(drop=True).sort_values(time_column_name).tail(5)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -264,7 +266,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# split into test based on time\n",
|
"# split into test based on time\n",
|
||||||
"test = dataset.time_between(datetime(2017, 8, 8, 6), datetime(2017, 8, 10, 5))\n",
|
"test = dataset.time_between(datetime(2017, 8, 8, 6), datetime(2017, 8, 10, 5))\n",
|
||||||
"test.to_pandas_dataframe().head(5).reset_index(drop=True)"
|
"test.to_pandas_dataframe().reset_index(drop=True).head(5)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -302,7 +304,7 @@
|
|||||||
"|**task**|forecasting|\n",
|
"|**task**|forecasting|\n",
|
||||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
||||||
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
|
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
|
||||||
"|**experiment_timeout_minutes**|Maximum amount of time in minutes that the experiment take before it terminates.|\n",
|
"|**experiment_timeout_hours**|Maximum amount of time in hours that the experiment take before it terminates.|\n",
|
||||||
"|**training_data**|The training data to be used within the experiment.|\n",
|
"|**training_data**|The training data to be used within the experiment.|\n",
|
||||||
"|**label_column_name**|The name of the label column.|\n",
|
"|**label_column_name**|The name of the label column.|\n",
|
||||||
"|**compute_target**|The remote compute for training.|\n",
|
"|**compute_target**|The remote compute for training.|\n",
|
||||||
@@ -316,7 +318,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_minutes parameter value to get results."
|
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -333,7 +335,7 @@
|
|||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||||
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
|
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
|
||||||
" experiment_timeout_minutes=20,\n",
|
" experiment_timeout_hours=0.3,\n",
|
||||||
" training_data=train,\n",
|
" training_data=train,\n",
|
||||||
" label_column_name=target_column_name,\n",
|
" label_column_name=target_column_name,\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
@@ -463,7 +465,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"### Forecast Function\n",
|
"### Forecast Function\n",
|
||||||
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see notebook on [high frequency forecasting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/automl-forecasting-function.ipynb)."
|
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see the [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -505,16 +507,15 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
"from azureml.automl.core.shared import constants\n",
|
||||||
|
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||||
"from matplotlib import pyplot as plt\n",
|
"from matplotlib import pyplot as plt\n",
|
||||||
"from automl.client.core.common import constants\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# use automl metrics module\n",
|
"# use automl metrics module\n",
|
||||||
"scores = metrics.compute_metrics_regression(\n",
|
"scores = scoring.score_regression(\n",
|
||||||
" df_all['predicted'],\n",
|
" y_test=df_all[target_column_name],\n",
|
||||||
" df_all[target_column_name],\n",
|
" y_pred=df_all['predicted'],\n",
|
||||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||||
" None, None, None)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"[Test data scores]\\n\")\n",
|
"print(\"[Test data scores]\\n\")\n",
|
||||||
"for key, value in scores.items(): \n",
|
"for key, value in scores.items(): \n",
|
||||||
@@ -578,7 +579,7 @@
|
|||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||||
" blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
|
" blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
|
||||||
" experiment_timeout_minutes=20,\n",
|
" experiment_timeout_hours=0.3,\n",
|
||||||
" training_data=train,\n",
|
" training_data=train,\n",
|
||||||
" label_column_name=target_column_name,\n",
|
" label_column_name=target_column_name,\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
@@ -666,16 +667,15 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
"from azureml.automl.core.shared import constants\n",
|
||||||
|
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||||
"from matplotlib import pyplot as plt\n",
|
"from matplotlib import pyplot as plt\n",
|
||||||
"from automl.client.core.common import constants\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# use automl metrics module\n",
|
"# use automl metrics module\n",
|
||||||
"scores = metrics.compute_metrics_regression(\n",
|
"scores = scoring.score_regression(\n",
|
||||||
" df_all['predicted'],\n",
|
" y_test=df_all[target_column_name],\n",
|
||||||
" df_all[target_column_name],\n",
|
" y_pred=df_all['predicted'],\n",
|
||||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||||
" None, None, None)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"[Test data scores]\\n\")\n",
|
"print(\"[Test data scores]\\n\")\n",
|
||||||
"for key, value in scores.items(): \n",
|
"for key, value in scores.items(): \n",
|
||||||
|
|||||||
@@ -2,11 +2,8 @@ name: auto-ml-forecasting-energy-demand
|
|||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- interpret
|
- numpy==1.16.2
|
||||||
|
- pandas==0.23.4
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
- statsmodels
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-contrib-interpret
|
|
||||||
|
|||||||
@@ -35,7 +35,6 @@
|
|||||||
"Terminology:\n",
|
"Terminology:\n",
|
||||||
"* forecast origin: the last period when the target value is known\n",
|
"* forecast origin: the last period when the target value is known\n",
|
||||||
"* forecast periods(s): the period(s) for which the value of the target is desired.\n",
|
"* forecast periods(s): the period(s) for which the value of the target is desired.\n",
|
||||||
"* forecast horizon: the number of forecast periods\n",
|
|
||||||
"* lookback: how many past periods (before forecast origin) the model function depends on. The larger of number of lags and length of rolling window.\n",
|
"* lookback: how many past periods (before forecast origin) the model function depends on. The larger of number of lags and length of rolling window.\n",
|
||||||
"* prediction context: `lookback` periods immediately preceding the forecast origin\n",
|
"* prediction context: `lookback` periods immediately preceding the forecast origin\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -68,6 +67,7 @@
|
|||||||
"import logging\n",
|
"import logging\n",
|
||||||
"import warnings\n",
|
"import warnings\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"import azureml.core\n",
|
||||||
"from azureml.core.dataset import Dataset\n",
|
"from azureml.core.dataset import Dataset\n",
|
||||||
"from pandas.tseries.frequencies import to_offset\n",
|
"from pandas.tseries.frequencies import to_offset\n",
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import AmlCompute\n",
|
||||||
@@ -81,13 +81,29 @@
|
|||||||
"np.set_printoptions(precision=4, suppress=True, linewidth=120)"
|
"np.set_printoptions(precision=4, suppress=True, linewidth=120)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import azureml.core\n",
|
|
||||||
"from azureml.core.workspace import Workspace\n",
|
"from azureml.core.workspace import Workspace\n",
|
||||||
"from azureml.core.experiment import Experiment\n",
|
"from azureml.core.experiment import Experiment\n",
|
||||||
"from azureml.train.automl import AutoMLConfig\n",
|
"from azureml.train.automl import AutoMLConfig\n",
|
||||||
@@ -100,7 +116,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['SKU'] = ws.sku\n",
|
"output['SKU'] = ws.sku\n",
|
||||||
@@ -258,29 +273,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-fcfn\"\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"amlcompute_cluster_name = \"fcfn-cluster\"\n",
|
||||||
"cts = ws.compute_targets\n",
|
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
|
||||||
" found = True\n",
|
|
||||||
" print('Found existing compute target.')\n",
|
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"if not found:\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
" print('Creating a new compute target...')\n",
|
"try:\n",
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
|
"except ComputeTargetException:\n",
|
||||||
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" max_nodes=6)\n",
|
" max_nodes=6)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\\n\",\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
"\n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -335,7 +343,7 @@
|
|||||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||||
" debug_log='automl_forecasting_function.log',\n",
|
" debug_log='automl_forecasting_function.log',\n",
|
||||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||||
" experiment_timeout_minutes=15,\n",
|
" experiment_timeout_hours=0.25,\n",
|
||||||
" enable_early_stopping=True,\n",
|
" enable_early_stopping=True,\n",
|
||||||
" training_data=train_data,\n",
|
" training_data=train_data,\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
@@ -346,9 +354,24 @@
|
|||||||
" label_column_name=target_label,\n",
|
" label_column_name=target_label,\n",
|
||||||
" **time_series_settings)\n",
|
" **time_series_settings)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||||
"remote_run.wait_for_completion()\n",
|
]
|
||||||
"\n",
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"remote_run.wait_for_completion()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
"# Retrieve the best model to use it further.\n",
|
"# Retrieve the best model to use it further.\n",
|
||||||
"_, fitted_model = remote_run.get_output()"
|
"_, fitted_model = remote_run.get_output()"
|
||||||
]
|
]
|
||||||
@@ -459,8 +482,8 @@
|
|||||||
"# use forecast_quantiles function, not the forecast() one\n",
|
"# use forecast_quantiles function, not the forecast() one\n",
|
||||||
"y_pred_quantiles = fitted_model.forecast_quantiles(X_test)\n",
|
"y_pred_quantiles = fitted_model.forecast_quantiles(X_test)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# it all nicely aligns column-wise\n",
|
"# quantile forecasts returned in a Dataframe along with the time and grain columns \n",
|
||||||
"pd.concat([X_test.reset_index(), y_pred_quantiles], axis=1)"
|
"y_pred_quantiles"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -696,12 +719,96 @@
|
|||||||
"X_show[['date', 'grain', 'ext_predictor', '_automl_target_col']]\n",
|
"X_show[['date', 'grain', 'ext_predictor', '_automl_target_col']]\n",
|
||||||
"# prediction is in _automl_target_col"
|
"# prediction is in _automl_target_col"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Forecasting farther than the maximum horizon <a id=\"recursive forecasting\"></a>\n",
|
||||||
|
"When the forecast destination, or the latest date in the prediction data frame, is farther into the future than the specified maximum horizon, the `forecast()` function will still make point predictions out to the later date using a recursive operation mode. Internally, the method recursively applies the regular forecaster to generate context so that we can forecast further into the future. \n",
|
||||||
|
"\n",
|
||||||
|
"To illustrate the use-case and operation of recursive forecasting, we'll consider an example with a single time-series where the forecasting period directly follows the training period and is twice as long as the maximum horizon given at training time.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"Internally, we apply the forecaster in an iterative manner and finish the forecast task in two interations. In the first iteration, we apply the forecaster and get the prediction for the first max-horizon periods (y_pred1). In the second iteraction, y_pred1 is used as the context to produce the prediction for the next max-horizon periods (y_pred2). The combination of (y_pred1 and y_pred2) gives the results for the total forecast periods. \n",
|
||||||
|
"\n",
|
||||||
|
"A caveat: forecast accuracy will likely be worse the farther we predict into the future since errors are compounded with recursive application of the forecaster.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# generate the same kind of test data we trained on, but with a single grain/time-series and test period twice as long as the max_horizon\n",
|
||||||
|
"_, _, X_test_long, y_test_long = get_timeseries(train_len=n_train_periods,\n",
|
||||||
|
" test_len=max_horizon*2,\n",
|
||||||
|
" time_column_name=TIME_COLUMN_NAME,\n",
|
||||||
|
" target_column_name=TARGET_COLUMN_NAME,\n",
|
||||||
|
" grain_column_name=GRAIN_COLUMN_NAME,\n",
|
||||||
|
" grains=1)\n",
|
||||||
|
"\n",
|
||||||
|
"print(X_test_long.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].min())\n",
|
||||||
|
"print(X_test_long.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].max())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# forecast() function will invoke the recursive forecast method internally.\n",
|
||||||
|
"y_pred_long, X_trans_long = fitted_model.forecast(X_test_long)\n",
|
||||||
|
"y_pred_long"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# What forecast() function does in this case is equivalent to iterating it twice over the test set as the following. \n",
|
||||||
|
"y_pred1, _ = fitted_model.forecast(X_test_long[:max_horizon])\n",
|
||||||
|
"y_pred_all, _ = fitted_model.forecast(X_test_long, np.concatenate((y_pred1, np.full(max_horizon, np.nan))))\n",
|
||||||
|
"np.array_equal(y_pred_all, y_pred_long)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Confidence interval and distributional forecasts\n",
|
||||||
|
"AutoML cannot currently estimate forecast errors beyond the maximum horizon set during training, so the `forecast_quantiles()` function will return missing values for quantiles not equal to 0.5 beyond the maximum horizon. "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fitted_model.forecast_quantiles(X_test_long)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Similarly with the simple senarios illustrated above, forecasting farther than the max horizon in other senarios like 'multiple grain', 'Destination-date forecast', and 'forecast away from the training data' are also automatically handled by the `forecast()` function. "
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"authors": [
|
"authors": [
|
||||||
{
|
{
|
||||||
"name": "erwright, nirovins"
|
"name": "erwright"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"category": "tutorial",
|
"category": "tutorial",
|
||||||
@@ -0,0 +1,10 @@
|
|||||||
|
name: auto-ml-forecasting-function
|
||||||
|
dependencies:
|
||||||
|
- py-xgboost<=0.90
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- numpy==1.16.2
|
||||||
|
- pandas==0.23.4
|
||||||
|
- azureml-train-automl
|
||||||
|
- azureml-widgets
|
||||||
|
- matplotlib
|
||||||
Binary file not shown.
|
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 26 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 30 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 21 KiB |
@@ -1,551 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"Licensed under the MIT License."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Automated Machine Learning\n",
|
|
||||||
"\n",
|
|
||||||
"_**Forecasting with grouping using Pipelines**_\n",
|
|
||||||
"\n",
|
|
||||||
"## Contents\n",
|
|
||||||
"\n",
|
|
||||||
"1. [Introduction](#Introduction)\n",
|
|
||||||
"2. [Setup](#Setup)\n",
|
|
||||||
"3. [Data](#Data)\n",
|
|
||||||
"4. [Compute](#Compute)\n",
|
|
||||||
"4. [AutoMLConfig](#AutoMLConfig)\n",
|
|
||||||
"5. [Pipeline](#Pipeline)\n",
|
|
||||||
"5. [Train](#Train)\n",
|
|
||||||
"6. [Test](#Test)\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"## Introduction\n",
|
|
||||||
"In this example we use Automated ML and Pipelines to train, select, and operationalize forecasting models for multiple time-series.\n",
|
|
||||||
"\n",
|
|
||||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace.\n",
|
|
||||||
"\n",
|
|
||||||
"In this notebook you will learn how to:\n",
|
|
||||||
"\n",
|
|
||||||
"* Create an Experiment in an existing Workspace.\n",
|
|
||||||
"* Configure AutoML using AutoMLConfig.\n",
|
|
||||||
"* Use our helper script to generate pipeline steps to split, train, and deploy the models.\n",
|
|
||||||
"* Explore the results.\n",
|
|
||||||
"* Test the models.\n",
|
|
||||||
"\n",
|
|
||||||
"It is advised you ensure your cluster has at least one node per group.\n",
|
|
||||||
"\n",
|
|
||||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)\n",
|
|
||||||
"\n",
|
|
||||||
"## Setup\n",
|
|
||||||
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import json\n",
|
|
||||||
"import logging\n",
|
|
||||||
"import warnings\n",
|
|
||||||
"\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"\n",
|
|
||||||
"import azureml.core\n",
|
|
||||||
"\n",
|
|
||||||
"from azureml.core.workspace import Workspace\n",
|
|
||||||
"from azureml.core.experiment import Experiment\n",
|
|
||||||
"from azureml.train.automl import AutoMLConfig"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Accessing the Azure ML workspace requires authentication with Azure.\n",
|
|
||||||
"\n",
|
|
||||||
"The default authentication is interactive authentication using the default tenant. Executing the ws = Workspace.from_config() line in the cell below will prompt for authentication the first time that it is run.\n",
|
|
||||||
"\n",
|
|
||||||
"If you have multiple Azure tenants, you can specify the tenant by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
|
|
||||||
"```\n",
|
|
||||||
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
|
|
||||||
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
|
|
||||||
"ws = Workspace.from_config(auth = auth)\n",
|
|
||||||
"```\n",
|
|
||||||
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
|
|
||||||
"```\n",
|
|
||||||
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
|
|
||||||
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
|
|
||||||
"ws = Workspace.from_config(auth = auth)\n",
|
|
||||||
"```\n",
|
|
||||||
"For more details, see aka.ms/aml-notebook-auth"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"ws = Workspace.from_config()\n",
|
|
||||||
"ds = ws.get_default_datastore()\n",
|
|
||||||
"\n",
|
|
||||||
"# choose a name for the run history container in the workspace\n",
|
|
||||||
"experiment_name = 'automl-grouping-oj'\n",
|
|
||||||
"# project folder\n",
|
|
||||||
"project_folder = './sample_projects/{}'.format(experiment_name)\n",
|
|
||||||
"\n",
|
|
||||||
"experiment = Experiment(ws, experiment_name)\n",
|
|
||||||
"\n",
|
|
||||||
"output = {}\n",
|
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
|
||||||
"output['Workspace'] = ws.name\n",
|
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
|
||||||
"output['Location'] = ws.location\n",
|
|
||||||
"output['Project Directory'] = project_folder\n",
|
|
||||||
"output['Run History Name'] = experiment_name\n",
|
|
||||||
"pd.set_option('display.max_colwidth', -1)\n",
|
|
||||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
|
||||||
"outputDf.T"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Data\n",
|
|
||||||
"Upload data to your default datastore and then load it as a `TabularDataset`"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.dataset import Dataset"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# upload training and test data to your default datastore\n",
|
|
||||||
"ds = ws.get_default_datastore()\n",
|
|
||||||
"ds.upload(src_dir='./data', target_path='groupdata', overwrite=True, show_progress=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# load data from your datastore\n",
|
|
||||||
"data = Dataset.Tabular.from_delimited_files(path=ds.path('groupdata/dominicks_OJ_2_5_8_train.csv'))\n",
|
|
||||||
"data_test = Dataset.Tabular.from_delimited_files(path=ds.path('groupdata/dominicks_OJ_2_5_8_test.csv'))\n",
|
|
||||||
"\n",
|
|
||||||
"data.take(5).to_pandas_dataframe()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Compute \n",
|
|
||||||
"\n",
|
|
||||||
"#### Create or Attach existing AmlCompute\n",
|
|
||||||
"\n",
|
|
||||||
"You will need to create a compute target for your automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
|
||||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
|
||||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
|
||||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
|
||||||
"\n",
|
|
||||||
"# Choose a name for your cluster.\n",
|
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-11\"\n",
|
|
||||||
"\n",
|
|
||||||
"found = False\n",
|
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
|
||||||
"cts = ws.compute_targets\n",
|
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
|
||||||
" found = True\n",
|
|
||||||
" print('Found existing compute target.')\n",
|
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes = 6)\n",
|
|
||||||
"\n",
|
|
||||||
" # Create the cluster.\n",
|
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
" \n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## AutoMLConfig\n",
|
|
||||||
"#### Create a base AutoMLConfig\n",
|
|
||||||
"This configuration will be used for all the groups in the pipeline."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"target_column = 'Quantity'\n",
|
|
||||||
"time_column_name = 'WeekStarting'\n",
|
|
||||||
"grain_column_names = ['Brand']\n",
|
|
||||||
"group_column_names = ['Store']\n",
|
|
||||||
"max_horizon = 20"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"automl_settings = {\n",
|
|
||||||
" \"iteration_timeout_minutes\" : 5,\n",
|
|
||||||
" \"experiment_timeout_minutes\" : 15,\n",
|
|
||||||
" \"primary_metric\" : 'normalized_mean_absolute_error',\n",
|
|
||||||
" \"time_column_name\": time_column_name,\n",
|
|
||||||
" \"grain_column_names\": grain_column_names,\n",
|
|
||||||
" \"max_horizon\": max_horizon,\n",
|
|
||||||
" \"drop_column_names\": ['logQuantity'],\n",
|
|
||||||
" \"max_concurrent_iterations\": 2,\n",
|
|
||||||
" \"max_cores_per_iteration\": -1\n",
|
|
||||||
"}\n",
|
|
||||||
"base_configuration = AutoMLConfig(task = 'forecasting',\n",
|
|
||||||
" path = project_folder,\n",
|
|
||||||
" n_cross_validations=3,\n",
|
|
||||||
" **automl_settings\n",
|
|
||||||
" )"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Pipeline\n",
|
|
||||||
"We've written a script to generate the individual pipeline steps used to create each automl step. Calling this script will return a list of PipelineSteps that will train multiple groups concurrently and then deploy these models.\n",
|
|
||||||
"\n",
|
|
||||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade).\n",
|
|
||||||
"\n",
|
|
||||||
"### Call the method to build pipeline steps\n",
|
|
||||||
"\n",
|
|
||||||
"`build_pipeline_steps()` takes as input:\n",
|
|
||||||
"* **automlconfig**: This is the configuration used for every automl step\n",
|
|
||||||
"* **df**: This is the dataset to be used for training\n",
|
|
||||||
"* **target_column**: This is the target column of the dataset\n",
|
|
||||||
"* **compute_target**: The compute to be used for training\n",
|
|
||||||
"* **deploy**: The option on to deploy the models after training, if set to true an extra step will be added to deploy a webservice with all the models (default is `True`)\n",
|
|
||||||
"* **service_name**: The service name for the model query endpoint\n",
|
|
||||||
"* **time_column_name**: The time column of the data"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.webservice import Webservice\n",
|
|
||||||
"from azureml.exceptions import WebserviceException\n",
|
|
||||||
"\n",
|
|
||||||
"service_name = 'grouped-model'\n",
|
|
||||||
"try:\n",
|
|
||||||
" # if you want to get existing service below is the command\n",
|
|
||||||
" # since aci name needs to be unique in subscription deleting existing aci if any\n",
|
|
||||||
" # we use aci_service_name to create azure aci\n",
|
|
||||||
" service = Webservice(ws, name=service_name)\n",
|
|
||||||
" if service:\n",
|
|
||||||
" service.delete()\n",
|
|
||||||
"except WebserviceException as e:\n",
|
|
||||||
" pass"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from build import build_pipeline_steps\n",
|
|
||||||
"\n",
|
|
||||||
"steps = build_pipeline_steps(\n",
|
|
||||||
" base_configuration, \n",
|
|
||||||
" data, \n",
|
|
||||||
" target_column,\n",
|
|
||||||
" compute_target, \n",
|
|
||||||
" group_column_names=group_column_names, \n",
|
|
||||||
" deploy=True, \n",
|
|
||||||
" service_name=service_name, \n",
|
|
||||||
" time_column_name=time_column_name\n",
|
|
||||||
")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Train\n",
|
|
||||||
"Use the list of steps generated from above to build the pipeline and submit it to your compute for remote training."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.pipeline.core import Pipeline\n",
|
|
||||||
"pipeline = Pipeline(\n",
|
|
||||||
" description=\"A pipeline with one model per data group using Automated ML.\",\n",
|
|
||||||
" workspace=ws, \n",
|
|
||||||
" steps=steps)\n",
|
|
||||||
"\n",
|
|
||||||
"pipeline_run = experiment.submit(pipeline)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.widgets import RunDetails\n",
|
|
||||||
"RunDetails(pipeline_run).show()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"pipeline_run.wait_for_completion(show_output=False)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Test\n",
|
|
||||||
"\n",
|
|
||||||
"Now we can use the holdout set to test our models and ensure our web-service is running as expected."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.webservice import AciWebservice\n",
|
|
||||||
"service = AciWebservice(ws, service_name)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"X_test = data_test.to_pandas_dataframe()\n",
|
|
||||||
"# Drop the column we are trying to predict (target column)\n",
|
|
||||||
"x_pred = X_test.drop(target_column, inplace=False, axis=1)\n",
|
|
||||||
"x_pred.head()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Get Predictions\n",
|
|
||||||
"test_sample = X_test.drop(target_column, inplace=False, axis=1).to_json()\n",
|
|
||||||
"predictions = service.run(input_data=test_sample)\n",
|
|
||||||
"print(predictions)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Convert predictions from JSON to DataFrame\n",
|
|
||||||
"pred_dict =json.loads(predictions)\n",
|
|
||||||
"X_pred = pd.read_json(pred_dict['predictions'])\n",
|
|
||||||
"X_pred.head()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Fix the index\n",
|
|
||||||
"PRED = 'pred_target'\n",
|
|
||||||
"X_pred[time_column_name] = pd.to_datetime(X_pred[time_column_name], unit='ms')\n",
|
|
||||||
"\n",
|
|
||||||
"X_pred.set_index([time_column_name] + grain_column_names, inplace=True, drop=True)\n",
|
|
||||||
"X_pred.rename({'_automl_target_col': PRED}, inplace=True, axis=1)\n",
|
|
||||||
"# Drop all but the target column and index\n",
|
|
||||||
"X_pred.drop(list(set(X_pred.columns.values).difference({PRED})), axis=1, inplace=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"X_test[time_column_name] = pd.to_datetime(X_test[time_column_name])\n",
|
|
||||||
"X_test.set_index([time_column_name] + grain_column_names, inplace=True, drop=True)\n",
|
|
||||||
"# Merge predictions with raw features\n",
|
|
||||||
"pred_test = X_test.merge(X_pred, left_index=True, right_index=True)\n",
|
|
||||||
"pred_test.head()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
|
|
||||||
"def MAPE(actual, pred):\n",
|
|
||||||
" \"\"\"\n",
|
|
||||||
" Calculate mean absolute percentage error.\n",
|
|
||||||
" Remove NA and values where actual is close to zero\n",
|
|
||||||
" \"\"\"\n",
|
|
||||||
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
|
|
||||||
" not_zero = ~np.isclose(actual, 0.0)\n",
|
|
||||||
" actual_safe = actual[not_na & not_zero]\n",
|
|
||||||
" pred_safe = pred[not_na & not_zero]\n",
|
|
||||||
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
|
|
||||||
" return np.mean(APE)\n",
|
|
||||||
"\n",
|
|
||||||
"def get_metrics(actuals, preds):\n",
|
|
||||||
" return pd.Series(\n",
|
|
||||||
" {\n",
|
|
||||||
" \"RMSE\": np.sqrt(mean_squared_error(actuals, preds)),\n",
|
|
||||||
" \"NormRMSE\": np.sqrt(mean_squared_error(actuals, preds))/np.abs(actuals.max()-actuals.min()),\n",
|
|
||||||
" \"MAE\": mean_absolute_error(actuals, preds),\n",
|
|
||||||
" \"MAPE\": MAPE(actuals, preds)},\n",
|
|
||||||
" )"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"get_metrics(pred_test[PRED].values, pred_test[target_column].values)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "alyerman"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"category": "other",
|
|
||||||
"compute": [
|
|
||||||
"AML Compute"
|
|
||||||
],
|
|
||||||
"datasets": [
|
|
||||||
"Orange Juice Sales"
|
|
||||||
],
|
|
||||||
"deployment": [
|
|
||||||
"Azure Container Instance"
|
|
||||||
],
|
|
||||||
"exclude_from_index": false,
|
|
||||||
"framework": [
|
|
||||||
"Scikit-learn",
|
|
||||||
"Pytorch"
|
|
||||||
],
|
|
||||||
"friendly_name": "Automated ML Grouping with Pipeline.",
|
|
||||||
"index_order": 10,
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.6.6"
|
|
||||||
},
|
|
||||||
"tags": [
|
|
||||||
"AutomatedML"
|
|
||||||
],
|
|
||||||
"task": "Use AzureML Pipeline to trigger multiple Automated ML runs."
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -1,144 +0,0 @@
|
|||||||
from typing import List, Dict
|
|
||||||
import copy
|
|
||||||
import json
|
|
||||||
import pandas as pd
|
|
||||||
import re
|
|
||||||
|
|
||||||
from azureml.core import RunConfiguration
|
|
||||||
from azureml.core.compute import ComputeTarget
|
|
||||||
from azureml.core.conda_dependencies import CondaDependencies
|
|
||||||
from azureml.core.dataset import Dataset
|
|
||||||
from azureml.data import TabularDataset
|
|
||||||
from azureml.pipeline.core import PipelineData, PipelineParameter, TrainingOutput, StepSequence
|
|
||||||
from azureml.pipeline.steps import PythonScriptStep
|
|
||||||
from azureml.train.automl import AutoMLConfig
|
|
||||||
from azureml.train.automl.runtime import AutoMLStep
|
|
||||||
|
|
||||||
|
|
||||||
def _get_groups(data: Dataset, group_column_names: List[str]) -> pd.DataFrame:
|
|
||||||
return data._dataflow.distinct(columns=group_column_names)\
|
|
||||||
.keep_columns(columns=group_column_names).to_pandas_dataframe()
|
|
||||||
|
|
||||||
|
|
||||||
def _get_configs(automlconfig: AutoMLConfig,
|
|
||||||
data: Dataset,
|
|
||||||
target_column: str,
|
|
||||||
compute_target: ComputeTarget,
|
|
||||||
group_column_names: List[str]) -> Dict[str, AutoMLConfig]:
|
|
||||||
# remove invalid characters regex
|
|
||||||
valid_chars = re.compile('[^a-zA-Z0-9-]')
|
|
||||||
groups = _get_groups(data, group_column_names)
|
|
||||||
configs = {}
|
|
||||||
for i, group in groups.iterrows():
|
|
||||||
single = data
|
|
||||||
group_name = "#####".join(str(x) for x in group.values)
|
|
||||||
group_name = valid_chars.sub('', group_name)
|
|
||||||
for key in group.index:
|
|
||||||
single = single._dataflow.filter(data._dataflow[key] == group[key])
|
|
||||||
t_dataset = TabularDataset._create(single)
|
|
||||||
group_conf = copy.deepcopy(automlconfig)
|
|
||||||
group_conf.user_settings['training_data'] = t_dataset
|
|
||||||
group_conf.user_settings['label_column_name'] = target_column
|
|
||||||
group_conf.user_settings['compute_target'] = compute_target
|
|
||||||
configs[group_name] = group_conf
|
|
||||||
return configs
|
|
||||||
|
|
||||||
|
|
||||||
def build_pipeline_steps(automlconfig: AutoMLConfig,
|
|
||||||
data: Dataset,
|
|
||||||
target_column: str,
|
|
||||||
compute_target: ComputeTarget,
|
|
||||||
group_column_names: list,
|
|
||||||
time_column_name: str,
|
|
||||||
deploy: bool,
|
|
||||||
service_name: str = 'grouping-demo') -> StepSequence:
|
|
||||||
steps = []
|
|
||||||
|
|
||||||
metrics_output_name = 'metrics_{}'
|
|
||||||
best_model_output_name = 'best_model_{}'
|
|
||||||
count = 0
|
|
||||||
model_names = []
|
|
||||||
|
|
||||||
# get all automl configs by group
|
|
||||||
configs = _get_configs(automlconfig, data, target_column, compute_target, group_column_names)
|
|
||||||
|
|
||||||
# build a runconfig for register model
|
|
||||||
register_config = RunConfiguration()
|
|
||||||
cd = CondaDependencies()
|
|
||||||
cd.add_pip_package('azureml-pipeline')
|
|
||||||
register_config.environment.python.conda_dependencies = cd
|
|
||||||
|
|
||||||
# create each automl step end-to-end (train, register)
|
|
||||||
for group_name, conf in configs.items():
|
|
||||||
# create automl metrics output
|
|
||||||
metirics_data = PipelineData(
|
|
||||||
name='metrics_data_{}'.format(group_name),
|
|
||||||
pipeline_output_name=metrics_output_name.format(group_name),
|
|
||||||
training_output=TrainingOutput(type='Metrics'))
|
|
||||||
# create automl model output
|
|
||||||
model_data = PipelineData(
|
|
||||||
name='model_data_{}'.format(group_name),
|
|
||||||
pipeline_output_name=best_model_output_name.format(group_name),
|
|
||||||
training_output=TrainingOutput(type='Model', metric=conf.user_settings['primary_metric']))
|
|
||||||
|
|
||||||
automl_step = AutoMLStep(
|
|
||||||
name='automl_{}'.format(group_name),
|
|
||||||
automl_config=conf,
|
|
||||||
outputs=[metirics_data, model_data],
|
|
||||||
allow_reuse=True)
|
|
||||||
steps.append(automl_step)
|
|
||||||
|
|
||||||
# pass the group name as a parameter to the register step ->
|
|
||||||
# this will become the name of the model for this group.
|
|
||||||
group_name_param = PipelineParameter("group_name_{}".format(count), default_value=group_name)
|
|
||||||
count += 1
|
|
||||||
|
|
||||||
reg_model_step = PythonScriptStep(
|
|
||||||
'register.py',
|
|
||||||
name='register_{}'.format(group_name),
|
|
||||||
arguments=["--model_name", group_name_param, "--model_path", model_data],
|
|
||||||
inputs=[model_data],
|
|
||||||
compute_target=compute_target,
|
|
||||||
runconfig=register_config,
|
|
||||||
source_directory="register",
|
|
||||||
allow_reuse=True
|
|
||||||
)
|
|
||||||
steps.append(reg_model_step)
|
|
||||||
model_names.append(group_name)
|
|
||||||
|
|
||||||
final_steps = steps
|
|
||||||
if deploy:
|
|
||||||
# modify the conda dependencies to ensure we pick up correct
|
|
||||||
# versions of azureml-defaults and azureml-train-automl
|
|
||||||
cd = CondaDependencies.create(pip_packages=['azureml-defaults', 'azureml-train-automl'])
|
|
||||||
automl_deps = CondaDependencies(conda_dependencies_file_path='deploy/myenv.yml')
|
|
||||||
cd._merge_dependencies(automl_deps)
|
|
||||||
cd.save('deploy/myenv.yml')
|
|
||||||
|
|
||||||
# add deployment step
|
|
||||||
pp_group_column_names = PipelineParameter(
|
|
||||||
"group_column_names",
|
|
||||||
default_value="#####".join(list(reversed(group_column_names))))
|
|
||||||
|
|
||||||
pp_model_names = PipelineParameter(
|
|
||||||
"model_names",
|
|
||||||
default_value=json.dumps(model_names))
|
|
||||||
|
|
||||||
pp_service_name = PipelineParameter(
|
|
||||||
"service_name",
|
|
||||||
default_value=service_name)
|
|
||||||
|
|
||||||
deployment_step = PythonScriptStep(
|
|
||||||
'deploy.py',
|
|
||||||
name='service_deploy',
|
|
||||||
arguments=["--group_column_names", pp_group_column_names,
|
|
||||||
"--model_names", pp_model_names,
|
|
||||||
"--service_name", pp_service_name,
|
|
||||||
"--time_column_name", time_column_name],
|
|
||||||
compute_target=compute_target,
|
|
||||||
runconfig=RunConfiguration(),
|
|
||||||
source_directory="deploy"
|
|
||||||
)
|
|
||||||
final_steps = StepSequence(steps=[steps, deployment_step])
|
|
||||||
|
|
||||||
return final_steps
|
|
||||||
@@ -1,61 +0,0 @@
|
|||||||
WeekStarting,Store,Brand,Quantity,logQuantity,Advert,Price,Age60,COLLEGE,INCOME,Hincome150,Large HH,Minorities,WorkingWoman,SSTRDIST,SSTRVOL,CPDIST5,CPWVOL5
|
|
||||||
1992-08-20,2,minute.maid,23488,10.06424493,1,1.94,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-20,2,tropicana,13376,9.501217335,1,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-27,2,tropicana,8128,9.00307017,0,2.75,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-27,2,minute.maid,19008,9.852615222,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-27,2,dominicks,9024,9.107642974,0,1.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-03,2,tropicana,19456,9.875910785,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-03,2,minute.maid,11584,9.357380115,0,1.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-03,2,dominicks,2048,7.624618986000001,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-10,2,tropicana,10048,9.215128888999999,0,2.64,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-10,2,minute.maid,26752,10.19436452,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-10,2,dominicks,1984,7.592870287999999,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-17,2,tropicana,6336,8.754002933999999,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-17,2,minute.maid,3904,8.269756948,0,2.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-17,2,dominicks,4160,8.333270353,0,1.77,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-24,2,tropicana,16192,9.692272572,1,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-24,2,minute.maid,3712,8.219326094,0,2.67,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-09-24,2,dominicks,35264,10.47061789,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-10-01,2,dominicks,8640,9.064157862,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-10-01,2,minute.maid,41216,10.62658181,1,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-10-01,2,tropicana,5824,8.66974259,0,2.97,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-20,5,tropicana,17728,9.78290059,1,2.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-20,5,minute.maid,27072,10.20625526,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-27,5,tropicana,9600,9.169518378,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-27,5,minute.maid,3840,8.253227646000001,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-27,5,dominicks,1856,7.526178913,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-03,5,tropicana,25664,10.15284451,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-03,5,minute.maid,6144,8.723231275,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-03,5,dominicks,3712,8.219326094,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-10,5,tropicana,9984,9.208739091,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-10,5,dominicks,2688,7.896552702,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-10,5,minute.maid,36416,10.50276352,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-17,5,tropicana,8576,9.056722882999999,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-17,5,minute.maid,5440,8.60153434,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-17,5,dominicks,6464,8.774003599999999,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-24,5,tropicana,13184,9.486759252,1,2.78,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-24,5,dominicks,40896,10.61878754,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-09-24,5,minute.maid,7680,8.946374826,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-10-01,5,dominicks,6144,8.723231275,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-10-01,5,minute.maid,50304,10.82583988,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-10-01,5,tropicana,7488,8.921057017999999,0,2.78,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-20,8,minute.maid,55552,10.9250748,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-20,8,tropicana,8576,9.056722882999999,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-27,8,tropicana,8000,8.987196821,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-27,8,minute.maid,18688,9.835636886,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-27,8,dominicks,19200,9.862665558,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-03,8,tropicana,21760,9.987828701,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-03,8,minute.maid,14656,9.592605087,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-03,8,dominicks,12800,9.45720045,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-10,8,tropicana,12800,9.45720045,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-10,8,minute.maid,30144,10.31374118,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-10,8,dominicks,15296,9.635346635,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-17,8,tropicana,10112,9.221478116,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-17,8,minute.maid,6208,8.733594062,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-17,8,dominicks,20992,9.951896692,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-24,8,tropicana,10304,9.240287448,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-24,8,minute.maid,7104,8.868413285,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-09-24,8,dominicks,73856,11.20987253,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-10-01,8,minute.maid,65856,11.09522582,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-10-01,8,dominicks,16192,9.692272572,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-10-01,8,tropicana,6400,8.764053269,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
|
@@ -1,973 +0,0 @@
|
|||||||
WeekStarting,Store,Brand,Quantity,logQuantity,Advert,Price,Age60,COLLEGE,INCOME,Hincome150,Large HH,Minorities,WorkingWoman,SSTRDIST,SSTRVOL,CPDIST5,CPWVOL5
|
|
||||||
1990-06-14,2,dominicks,10560,9.264828557000001,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-06-14,2,minute.maid,4480,8.407378325,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-06-14,2,tropicana,8256,9.018695487999999,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-07-26,2,dominicks,8000,8.987196821,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-07-26,2,minute.maid,4672,8.449342525,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-07-26,2,tropicana,6144,8.723231275,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-02,2,tropicana,3840,8.253227646000001,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-02,2,minute.maid,20160,9.911455722000001,1,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-02,2,dominicks,6848,8.831711918,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-09,2,dominicks,2880,7.965545572999999,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-09,2,minute.maid,2688,7.896552702,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-09,2,tropicana,8000,8.987196821,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-23,2,dominicks,1600,7.377758908,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-23,2,minute.maid,3008,8.009030685,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-23,2,tropicana,8896,9.093357017,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-30,2,tropicana,7168,8.877381955,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-30,2,minute.maid,4672,8.449342525,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-08-30,2,dominicks,25344,10.140297300000002,1,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-06,2,dominicks,10752,9.282847063,0,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-06,2,minute.maid,2752,7.920083199,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-06,2,tropicana,10880,9.29468152,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-13,2,minute.maid,26176,10.17259824,1,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-13,2,dominicks,6656,8.803273982999999,0,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-13,2,tropicana,7744,8.954673629,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-20,2,dominicks,6592,8.793612072,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-20,2,minute.maid,3712,8.219326094,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-09-20,2,tropicana,8512,9.049232212,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-11,2,tropicana,5504,8.61323038,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-11,2,minute.maid,30656,10.33058368,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-11,2,dominicks,1728,7.454719948999999,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-18,2,tropicana,5888,8.68067166,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-18,2,minute.maid,3840,8.253227646000001,0,2.98,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-18,2,dominicks,33792,10.42797937,1,1.24,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-25,2,tropicana,8384,9.034080407000001,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-25,2,minute.maid,2816,7.943072717000001,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-10-25,2,dominicks,1920,7.560080465,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-01,2,tropicana,5952,8.691482577,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-01,2,minute.maid,23104,10.04776104,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-01,2,dominicks,8960,9.100525506,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-08,2,dominicks,11392,9.340666634,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-08,2,tropicana,6848,8.831711918,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-08,2,minute.maid,3392,8.129174997,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-15,2,tropicana,9216,9.128696383,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-15,2,minute.maid,26304,10.1774763,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-15,2,dominicks,28416,10.25470765,0,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-22,2,dominicks,17152,9.749870064,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-22,2,tropicana,12160,9.405907156,0,2.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-22,2,minute.maid,6336,8.754002933999999,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-29,2,tropicana,12672,9.447150114,0,2.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-29,2,minute.maid,9920,9.2023082,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-11-29,2,dominicks,26560,10.1871616,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-06,2,dominicks,6336,8.754002933999999,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-06,2,minute.maid,25280,10.13776885,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-06,2,tropicana,6528,8.783855897,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-13,2,dominicks,26368,10.17990643,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-13,2,tropicana,6144,8.723231275,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-13,2,minute.maid,14848,9.605620455,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-20,2,tropicana,21120,9.957975738,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-20,2,minute.maid,12288,9.416378455,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-20,2,dominicks,896,6.797940412999999,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-27,2,tropicana,12416,9.426741242,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-27,2,minute.maid,6272,8.743850562,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-12-27,2,dominicks,1472,7.294377299,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-03,2,tropicana,9472,9.156095357,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-03,2,minute.maid,9152,9.121727714,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-03,2,dominicks,1344,7.2034055210000005,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-10,2,tropicana,17920,9.793672686,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-10,2,minute.maid,4160,8.333270353,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-10,2,dominicks,111680,11.62339292,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-17,2,tropicana,9408,9.14931567,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-17,2,minute.maid,10176,9.227787286,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-17,2,dominicks,1856,7.526178913,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-24,2,tropicana,6272,8.743850562,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-24,2,minute.maid,29056,10.27698028,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-24,2,dominicks,5568,8.624791202,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-31,2,tropicana,6912,8.841014311,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-31,2,minute.maid,7104,8.868413285,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-01-31,2,dominicks,32064,10.37548918,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-07,2,tropicana,16768,9.727227587,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-07,2,dominicks,4352,8.378390789,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-07,2,minute.maid,7488,8.921057017999999,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-14,2,dominicks,704,6.556778356000001,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-14,2,minute.maid,4224,8.348537825,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-14,2,tropicana,6272,8.743850562,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-21,2,tropicana,7936,8.979164649,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-21,2,minute.maid,8960,9.100525506,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-21,2,dominicks,13760,9.529521112000001,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-28,2,tropicana,6144,8.723231275,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-28,2,minute.maid,22464,10.01966931,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-02-28,2,dominicks,43328,10.67655436,1,1.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-07,2,tropicana,7936,8.979164649,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-07,2,minute.maid,3840,8.253227646000001,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-07,2,dominicks,57600,10.96127785,1,1.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-14,2,tropicana,7808,8.962904128,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-14,2,minute.maid,12992,9.472089062,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-14,2,dominicks,704,6.556778356000001,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-21,2,tropicana,6080,8.712759975,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-21,2,minute.maid,70144,11.15830555,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-21,2,dominicks,6016,8.702177866,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-28,2,tropicana,42176,10.64960662,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-28,2,dominicks,10368,9.246479419,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-03-28,2,minute.maid,21248,9.964018052,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-04,2,dominicks,12608,9.442086812000001,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-04,2,minute.maid,5696,8.647519453,1,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-04,2,tropicana,4928,8.502688505,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-11,2,tropicana,29504,10.29228113,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-11,2,minute.maid,7680,8.946374826,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-11,2,dominicks,6336,8.754002933999999,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-18,2,tropicana,9984,9.208739091,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-18,2,minute.maid,6336,8.754002933999999,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-18,2,dominicks,140736,11.85464107,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-25,2,tropicana,35200,10.46880136,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-25,2,dominicks,960,6.866933285,1,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-04-25,2,minute.maid,8576,9.056722882999999,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-02,2,dominicks,1216,7.103322062999999,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-02,2,minute.maid,15104,9.622714887999999,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-02,2,tropicana,23936,10.08313888,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-09,2,tropicana,7104,8.868413285,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-09,2,minute.maid,76480,11.24478455,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-09,2,dominicks,1664,7.416979621,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-16,2,dominicks,4992,8.51559191,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-16,2,minute.maid,5056,8.528330936,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-16,2,tropicana,24512,10.10691807,1,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-23,2,tropicana,6336,8.754002933999999,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-23,2,minute.maid,4736,8.462948177000001,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-23,2,dominicks,27968,10.23881628,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-30,2,dominicks,12160,9.405907156,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-30,2,minute.maid,4480,8.407378325,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-05-30,2,tropicana,6080,8.712759975,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-06,2,tropicana,33536,10.42037477,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-06,2,minute.maid,4032,8.30201781,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-06,2,dominicks,2240,7.714231145,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-13,2,dominicks,5504,8.61323038,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-13,2,minute.maid,14784,9.601300794,1,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-13,2,tropicana,13248,9.491601877,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-20,2,tropicana,6208,8.733594062,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-20,2,dominicks,8832,9.086136769,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-20,2,minute.maid,12096,9.400630097999999,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-27,2,dominicks,2624,7.87245515,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-27,2,minute.maid,41792,10.64046021,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-06-27,2,tropicana,10624,9.270870872,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-04,2,tropicana,44672,10.70710219,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-04,2,minute.maid,10560,9.264828557000001,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-04,2,dominicks,10432,9.252633284,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-18,2,tropicana,20096,9.908276069,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-18,2,dominicks,8320,9.026417534,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-18,2,minute.maid,4224,8.348537825,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-25,2,dominicks,6784,8.822322178,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-25,2,minute.maid,2880,7.965545572999999,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-07-25,2,tropicana,9152,9.121727714,1,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-01,2,tropicana,21952,9.996613531,0,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-01,2,minute.maid,3968,8.286017467999999,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-01,2,dominicks,60544,11.01112565,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-08,2,dominicks,20608,9.933434629,0,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-08,2,minute.maid,3712,8.219326094,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-08,2,tropicana,13568,9.515469357999999,0,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-29,2,tropicana,4160,8.333270353,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-29,2,minute.maid,2816,7.943072717000001,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-08-29,2,dominicks,16064,9.684336023,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-05,2,tropicana,39424,10.58213005,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-05,2,minute.maid,4288,8.363575702999999,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-05,2,dominicks,12480,9.431882642,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-12,2,tropicana,5632,8.636219898,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-12,2,minute.maid,18240,9.811372264,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-12,2,dominicks,17024,9.742379392,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-19,2,dominicks,13440,9.505990614,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-19,2,minute.maid,7360,8.903815212,0,1.95,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-19,2,tropicana,9024,9.107642974,1,2.68,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-26,2,tropicana,6016,8.702177866,0,3.44,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-26,2,minute.maid,7808,8.962904128,0,1.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-09-26,2,dominicks,10112,9.221478116,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-03,2,dominicks,9088,9.114710141,0,1.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-03,2,minute.maid,13504,9.510741217,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-03,2,tropicana,7744,8.954673629,0,3.14,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-10,2,tropicana,6784,8.822322178,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-10,2,dominicks,22848,10.03661887,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-10,2,minute.maid,10048,9.215128888999999,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-17,2,dominicks,6976,8.850230966,0,1.65,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-17,2,minute.maid,135936,11.81993947,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-17,2,tropicana,6784,8.822322178,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-24,2,tropicana,6272,8.743850562,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-24,2,minute.maid,5056,8.528330936,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-24,2,dominicks,4160,8.333270353,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-31,2,tropicana,5312,8.577723691000001,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-31,2,minute.maid,27968,10.23881628,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-10-31,2,dominicks,3328,8.110126802,0,1.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-07,2,tropicana,9216,9.128696383,0,3.11,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-07,2,minute.maid,4736,8.462948177000001,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-07,2,dominicks,12096,9.400630097999999,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-14,2,tropicana,7296,8.895081532,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-14,2,minute.maid,7808,8.962904128,0,2.14,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-14,2,dominicks,6208,8.733594062,0,1.76,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-21,2,tropicana,34240,10.44114983,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-21,2,minute.maid,12480,9.431882642,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-21,2,dominicks,3008,8.009030685,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-28,2,dominicks,19456,9.875910785,1,1.5,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-28,2,minute.maid,9664,9.17616292,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-11-28,2,tropicana,7168,8.877381955,0,2.64,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-05,2,minute.maid,7168,8.877381955,0,2.06,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-05,2,dominicks,16768,9.727227587,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-05,2,tropicana,6080,8.712759975,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-12,2,dominicks,13568,9.515469357999999,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-12,2,minute.maid,4480,8.407378325,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-12,2,tropicana,5120,8.540909718,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-19,2,tropicana,8320,9.026417534,0,2.74,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-19,2,minute.maid,5952,8.691482577,0,2.22,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-19,2,dominicks,6080,8.712759975,0,1.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-26,2,dominicks,10432,9.252633284,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-26,2,minute.maid,21696,9.984883191,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1991-12-26,2,tropicana,17728,9.78290059,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-02,2,minute.maid,12032,9.395325046,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-02,2,dominicks,11712,9.368369236,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-02,2,tropicana,13120,9.481893063,0,2.35,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-09,2,dominicks,4032,8.30201781,0,1.76,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-09,2,minute.maid,7040,8.859363449,0,2.12,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-09,2,tropicana,13120,9.481893063,0,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-16,2,dominicks,6336,8.754002933999999,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-16,2,tropicana,9792,9.189321005,0,2.43,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-16,2,minute.maid,10240,9.234056899,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-23,2,tropicana,3520,8.166216269,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-23,2,minute.maid,6848,8.831711918,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-23,2,dominicks,13632,9.520175249,0,1.47,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-30,2,tropicana,5504,8.61323038,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-30,2,minute.maid,3968,8.286017467999999,0,2.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-01-30,2,dominicks,45120,10.71708089,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-06,2,tropicana,6720,8.812843434,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-06,2,minute.maid,5888,8.68067166,0,2.26,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-06,2,dominicks,9984,9.208739091,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-13,2,tropicana,20224,9.914625297,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-13,2,dominicks,4800,8.476371197,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-13,2,minute.maid,6208,8.733594062,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-20,2,dominicks,11776,9.373818841,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-20,2,minute.maid,72256,11.18797065,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-20,2,tropicana,5056,8.528330936,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-27,2,tropicana,43584,10.68244539,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-27,2,minute.maid,11520,9.351839934,0,2.11,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-02-27,2,dominicks,11584,9.357380115,0,1.54,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-05,2,tropicana,25728,10.15533517,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-05,2,minute.maid,5824,8.66974259,0,2.35,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-05,2,dominicks,51264,10.84474403,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-12,2,tropicana,31808,10.36747311,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-12,2,minute.maid,19392,9.872615889,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-12,2,dominicks,14976,9.614204199,0,1.44,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-19,2,tropicana,20736,9.939626599,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-19,2,minute.maid,9536,9.162829389,0,2.1,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-19,2,dominicks,30784,10.33475035,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-26,2,tropicana,15168,9.626943225,0,2.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-26,2,minute.maid,5312,8.577723691000001,0,2.28,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-03-26,2,dominicks,12480,9.431882642,0,1.6,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-02,2,tropicana,28096,10.2433825,1,2.5,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-02,2,dominicks,3264,8.090708716,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-02,2,minute.maid,14528,9.583833101,1,1.9,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-09,2,dominicks,8768,9.078864009,0,1.48,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-09,2,minute.maid,12416,9.426741242,0,2.12,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-09,2,tropicana,12416,9.426741242,0,2.58,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-16,2,tropicana,5376,8.589699882,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-16,2,minute.maid,5376,8.589699882,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-16,2,dominicks,70848,11.16829202,1,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-23,2,tropicana,9792,9.189321005,0,2.67,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-23,2,minute.maid,19008,9.852615222,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-23,2,dominicks,18560,9.828764006,0,1.42,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-30,2,tropicana,16960,9.738612909,1,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-30,2,minute.maid,3904,8.269756948,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-04-30,2,dominicks,9152,9.121727714,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-07,2,tropicana,8320,9.026417534,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-07,2,minute.maid,6336,8.754002933999999,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-07,2,dominicks,9600,9.169518378,0,2.0,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-14,2,tropicana,6912,8.841014311,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-14,2,minute.maid,5440,8.60153434,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-14,2,dominicks,4800,8.476371197,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-21,2,tropicana,6976,8.850230966,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-21,2,minute.maid,22400,10.01681624,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-21,2,dominicks,9664,9.17616292,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-28,2,minute.maid,3968,8.286017467999999,0,2.84,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-28,2,tropicana,7232,8.886270902,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-05-28,2,dominicks,45568,10.726961,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-04,2,tropicana,51520,10.84972536,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-04,2,minute.maid,3264,8.090708716,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-04,2,dominicks,20992,9.951896692,0,1.74,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-11,2,minute.maid,4352,8.378390789,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-11,2,tropicana,22272,10.01108556,0,2.21,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-11,2,dominicks,6592,8.793612072,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-18,2,dominicks,4992,8.51559191,0,2.05,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-18,2,minute.maid,4480,8.407378325,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-18,2,tropicana,46144,10.73952222,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-25,2,tropicana,4352,8.378390789,1,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-25,2,minute.maid,3840,8.253227646000001,0,2.52,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-06-25,2,dominicks,8064,8.99516499,0,1.24,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-02,2,tropicana,17280,9.757305042,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-02,2,minute.maid,13312,9.496421162999999,1,2.0,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-02,2,dominicks,7360,8.903815212,0,1.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-09,2,tropicana,5696,8.647519453,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-09,2,minute.maid,3776,8.236420527,1,2.33,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-09,2,dominicks,10048,9.215128888999999,0,1.4,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-16,2,tropicana,6848,8.831711918,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-16,2,dominicks,10112,9.221478116,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-16,2,minute.maid,4800,8.476371197,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-23,2,dominicks,9152,9.121727714,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-23,2,minute.maid,24960,10.12502982,1,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-23,2,tropicana,4416,8.392989587999999,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-30,2,tropicana,4672,8.449342525,0,3.16,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-30,2,minute.maid,4544,8.42156296,0,2.86,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-07-30,2,dominicks,36288,10.49924239,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-06,2,tropicana,7168,8.877381955,1,3.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-06,2,minute.maid,3968,8.286017467999999,1,2.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-06,2,dominicks,3776,8.236420527,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-13,2,tropicana,5056,8.528330936,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-13,2,dominicks,3328,8.110126802,0,1.97,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-13,2,minute.maid,49600,10.81174611,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1992-08-20,2,dominicks,13824,9.534161491,0,1.36,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
|
|
||||||
1990-06-14,5,dominicks,1792,7.491087594,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-14,5,minute.maid,4224,8.348537825,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-14,5,tropicana,5888,8.68067166,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-28,5,minute.maid,4352,8.378390789,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-28,5,dominicks,2496,7.82244473,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-28,5,tropicana,6976,8.850230966,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-05,5,dominicks,2944,7.98752448,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-05,5,minute.maid,4928,8.502688505,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-05,5,tropicana,6528,8.783855897,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-12,5,dominicks,1024,6.931471806,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-12,5,minute.maid,31168,10.34714721,1,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-12,5,tropicana,4928,8.502688505,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-26,5,dominicks,4224,8.348537825,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-26,5,minute.maid,10048,9.215128888999999,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-07-26,5,tropicana,5312,8.577723691000001,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-02,5,minute.maid,21760,9.987828701,1,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-02,5,tropicana,5120,8.540909718,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-02,5,dominicks,4544,8.42156296,1,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-09,5,dominicks,1728,7.454719948999999,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-09,5,minute.maid,4544,8.42156296,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-09,5,tropicana,7936,8.979164649,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-16,5,tropicana,6080,8.712759975,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-16,5,minute.maid,52224,10.86329744,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-16,5,dominicks,1216,7.103322062999999,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-23,5,dominicks,1152,7.049254841000001,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-23,5,minute.maid,3584,8.184234774,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-23,5,tropicana,4160,8.333270353,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-30,5,minute.maid,5120,8.540909718,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-30,5,tropicana,5888,8.68067166,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-08-30,5,dominicks,30144,10.31374118,1,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-06,5,dominicks,8960,9.100525506,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-06,5,minute.maid,4416,8.392989587999999,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-06,5,tropicana,9536,9.162829389,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-13,5,tropicana,8320,9.026417534,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-13,5,dominicks,8192,9.010913347,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-13,5,minute.maid,30208,10.31586207,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-20,5,dominicks,6528,8.783855897,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-20,5,minute.maid,4160,8.333270353,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-20,5,tropicana,8000,8.987196821,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-27,5,dominicks,34688,10.45414909,1,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-27,5,minute.maid,4992,8.51559191,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-09-27,5,tropicana,5824,8.66974259,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-04,5,dominicks,4672,8.449342525,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-04,5,minute.maid,13952,9.543378146,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-04,5,tropicana,10624,9.270870872,1,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-11,5,tropicana,6656,8.803273982999999,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-11,5,dominicks,1088,6.992096427000001,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-11,5,minute.maid,47680,10.772267300000001,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-18,5,tropicana,5184,8.553332238,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-18,5,minute.maid,7616,8.938006577000001,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-18,5,dominicks,69440,11.14821835,1,1.24,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-25,5,tropicana,4928,8.502688505,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-25,5,minute.maid,8896,9.093357017,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-10-25,5,dominicks,1280,7.154615357000001,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-01,5,tropicana,5888,8.68067166,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-01,5,minute.maid,28544,10.25920204,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-01,5,dominicks,35456,10.47604777,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-08,5,tropicana,5312,8.577723691000001,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-08,5,dominicks,13824,9.534161491,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-08,5,minute.maid,5440,8.60153434,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-15,5,tropicana,9984,9.208739091,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-15,5,minute.maid,52416,10.86696717,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-15,5,dominicks,14208,9.561560465,0,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-22,5,tropicana,8448,9.041685006,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-22,5,dominicks,29312,10.28575227,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-22,5,minute.maid,11712,9.368369236,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-29,5,tropicana,10880,9.29468152,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-29,5,minute.maid,13952,9.543378146,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-11-29,5,dominicks,52992,10.87789624,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-06,5,dominicks,15680,9.660141293999999,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-06,5,minute.maid,36160,10.49570882,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-06,5,tropicana,5696,8.647519453,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-13,5,tropicana,5696,8.647519453,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-13,5,minute.maid,12864,9.462187991,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-13,5,dominicks,43520,10.68097588,1,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-20,5,tropicana,32384,10.38541975,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-20,5,minute.maid,22208,10.00820786,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-20,5,dominicks,3904,8.269756948,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-27,5,tropicana,10752,9.282847063,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-27,5,minute.maid,9984,9.208739091,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-12-27,5,dominicks,896,6.797940412999999,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-03,5,tropicana,6912,8.841014311,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-03,5,minute.maid,14016,9.547954812999999,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-03,5,dominicks,2240,7.714231145,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-10,5,tropicana,13440,9.505990614,0,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-10,5,minute.maid,6080,8.712759975,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-10,5,dominicks,125760,11.74213061,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-17,5,tropicana,7808,8.962904128,0,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-17,5,minute.maid,7808,8.962904128,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-17,5,dominicks,1408,7.249925537,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-24,5,tropicana,5248,8.565602331000001,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-24,5,minute.maid,40896,10.61878754,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-24,5,dominicks,7232,8.886270902,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-31,5,tropicana,6208,8.733594062,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-31,5,minute.maid,6272,8.743850562,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-01-31,5,dominicks,41216,10.62658181,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-07,5,tropicana,21440,9.973013615,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-07,5,minute.maid,7872,8.971067439,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-07,5,dominicks,9024,9.107642974,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-14,5,dominicks,1600,7.377758908,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-14,5,tropicana,7360,8.903815212,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-14,5,minute.maid,6144,8.723231275,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-21,5,tropicana,6720,8.812843434,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-21,5,minute.maid,8448,9.041685006,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-21,5,dominicks,2496,7.82244473,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-28,5,tropicana,6656,8.803273982999999,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-28,5,minute.maid,18688,9.835636886,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-02-28,5,dominicks,6336,8.754002933999999,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-07,5,tropicana,6016,8.702177866,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-07,5,minute.maid,6272,8.743850562,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-07,5,dominicks,56384,10.93994071,1,1.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-14,5,tropicana,6144,8.723231275,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-14,5,minute.maid,12096,9.400630097999999,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-14,5,dominicks,1600,7.377758908,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-21,5,tropicana,4928,8.502688505,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-21,5,minute.maid,73216,11.20116926,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-21,5,dominicks,2944,7.98752448,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-28,5,tropicana,67712,11.1230187,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-28,5,minute.maid,18944,9.849242538,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-03-28,5,dominicks,13504,9.510741217,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-04,5,dominicks,5376,8.589699882,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-04,5,tropicana,8640,9.064157862,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-04,5,minute.maid,6400,8.764053269,1,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-11,5,tropicana,35520,10.477851199999998,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-11,5,minute.maid,8640,9.064157862,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-11,5,dominicks,6656,8.803273982999999,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-18,5,tropicana,9664,9.17616292,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-18,5,minute.maid,7296,8.895081532,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-18,5,dominicks,95680,11.46876457,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-25,5,tropicana,49088,10.80136989,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-25,5,minute.maid,12480,9.431882642,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-04-25,5,dominicks,896,6.797940412999999,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-02,5,dominicks,1728,7.454719948999999,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-02,5,minute.maid,14144,9.557045785,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-02,5,tropicana,14912,9.609921537,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-09,5,minute.maid,88256,11.38799696,1,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-09,5,tropicana,6464,8.774003599999999,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-09,5,dominicks,1280,7.154615357000001,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-16,5,dominicks,5696,8.647519453,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-16,5,minute.maid,6848,8.831711918,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-16,5,tropicana,25024,10.12759064,1,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-23,5,minute.maid,7808,8.962904128,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-23,5,tropicana,6272,8.743850562,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-23,5,dominicks,28288,10.25019297,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-30,5,dominicks,4864,8.489616424,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-30,5,minute.maid,6272,8.743850562,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-05-30,5,tropicana,5056,8.528330936,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-06,5,minute.maid,6144,8.723231275,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-06,5,tropicana,47616,10.77092412,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-06,5,dominicks,2880,7.965545572999999,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-13,5,dominicks,5760,8.658692754,1,1.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-13,5,minute.maid,27776,10.23192762,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-13,5,tropicana,13888,9.538780437,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-20,5,tropicana,6144,8.723231275,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-20,5,minute.maid,20800,9.942708266,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-20,5,dominicks,15040,9.618468598,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-27,5,dominicks,5120,8.540909718,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-27,5,minute.maid,45696,10.72976605,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-06-27,5,tropicana,9344,9.142489705,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-04,5,minute.maid,14336,9.570529135,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-04,5,tropicana,32896,10.40110635,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-04,5,dominicks,3264,8.090708716,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-11,5,dominicks,9536,9.162829389,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-11,5,minute.maid,4928,8.502688505,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-11,5,tropicana,21056,9.954940834,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-18,5,tropicana,15360,9.639522007,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-18,5,minute.maid,4608,8.435549202,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-18,5,dominicks,6208,8.733594062,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-25,5,dominicks,6592,8.793612072,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-25,5,tropicana,8000,8.987196821,1,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-07-25,5,minute.maid,5248,8.565602331000001,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-01,5,tropicana,21120,9.957975738,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-01,5,dominicks,63552,11.05961375,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-01,5,minute.maid,4224,8.348537825,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-08,5,dominicks,27968,10.23881628,0,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-08,5,minute.maid,4288,8.363575702999999,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-08,5,tropicana,11904,9.384629757,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-15,5,minute.maid,16896,9.734832187,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-15,5,tropicana,5056,8.528330936,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-15,5,dominicks,21760,9.987828701,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-22,5,dominicks,2688,7.896552702,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-22,5,minute.maid,77184,11.25394746,1,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-22,5,tropicana,4608,8.435549202,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-29,5,tropicana,6016,8.702177866,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-29,5,minute.maid,5184,8.553332238,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-08-29,5,dominicks,10432,9.252633284,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-05,5,tropicana,50752,10.83470631,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-05,5,minute.maid,5248,8.565602331000001,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-05,5,dominicks,9792,9.189321005,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-12,5,minute.maid,20672,9.936535407000001,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-12,5,tropicana,5632,8.636219898,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-12,5,dominicks,8448,9.041685006,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-26,5,tropicana,6400,8.764053269,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-26,5,dominicks,6912,8.841014311,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-09-26,5,minute.maid,12352,9.421573272,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-03,5,dominicks,8256,9.018695487999999,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-03,5,minute.maid,12032,9.395325046,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-03,5,tropicana,5440,8.60153434,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-10,5,minute.maid,13440,9.505990614,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-10,5,dominicks,28672,10.26367632,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-10,5,tropicana,8128,9.00307017,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-24,5,tropicana,7232,8.886270902,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-24,5,minute.maid,5824,8.66974259,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-24,5,dominicks,4416,8.392989587999999,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-31,5,tropicana,7168,8.877381955,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-31,5,minute.maid,50112,10.82201578,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-10-31,5,dominicks,1856,7.526178913,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-07,5,minute.maid,5184,8.553332238,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-07,5,tropicana,7872,8.971067439,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-07,5,dominicks,6528,8.783855897,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-14,5,tropicana,7552,8.929567707999999,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-14,5,minute.maid,8384,9.034080407000001,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-14,5,dominicks,6080,8.712759975,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-21,5,tropicana,69504,11.14913958,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-21,5,dominicks,3456,8.14786713,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-21,5,minute.maid,10112,9.221478116,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-28,5,dominicks,25856,10.16029796,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-28,5,minute.maid,8384,9.034080407000001,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-11-28,5,tropicana,8960,9.100525506,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-05,5,tropicana,6912,8.841014311,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-05,5,dominicks,25728,10.15533517,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-05,5,minute.maid,11456,9.346268889,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-12,5,dominicks,23552,10.06696602,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-12,5,minute.maid,5952,8.691482577,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-12,5,tropicana,6656,8.803273982999999,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-19,5,tropicana,8192,9.010913347,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-19,5,dominicks,2944,7.98752448,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-19,5,minute.maid,8512,9.049232212,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-26,5,dominicks,5888,8.68067166,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-26,5,minute.maid,27968,10.23881628,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1991-12-26,5,tropicana,13440,9.505990614,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-02,5,tropicana,12160,9.405907156,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-02,5,dominicks,6848,8.831711918,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-02,5,minute.maid,24000,10.08580911,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-09,5,dominicks,1792,7.491087594,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-09,5,minute.maid,6848,8.831711918,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-09,5,tropicana,11840,9.379238908,0,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-16,5,tropicana,8640,9.064157862,0,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-16,5,dominicks,5248,8.565602331000001,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-16,5,minute.maid,15104,9.622714887999999,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-23,5,tropicana,5888,8.68067166,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-23,5,minute.maid,11392,9.340666634,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-23,5,dominicks,16768,9.727227587,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-30,5,tropicana,7424,8.912473275,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-30,5,minute.maid,5824,8.66974259,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-01-30,5,dominicks,52160,10.8620712,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-06,5,tropicana,5632,8.636219898,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-06,5,minute.maid,7488,8.921057017999999,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-06,5,dominicks,16640,9.719564714,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-13,5,tropicana,33600,10.42228135,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-13,5,minute.maid,8320,9.026417534,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-13,5,dominicks,1344,7.2034055210000005,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-20,5,dominicks,4608,8.435549202,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-20,5,tropicana,5376,8.589699882,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-20,5,minute.maid,99904,11.511965,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-27,5,tropicana,54272,10.90176372,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-27,5,minute.maid,6976,8.850230966,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-02-27,5,dominicks,12672,9.447150114,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-05,5,tropicana,33600,10.42228135,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-05,5,minute.maid,9984,9.208739091,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-05,5,dominicks,48640,10.79220152,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-12,5,tropicana,24448,10.10430369,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-12,5,minute.maid,32832,10.39915893,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-12,5,dominicks,13248,9.491601877,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-19,5,tropicana,22784,10.03381381,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-19,5,minute.maid,8128,9.00307017,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-19,5,dominicks,29248,10.28356647,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-26,5,tropicana,19008,9.852615222,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-26,5,minute.maid,6464,8.774003599999999,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-03-26,5,dominicks,4608,8.435549202,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-02,5,tropicana,15808,9.66827142,1,2.5,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-02,5,minute.maid,36800,10.51325312,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-02,5,dominicks,3136,8.050703382,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-09,5,dominicks,13184,9.486759252,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-09,5,tropicana,14144,9.557045785,0,2.5,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-09,5,minute.maid,12928,9.467150781,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-16,5,tropicana,9600,9.169518378,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-16,5,minute.maid,7424,8.912473275,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-16,5,dominicks,67712,11.1230187,1,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-23,5,tropicana,10112,9.221478116,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-23,5,minute.maid,34176,10.43927892,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-23,5,dominicks,18880,9.84585844,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-30,5,minute.maid,4160,8.333270353,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-30,5,tropicana,31872,10.36948316,1,2.24,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-04-30,5,dominicks,6208,8.733594062,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-07,5,tropicana,9280,9.135616826,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-07,5,minute.maid,5952,8.691482577,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-07,5,dominicks,5952,8.691482577,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-14,5,tropicana,7680,8.946374826,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-14,5,minute.maid,6528,8.783855897,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-14,5,dominicks,4160,8.333270353,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-21,5,tropicana,8704,9.071537969,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-21,5,minute.maid,30656,10.33058368,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-21,5,dominicks,23488,10.06424493,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-28,5,tropicana,9920,9.2023082,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-28,5,dominicks,60480,11.01006801,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-05-28,5,minute.maid,6656,8.803273982999999,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-04,5,tropicana,91968,11.42919597,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-04,5,minute.maid,4416,8.392989587999999,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-04,5,dominicks,20416,9.924074186,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-11,5,tropicana,44096,10.69412435,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-11,5,dominicks,6336,8.754002933999999,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-11,5,minute.maid,5696,8.647519453,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-25,5,minute.maid,5696,8.647519453,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-25,5,tropicana,7296,8.895081532,1,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-06-25,5,dominicks,1408,7.249925537,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-02,5,tropicana,12928,9.467150781,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-02,5,minute.maid,39680,10.58860256,1,2.01,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-02,5,dominicks,4672,8.449342525,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-09,5,tropicana,6848,8.831711918,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-09,5,minute.maid,6208,8.733594062,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-09,5,dominicks,19520,9.87919486,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-16,5,tropicana,8064,8.99516499,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-16,5,minute.maid,7872,8.971067439,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-16,5,dominicks,7872,8.971067439,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-23,5,dominicks,5184,8.553332238,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-23,5,tropicana,4992,8.51559191,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-23,5,minute.maid,54528,10.90646961,1,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-30,5,tropicana,7360,8.903815212,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-30,5,minute.maid,6400,8.764053269,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-07-30,5,dominicks,42240,10.65112292,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-06,5,tropicana,8384,9.034080407000001,1,2.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-06,5,minute.maid,5888,8.68067166,1,2.65,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-06,5,dominicks,6592,8.793612072,1,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-13,5,tropicana,8832,9.086136769,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-13,5,minute.maid,56384,10.93994071,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-13,5,dominicks,2112,7.655390645,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1992-08-20,5,dominicks,21248,9.964018052,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
|
|
||||||
1990-06-14,8,dominicks,14336,9.570529135,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-14,8,minute.maid,6080,8.712759975,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-14,8,tropicana,8896,9.093357017,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-21,8,dominicks,6400,8.764053269,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-21,8,minute.maid,51968,10.85838342,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-21,8,tropicana,7296,8.895081532,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-28,8,tropicana,10368,9.246479419,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-28,8,minute.maid,4928,8.502688505,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-06-28,8,dominicks,3968,8.286017467999999,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-05,8,dominicks,4352,8.378390789,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-05,8,minute.maid,5312,8.577723691000001,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-05,8,tropicana,6976,8.850230966,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-12,8,tropicana,6464,8.774003599999999,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-12,8,dominicks,3520,8.166216269,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-12,8,minute.maid,39424,10.58213005,1,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-19,8,tropicana,8192,9.010913347,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-19,8,dominicks,6464,8.774003599999999,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-19,8,minute.maid,5568,8.624791202,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-26,8,dominicks,5952,8.691482577,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-26,8,minute.maid,14592,9.588228712000001,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-07-26,8,tropicana,7936,8.979164649,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-02,8,tropicana,6656,8.803273982999999,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-02,8,minute.maid,22208,10.00820786,1,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-02,8,dominicks,8832,9.086136769,1,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-09,8,dominicks,7232,8.886270902,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-09,8,minute.maid,5760,8.658692754,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-09,8,tropicana,8256,9.018695487999999,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-16,8,tropicana,5568,8.624791202,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-16,8,minute.maid,54016,10.89703558,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-16,8,dominicks,5504,8.61323038,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-23,8,dominicks,4800,8.476371197,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-23,8,minute.maid,5824,8.66974259,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-23,8,tropicana,7488,8.921057017999999,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-30,8,tropicana,6144,8.723231275,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-30,8,minute.maid,6528,8.783855897,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-08-30,8,dominicks,52672,10.87183928,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-06,8,dominicks,16448,9.707959168,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-06,8,minute.maid,5440,8.60153434,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-06,8,tropicana,11008,9.30637756,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-13,8,minute.maid,36544,10.50627229,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-13,8,dominicks,19072,9.85597657,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-13,8,tropicana,5760,8.658692754,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-20,8,dominicks,13376,9.501217335,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-20,8,minute.maid,3776,8.236420527,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-20,8,tropicana,10112,9.221478116,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-27,8,tropicana,8448,9.041685006,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-27,8,minute.maid,5504,8.61323038,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-09-27,8,dominicks,61440,11.02581637,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-04,8,tropicana,8448,9.041685006,1,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-04,8,dominicks,13760,9.529521112000001,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-04,8,minute.maid,12416,9.426741242,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-11,8,minute.maid,53696,10.89109379,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-11,8,dominicks,3136,8.050703382,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-11,8,tropicana,7424,8.912473275,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-18,8,tropicana,5824,8.66974259,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-18,8,minute.maid,5696,8.647519453,0,2.51,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-18,8,dominicks,186176,12.13444774,1,1.14,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-25,8,tropicana,6656,8.803273982999999,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-25,8,minute.maid,4864,8.489616424,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-10-25,8,dominicks,3712,8.219326094,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-01,8,tropicana,6272,8.743850562,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-01,8,minute.maid,37184,10.52363384,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-01,8,dominicks,35776,10.48503256,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-08,8,tropicana,6912,8.841014311,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-08,8,minute.maid,5504,8.61323038,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-08,8,dominicks,26880,10.1991378,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-15,8,tropicana,10496,9.258749511,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-15,8,minute.maid,51008,10.83973776,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-15,8,dominicks,71680,11.17996705,0,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-22,8,tropicana,11840,9.379238908,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-22,8,minute.maid,11072,9.312174678,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-22,8,dominicks,25088,10.13014492,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-29,8,tropicana,9664,9.17616292,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-29,8,minute.maid,12160,9.405907156,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-11-29,8,dominicks,91456,11.42361326,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-06,8,minute.maid,30528,10.32639957,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-06,8,dominicks,23808,10.07777694,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-06,8,tropicana,6272,8.743850562,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-13,8,dominicks,89856,11.40596367,1,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-13,8,minute.maid,12096,9.400630097999999,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-13,8,tropicana,7168,8.877381955,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-20,8,minute.maid,16448,9.707959168,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-20,8,dominicks,12224,9.411156511,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-20,8,tropicana,29504,10.29228113,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-27,8,minute.maid,9344,9.142489705,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-27,8,dominicks,3776,8.236420527,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1990-12-27,8,tropicana,8704,9.071537969,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-03,8,tropicana,9280,9.135616826,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-03,8,minute.maid,16128,9.688312171,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-03,8,dominicks,13824,9.534161491,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-10,8,minute.maid,5376,8.589699882,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-10,8,dominicks,251072,12.43349503,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-10,8,tropicana,12224,9.411156511,0,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-17,8,minute.maid,6656,8.803273982999999,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-17,8,tropicana,10368,9.246479419,0,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-17,8,dominicks,4864,8.489616424,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-24,8,minute.maid,59712,10.99728828,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-24,8,dominicks,10176,9.227787286,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-24,8,tropicana,8128,9.00307017,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-31,8,tropicana,5952,8.691482577,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-31,8,minute.maid,9856,9.195835686,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-01-31,8,dominicks,105344,11.56498647,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-07,8,minute.maid,6720,8.812843434,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-07,8,dominicks,33600,10.42228135,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-07,8,tropicana,21696,9.984883191,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-14,8,dominicks,4736,8.462948177000001,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-14,8,minute.maid,4224,8.348537825,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-14,8,tropicana,7808,8.962904128,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-21,8,tropicana,8128,9.00307017,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-21,8,minute.maid,9728,9.182763604,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-21,8,dominicks,10304,9.240287448,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-28,8,tropicana,7424,8.912473275,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-28,8,minute.maid,40320,10.604602900000001,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-02-28,8,dominicks,5056,8.528330936,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-07,8,dominicks,179968,12.10053434,1,0.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-07,8,tropicana,5952,8.691482577,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-07,8,minute.maid,5120,8.540909718,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-14,8,minute.maid,19264,9.865993348,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-14,8,dominicks,4992,8.51559191,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-14,8,tropicana,7616,8.938006577000001,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-21,8,tropicana,5312,8.577723691000001,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-21,8,minute.maid,170432,12.04609167,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-21,8,dominicks,6400,8.764053269,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-28,8,minute.maid,39680,10.58860256,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-28,8,dominicks,14912,9.609921537,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-03-28,8,tropicana,161792,11.99406684,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-04,8,dominicks,34624,10.45230236,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-04,8,minute.maid,8128,9.00307017,1,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-04,8,tropicana,17280,9.757305042,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-11,8,tropicana,47040,10.75875358,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-11,8,minute.maid,9088,9.114710141,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-11,8,dominicks,10368,9.246479419,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-18,8,tropicana,14464,9.579418083,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-18,8,minute.maid,6720,8.812843434,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-18,8,dominicks,194880,12.18013926,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-25,8,tropicana,52928,10.87668778,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-25,8,dominicks,5696,8.647519453,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-04-25,8,minute.maid,7552,8.929567707999999,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-02,8,dominicks,7168,8.877381955,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-02,8,minute.maid,24768,10.11730778,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-02,8,tropicana,21184,9.961001459,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-09,8,tropicana,7360,8.903815212,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-09,8,minute.maid,183296,12.11885761,1,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-09,8,dominicks,2880,7.965545572999999,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-16,8,dominicks,12288,9.416378455,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-16,8,minute.maid,8896,9.093357017,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-05-16,8,tropicana,15744,9.664214619,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-06,8,dominicks,9280,9.135616826,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-06,8,tropicana,46912,10.75602879,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-06,8,minute.maid,6656,8.803273982999999,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-13,8,tropicana,18240,9.811372264,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-13,8,dominicks,25856,10.16029796,1,1.26,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-13,8,minute.maid,35456,10.47604777,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-20,8,dominicks,19264,9.865993348,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-20,8,minute.maid,17408,9.76468515,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-20,8,tropicana,6464,8.774003599999999,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-27,8,dominicks,6848,8.831711918,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-27,8,minute.maid,75520,11.2321528,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-06-27,8,tropicana,8512,9.049232212,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-04,8,tropicana,28416,10.25470765,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-04,8,minute.maid,21632,9.981928979,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-04,8,dominicks,12928,9.467150781,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-11,8,dominicks,44032,10.69267192,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-11,8,minute.maid,8384,9.034080407000001,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-11,8,tropicana,16960,9.738612909,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-18,8,minute.maid,9920,9.2023082,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-18,8,dominicks,25408,10.14281936,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-18,8,tropicana,8320,9.026417534,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-25,8,dominicks,38336,10.55414468,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-25,8,minute.maid,6592,8.793612072,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-07-25,8,tropicana,11136,9.317938383,1,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-01,8,tropicana,27712,10.22962081,0,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-01,8,minute.maid,7168,8.877381955,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-01,8,dominicks,152384,11.93415893,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-08,8,dominicks,54464,10.90529521,0,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-08,8,minute.maid,6208,8.733594062,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-08,8,tropicana,7744,8.954673629,0,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-15,8,minute.maid,30528,10.32639957,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-15,8,dominicks,47680,10.772267300000001,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-15,8,tropicana,5184,8.553332238,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-22,8,dominicks,14720,9.596962392,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-22,8,minute.maid,155840,11.95658512,1,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-22,8,tropicana,6272,8.743850562,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-29,8,tropicana,7744,8.954673629,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-29,8,dominicks,53248,10.88271552,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-08-29,8,minute.maid,10752,9.282847063,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-05,8,tropicana,53184,10.88151288,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-05,8,minute.maid,6976,8.850230966,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-05,8,dominicks,40576,10.61093204,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-12,8,dominicks,25856,10.16029796,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-12,8,tropicana,6784,8.822322178,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-12,8,minute.maid,31872,10.36948316,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-19,8,dominicks,24064,10.08847223,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-19,8,minute.maid,5312,8.577723691000001,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-19,8,tropicana,8000,8.987196821,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-26,8,tropicana,6592,8.793612072,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-26,8,minute.maid,33344,10.41463313,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-09-26,8,dominicks,15680,9.660141293999999,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-03,8,minute.maid,13504,9.510741217,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-03,8,dominicks,16576,9.715711145,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-03,8,tropicana,5248,8.565602331000001,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-10,8,dominicks,49664,10.8130356,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-10,8,tropicana,6592,8.793612072,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-10,8,minute.maid,13504,9.510741217,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-17,8,dominicks,10752,9.282847063,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-17,8,minute.maid,335808,12.72429485,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-17,8,tropicana,5888,8.68067166,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-24,8,tropicana,6336,8.754002933999999,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-24,8,dominicks,9792,9.189321005,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-24,8,minute.maid,13120,9.481893063,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-31,8,tropicana,5888,8.68067166,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-31,8,minute.maid,49664,10.8130356,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-10-31,8,dominicks,7104,8.868413285,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-07,8,dominicks,9216,9.128696383,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-07,8,tropicana,6080,8.712759975,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-07,8,minute.maid,10880,9.29468152,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-14,8,tropicana,6848,8.831711918,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-14,8,minute.maid,9984,9.208739091,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-14,8,dominicks,12608,9.442086812000001,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-21,8,tropicana,54016,10.89703558,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-21,8,minute.maid,9216,9.128696383,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-21,8,dominicks,16448,9.707959168,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-28,8,tropicana,10368,9.246479419,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-28,8,dominicks,27968,10.23881628,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-11-28,8,minute.maid,7680,8.946374826,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-05,8,minute.maid,7296,8.895081532,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-05,8,dominicks,37824,10.5406991,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-05,8,tropicana,5568,8.624791202,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-12,8,dominicks,33664,10.4241843,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-12,8,minute.maid,8192,9.010913347,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-12,8,tropicana,4864,8.489616424,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-19,8,tropicana,7232,8.886270902,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-19,8,minute.maid,6080,8.712759975,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-19,8,dominicks,17728,9.78290059,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-26,8,tropicana,15232,9.631153757,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-26,8,dominicks,25088,10.13014492,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1991-12-26,8,minute.maid,15040,9.618468598,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-02,8,minute.maid,9472,9.156095357,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-02,8,dominicks,13184,9.486759252,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-02,8,tropicana,47040,10.75875358,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-09,8,dominicks,3136,8.050703382,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-09,8,minute.maid,5888,8.68067166,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-09,8,tropicana,9280,9.135616826,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-16,8,tropicana,6720,8.812843434,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-16,8,minute.maid,14336,9.570529135,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-16,8,dominicks,5696,8.647519453,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-23,8,minute.maid,11712,9.368369236,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-23,8,dominicks,19008,9.852615222,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-23,8,tropicana,5056,8.528330936,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-30,8,minute.maid,7936,8.979164649,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-30,8,dominicks,121664,11.70901843,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-01-30,8,tropicana,6080,8.712759975,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-06,8,tropicana,10496,9.258749511,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-06,8,minute.maid,5184,8.553332238,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-06,8,dominicks,38848,10.56741187,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-13,8,minute.maid,7168,8.877381955,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-13,8,dominicks,6144,8.723231275,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-13,8,tropicana,39040,10.57234204,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-20,8,dominicks,13632,9.520175249,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-20,8,minute.maid,216064,12.28332994,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-20,8,tropicana,4480,8.407378325,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-27,8,tropicana,61760,11.03101119,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-27,8,minute.maid,15040,9.618468598,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-02-27,8,dominicks,9792,9.189321005,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-05,8,tropicana,15360,9.639522007,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-05,8,minute.maid,11840,9.379238908,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-05,8,dominicks,86912,11.37265139,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-12,8,minute.maid,25472,10.14533509,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-12,8,dominicks,24512,10.10691807,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-12,8,tropicana,54976,10.91465201,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-19,8,minute.maid,16384,9.704060528,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-19,8,dominicks,58048,10.96902553,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-19,8,tropicana,34368,10.44488118,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-26,8,tropicana,10752,9.282847063,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-26,8,minute.maid,20480,9.927204079,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-03-26,8,dominicks,13952,9.543378146,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-02,8,minute.maid,34688,10.45414909,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-02,8,dominicks,15168,9.626943225,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-02,8,tropicana,20096,9.908276069,1,2.5,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-09,8,dominicks,14592,9.588228712000001,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-09,8,minute.maid,22400,10.01681624,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-09,8,tropicana,16192,9.692272572,0,2.5,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-16,8,tropicana,6528,8.783855897,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-16,8,minute.maid,7808,8.962904128,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-16,8,dominicks,145088,11.88509573,1,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-23,8,tropicana,8320,9.026417534,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-23,8,minute.maid,48064,10.78028874,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-23,8,dominicks,43712,10.68537794,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-30,8,tropicana,30784,10.33475035,1,2.16,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-30,8,minute.maid,7360,8.903815212,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-04-30,8,dominicks,20608,9.933434629,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-07,8,tropicana,18048,9.800790154,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-07,8,minute.maid,6272,8.743850562,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-07,8,dominicks,18752,9.839055692,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-14,8,tropicana,12864,9.462187991,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-14,8,minute.maid,6400,8.764053269,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-14,8,dominicks,20160,9.911455722000001,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-21,8,tropicana,7168,8.877381955,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-21,8,minute.maid,54592,10.90764263,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-21,8,dominicks,18688,9.835636886,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-28,8,minute.maid,8128,9.00307017,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-28,8,tropicana,9024,9.107642974,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-05-28,8,dominicks,133824,11.80428078,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-04,8,tropicana,84992,11.35031241,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-04,8,minute.maid,4928,8.502688505,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-04,8,dominicks,63488,11.05860619,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-11,8,minute.maid,5440,8.60153434,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-11,8,tropicana,14144,9.557045785,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-11,8,dominicks,71040,11.17099838,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-25,8,tropicana,7488,8.921057017999999,1,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-25,8,minute.maid,5888,8.68067166,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-06-25,8,dominicks,15360,9.639522007,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-02,8,minute.maid,23872,10.0804615,1,2.02,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-02,8,dominicks,17728,9.78290059,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-02,8,tropicana,12352,9.421573272,0,2.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-09,8,tropicana,5696,8.647519453,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-09,8,minute.maid,6848,8.831711918,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-09,8,dominicks,24256,10.09641929,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-16,8,minute.maid,8192,9.010913347,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-16,8,dominicks,19968,9.901886271,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-16,8,tropicana,7680,8.946374826,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-23,8,dominicks,15936,9.67633598,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-23,8,minute.maid,55040,10.91581547,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-23,8,tropicana,5440,8.60153434,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-30,8,tropicana,5632,8.636219898,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-30,8,minute.maid,6528,8.783855897,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-07-30,8,dominicks,76352,11.24310951,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-06,8,tropicana,8960,9.100525506,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-06,8,minute.maid,6208,8.733594062,1,2.45,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-06,8,dominicks,17408,9.76468515,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-13,8,minute.maid,94720,11.45868045,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-13,8,tropicana,6080,8.712759975,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-13,8,dominicks,17536,9.77201119,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
1992-08-20,8,dominicks,31232,10.34919849,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
|
|
||||||
|
@@ -1,66 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import json
|
|
||||||
|
|
||||||
from azureml.core import Run, Model, Workspace
|
|
||||||
from azureml.core.conda_dependencies import CondaDependencies
|
|
||||||
from azureml.core.model import InferenceConfig
|
|
||||||
from azureml.core.webservice import AciWebservice
|
|
||||||
|
|
||||||
|
|
||||||
script_file_name = 'score.py'
|
|
||||||
conda_env_file_name = 'myenv.yml'
|
|
||||||
|
|
||||||
print("In deploy.py")
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--time_column_name", type=str, help="time column name")
|
|
||||||
parser.add_argument("--group_column_names", type=str, help="group column names")
|
|
||||||
parser.add_argument("--model_names", type=str, help="model names")
|
|
||||||
parser.add_argument("--service_name", type=str, help="service name")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# replace the group column names in scoring script to the ones set by user
|
|
||||||
print("Update group_column_names")
|
|
||||||
print(args.group_column_names)
|
|
||||||
|
|
||||||
with open(script_file_name, 'r') as cefr:
|
|
||||||
content = cefr.read()
|
|
||||||
with open(script_file_name, 'w') as cefw:
|
|
||||||
content = content.replace('<<groups>>', args.group_column_names.rstrip())
|
|
||||||
cefw.write(content.replace('<<time_colname>>', args.time_column_name.rstrip()))
|
|
||||||
|
|
||||||
with open(script_file_name, 'r') as cefr1:
|
|
||||||
content1 = cefr1.read()
|
|
||||||
print(content1)
|
|
||||||
|
|
||||||
model_list = json.loads(args.model_names)
|
|
||||||
print(model_list)
|
|
||||||
|
|
||||||
run = Run.get_context()
|
|
||||||
ws = run.experiment.workspace
|
|
||||||
|
|
||||||
deployment_config = AciWebservice.deploy_configuration(
|
|
||||||
cpu_cores=1,
|
|
||||||
memory_gb=2,
|
|
||||||
tags={"method": "grouping"},
|
|
||||||
description='grouping demo aci deployment'
|
|
||||||
)
|
|
||||||
|
|
||||||
inference_config = InferenceConfig(
|
|
||||||
entry_script=script_file_name,
|
|
||||||
runtime='python',
|
|
||||||
conda_file=conda_env_file_name
|
|
||||||
)
|
|
||||||
|
|
||||||
models = []
|
|
||||||
for model_name in model_list:
|
|
||||||
models.append(Model(ws, name=model_name))
|
|
||||||
|
|
||||||
service = Model.deploy(
|
|
||||||
ws,
|
|
||||||
name=args.service_name,
|
|
||||||
models=models,
|
|
||||||
inference_config=inference_config,
|
|
||||||
deployment_config=deployment_config
|
|
||||||
)
|
|
||||||
service.wait_for_deployment(True)
|
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
name: automl_grouping_env
|
|
||||||
dependencies:
|
|
||||||
# The python interpreter version.
|
|
||||||
|
|
||||||
# Currently Azure ML only supports 3.5.2 and later.
|
|
||||||
|
|
||||||
- python=3.6.2
|
|
||||||
- numpy>=1.16.0,<=1.16.2
|
|
||||||
- scikit-learn>=0.19.0,<=0.20.3
|
|
||||||
- conda-forge::fbprophet==0.5
|
|
||||||
|
|
||||||
@@ -1,55 +0,0 @@
|
|||||||
import json
|
|
||||||
import pickle
|
|
||||||
import re
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from sklearn.externals import joblib
|
|
||||||
from sklearn.linear_model import Ridge
|
|
||||||
|
|
||||||
from azureml.core.model import Model
|
|
||||||
import azureml.train.automl
|
|
||||||
|
|
||||||
|
|
||||||
def init():
|
|
||||||
global models
|
|
||||||
models = {}
|
|
||||||
global group_columns_str
|
|
||||||
group_columns_str = "<<groups>>"
|
|
||||||
global time_column_name
|
|
||||||
time_column_name = "<<time_colname>>"
|
|
||||||
|
|
||||||
global group_columns
|
|
||||||
group_columns = group_columns_str.split("#####")
|
|
||||||
global valid_chars
|
|
||||||
valid_chars = re.compile('[^a-zA-Z0-9-]')
|
|
||||||
|
|
||||||
|
|
||||||
def run(raw_data):
|
|
||||||
try:
|
|
||||||
data = pd.read_json(raw_data)
|
|
||||||
# Make sure we have correct time points.
|
|
||||||
data[time_column_name] = pd.to_datetime(data[time_column_name], unit='ms')
|
|
||||||
dfs = []
|
|
||||||
for grain, df_one in data.groupby(group_columns):
|
|
||||||
if isinstance(grain, int):
|
|
||||||
cur_group = str(grain)
|
|
||||||
elif isinstance(grain, str):
|
|
||||||
cur_group = grain
|
|
||||||
else:
|
|
||||||
cur_group = "#####".join(list(grain))
|
|
||||||
cur_group = valid_chars.sub('', cur_group)
|
|
||||||
print("Query model for group {}".format(cur_group))
|
|
||||||
if cur_group not in models:
|
|
||||||
model_path = Model.get_model_path(cur_group)
|
|
||||||
model = joblib.load(model_path)
|
|
||||||
models[cur_group] = model
|
|
||||||
_, xtrans = models[cur_group].forecast(df_one)
|
|
||||||
dfs.append(xtrans)
|
|
||||||
df_ret = pd.concat(dfs)
|
|
||||||
df_ret.reset_index(drop=False, inplace=True)
|
|
||||||
return json.dumps({'predictions': df_ret.to_json()})
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
error = str(e)
|
|
||||||
return error
|
|
||||||
@@ -1,22 +0,0 @@
|
|||||||
import argparse
|
|
||||||
|
|
||||||
from azureml.core import Run, Model
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--model_name")
|
|
||||||
parser.add_argument("--model_path")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
run = Run.get_context()
|
|
||||||
ws = run.experiment.workspace
|
|
||||||
print('retrieved ws: {}'.format(ws))
|
|
||||||
|
|
||||||
print('begin register model')
|
|
||||||
model = Model.register(
|
|
||||||
workspace=ws,
|
|
||||||
model_path=args.model_path,
|
|
||||||
model_name=args.model_name
|
|
||||||
)
|
|
||||||
print('model registered: {}'.format(model))
|
|
||||||
print('complete')
|
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
name: automl-forecasting-function
|
|
||||||
dependencies:
|
|
||||||
- fbprophet==0.5
|
|
||||||
- py-xgboost<=0.80
|
|
||||||
- pip:
|
|
||||||
- azureml-sdk
|
|
||||||
- azureml-train-automl
|
|
||||||
- azureml-widgets
|
|
||||||
- pandas_ml
|
|
||||||
- statsmodels
|
|
||||||
- matplotlib
|
|
||||||
@@ -65,7 +65,25 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"from azureml.core.workspace import Workspace\n",
|
"from azureml.core.workspace import Workspace\n",
|
||||||
"from azureml.core.experiment import Experiment\n",
|
"from azureml.core.experiment import Experiment\n",
|
||||||
"from azureml.train.automl import AutoMLConfig"
|
"from azureml.train.automl import AutoMLConfig\n",
|
||||||
|
"from azureml.automl.core.featurization import FeaturizationConfig"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -89,7 +107,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['SKU'] = ws.sku\n",
|
"output['SKU'] = ws.sku\n",
|
||||||
@@ -118,35 +135,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-oj\"\n",
|
"amlcompute_cluster_name = \"oj-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
" \n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=6)\n",
|
" max_nodes=6)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
" \n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
" \n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -315,17 +319,54 @@
|
|||||||
"target_column_name = 'Quantity'"
|
"target_column_name = 'Quantity'"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Customization\n",
|
||||||
|
"\n",
|
||||||
|
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include,\n",
|
||||||
|
"1. Column purposes update: Override feature type for the specified column. Currently supports DateTime, Categorical and Numeric. This customization can be used in the scenario that the type of the column cannot correctly reflect its purpose. Some numerical columns, for instance, can be treated as Categorical columns which need to be converted to categorical while some can be treated as epoch timestamp which need to be converted to datetime. To tell our SDK to correctly preprocess these columns, a configuration need to be add with the columns and their desired types.\n",
|
||||||
|
"2. Transformer parameters update: Currently supports parameter change for Imputer only. User can customize imputation methods, the supported methods are constant for target data and mean, median, most frequent and constant for training data. This customization can be used for the scenario that our customers know which imputation methods fit best to the input data. For instance, some datasets use NaN to represent 0 which the correct behavior should impute all the missing value with 0. To achieve this behavior, these columns need to be configured as constant imputation with `fill_value` 0.\n",
|
||||||
|
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data.\n",
|
||||||
|
"\n",
|
||||||
|
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"featurization_config = FeaturizationConfig()\n",
|
||||||
|
"featurization_config.drop_columns = ['logQuantity'] # 'logQuantity' is a leaky feature, so we remove it.\n",
|
||||||
|
"# Force the CPWVOL5 feature to be numeric type.\n",
|
||||||
|
"featurization_config.add_column_purpose('CPWVOL5', 'Numeric')\n",
|
||||||
|
"# Fill missing values in the target column, Quantity, with zeros.\n",
|
||||||
|
"featurization_config.add_transformer_params('Imputer', ['Quantity'], {\"strategy\": \"constant\", \"fill_value\": 0})\n",
|
||||||
|
"# Fill missing values in the INCOME column with median value.\n",
|
||||||
|
"featurization_config.add_transformer_params('Imputer', ['INCOME'], {\"strategy\": \"median\"})"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Train\n",
|
"## Train\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters. \n",
|
"The [AutoMLConfig](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py) object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
|
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If grain columns are not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
|
||||||
|
"\n",
|
||||||
|
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
|
||||||
|
"\n",
|
||||||
|
"We note here that AutoML can sweep over two types of time-series models:\n",
|
||||||
|
"* Models that are trained for each series such as ARIMA and Facebook's Prophet. Note that these models are only available for [Enterprise Edition Workspaces](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace#upgrade).\n",
|
||||||
|
"* Models trained across multiple time-series using a regression approach.\n",
|
||||||
|
"\n",
|
||||||
|
"In the first case, AutoML loops over all time-series in your dataset and trains one model (e.g. AutoArima or Prophet, as the case may be) for each series. This can result in long runtimes to train these models if there are a lot of series in the data. One way to mitigate this problem is to fit models for different series in parallel if you have multiple compute cores available. To enable this behavior, set the `max_cores_per_iteration` parameter in your AutoMLConfig as shown in the example in the next cell. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *validation_data* parameter of AutoMLConfig.\n",
|
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *validation_data* parameter of AutoMLConfig.\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -335,7 +376,7 @@
|
|||||||
"|-|-|\n",
|
"|-|-|\n",
|
||||||
"|**task**|forecasting|\n",
|
"|**task**|forecasting|\n",
|
||||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
||||||
"|**experiment_timeout_minutes**|Experimentation timeout in minutes.|\n",
|
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
|
||||||
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
|
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
|
||||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||||
"|**label_column_name**|The name of the label column.|\n",
|
"|**label_column_name**|The name of the label column.|\n",
|
||||||
@@ -346,8 +387,9 @@
|
|||||||
"|**debug_log**|Log file path for writing debugging information|\n",
|
"|**debug_log**|Log file path for writing debugging information|\n",
|
||||||
"|**time_column_name**|Name of the datetime column in the input data|\n",
|
"|**time_column_name**|Name of the datetime column in the input data|\n",
|
||||||
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
|
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
|
||||||
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
|
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|\n",
|
||||||
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|"
|
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Setting this enables AutoML to perform featurization on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
|
||||||
|
"|**max_cores_per_iteration**|Maximum number of cores to utilize per iteration. A value of -1 indicates all available cores should be used.|"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -359,20 +401,21 @@
|
|||||||
"time_series_settings = {\n",
|
"time_series_settings = {\n",
|
||||||
" 'time_column_name': time_column_name,\n",
|
" 'time_column_name': time_column_name,\n",
|
||||||
" 'grain_column_names': grain_column_names,\n",
|
" 'grain_column_names': grain_column_names,\n",
|
||||||
" 'drop_column_names': ['logQuantity'], # 'logQuantity' is a leaky feature, so we remove it.\n",
|
|
||||||
" 'max_horizon': n_test_periods\n",
|
" 'max_horizon': n_test_periods\n",
|
||||||
"}\n",
|
"}\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||||
" debug_log='automl_oj_sales_errors.log',\n",
|
" debug_log='automl_oj_sales_errors.log',\n",
|
||||||
" primary_metric='normalized_mean_absolute_error',\n",
|
" primary_metric='normalized_mean_absolute_error',\n",
|
||||||
" experiment_timeout_minutes=15,\n",
|
" experiment_timeout_hours=0.25,\n",
|
||||||
" training_data=train_dataset,\n",
|
" training_data=train_dataset,\n",
|
||||||
" label_column_name=target_column_name,\n",
|
" label_column_name=target_column_name,\n",
|
||||||
" compute_target=compute_target,\n",
|
" compute_target=compute_target,\n",
|
||||||
" enable_early_stopping=True,\n",
|
" enable_early_stopping=True,\n",
|
||||||
|
" featurization=featurization_config,\n",
|
||||||
" n_cross_validations=3,\n",
|
" n_cross_validations=3,\n",
|
||||||
" verbosity=logging.INFO,\n",
|
" verbosity=logging.INFO,\n",
|
||||||
|
" max_cores_per_iteration=-1,\n",
|
||||||
" **time_series_settings)"
|
" **time_series_settings)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -422,6 +465,33 @@
|
|||||||
"model_name = best_run.properties['model_name']"
|
"model_name = best_run.properties['model_name']"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Transparency\n",
|
||||||
|
"\n",
|
||||||
|
"View updated featurization summary"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"custom_featurizer = fitted_model.named_steps['timeseriestransformer']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"custom_featurizer.get_featurization_summary()"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -475,7 +545,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
|
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The [energy demand forecasting notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) demonstrates the use of the forecast function in more detail in the context of using lags and rolling window features. "
|
"The [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -506,16 +576,15 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
"from azureml.automl.core.shared import constants\n",
|
||||||
|
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||||
"from matplotlib import pyplot as plt\n",
|
"from matplotlib import pyplot as plt\n",
|
||||||
"from automl.client.core.common import constants\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# use automl metrics module\n",
|
"# use automl scoring module\n",
|
||||||
"scores = metrics.compute_metrics_regression(\n",
|
"scores = scoring.score_regression(\n",
|
||||||
" df_all['predicted'],\n",
|
" y_test=df_all[target_column_name],\n",
|
||||||
" df_all[target_column_name],\n",
|
" y_pred=df_all['predicted'],\n",
|
||||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||||
" None, None, None)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"[Test data scores]\\n\")\n",
|
"print(\"[Test data scores]\\n\")\n",
|
||||||
"for key, value in scores.items(): \n",
|
"for key, value in scores.items(): \n",
|
||||||
@@ -631,9 +700,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import json\n",
|
"import json\n",
|
||||||
"# The request data frame needs to have y_query column which corresponds to query.\n",
|
|
||||||
"X_query = X_test.copy()\n",
|
"X_query = X_test.copy()\n",
|
||||||
"X_query['y_query'] = np.NaN\n",
|
|
||||||
"# We have to convert datetime to string, because Timestamps cannot be serialized to JSON.\n",
|
"# We have to convert datetime to string, because Timestamps cannot be serialized to JSON.\n",
|
||||||
"X_query[time_column_name] = X_query[time_column_name].astype(str)\n",
|
"X_query[time_column_name] = X_query[time_column_name].astype(str)\n",
|
||||||
"# The Service object accept the complex dictionary, which is internally converted to JSON string.\n",
|
"# The Service object accept the complex dictionary, which is internally converted to JSON string.\n",
|
||||||
|
|||||||
@@ -1,11 +1,10 @@
|
|||||||
name: auto-ml-forecasting-orange-juice-sales
|
name: auto-ml-forecasting-orange-juice-sales
|
||||||
dependencies:
|
dependencies:
|
||||||
- fbprophet==0.5
|
- py-xgboost<=0.90
|
||||||
- py-xgboost<=0.80
|
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
|
- numpy==1.16.2
|
||||||
|
- pandas==0.23.4
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
- statsmodels
|
|
||||||
|
|||||||
@@ -42,14 +42,16 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"This notebook is using the local machine compute to train the model.\n",
|
"This notebook is using the local machine compute to train the model.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this notebook you will learn how to:\n",
|
"In this notebook you will learn how to:\n",
|
||||||
"1. Create an experiment using an existing workspace.\n",
|
"1. Create an experiment using an existing workspace.\n",
|
||||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||||
"3. Train the model.\n",
|
"3. Train the model.\n",
|
||||||
"4. Explore the results.\n",
|
"4. Explore the results.\n",
|
||||||
"5. Test the fitted model."
|
"5. Visualization model's feature importance in azure portal\n",
|
||||||
|
"6. Explore any model's explanation and explore feature importance in azure portal\n",
|
||||||
|
"7. Test the fitted model."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -71,13 +73,30 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"from matplotlib import pyplot as plt\n",
|
"from matplotlib import pyplot as plt\n",
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
"import os\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"import azureml.core\n",
|
"import azureml.core\n",
|
||||||
"from azureml.core.experiment import Experiment\n",
|
"from azureml.core.experiment import Experiment\n",
|
||||||
"from azureml.core.workspace import Workspace\n",
|
"from azureml.core.workspace import Workspace\n",
|
||||||
"from azureml.core.dataset import Dataset\n",
|
"from azureml.core.dataset import Dataset\n",
|
||||||
"from azureml.train.automl import AutoMLConfig"
|
"from azureml.train.automl import AutoMLConfig\n",
|
||||||
|
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -94,7 +113,6 @@
|
|||||||
"experiment=Experiment(ws, experiment_name)\n",
|
"experiment=Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -155,8 +173,7 @@
|
|||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"n_cross_validations\": 3,\n",
|
" \"n_cross_validations\": 3,\n",
|
||||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||||
" \"preprocess\": True,\n",
|
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ability to find the best model possible\n",
|
||||||
" \"experiment_timeout_minutes\": 10, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
|
|
||||||
" \"verbosity\": logging.INFO,\n",
|
" \"verbosity\": logging.INFO,\n",
|
||||||
" \"enable_stack_ensemble\": False\n",
|
" \"enable_stack_ensemble\": False\n",
|
||||||
"}\n",
|
"}\n",
|
||||||
@@ -260,17 +277,135 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Print the properties of the model\n",
|
"#### Print the properties of the model\n",
|
||||||
"The fitted_model is a python object and you can read the different properties of the object.\n",
|
"The fitted_model is a python object and you can read the different properties of the object.\n"
|
||||||
"See *Print the properties of the model* section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb)."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"### Deploy\n",
|
"## Best Model 's explanation\n",
|
||||||
|
"Retrieve the explanation from the best_run which includes explanations for engineered features and raw features.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"To deploy the model into a web service endpoint, see _Deploy_ section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb)"
|
"#### Download engineered feature importance from artifact store\n",
|
||||||
|
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"client = ExplanationClient.from_run(best_run)\n",
|
||||||
|
"engineered_explanations = client.download_model_explanation(raw=False)\n",
|
||||||
|
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||||
|
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Explanations\n",
|
||||||
|
"In this section, we will show how to compute model explanations and visualize the explanations using azureml-explain-model package. Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance based on your test data."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Retrieve any other AutoML model from training"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"automl_run, fitted_model = local_run.get_output(metric='accuracy')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Setup the model explanations for AutoML models\n",
|
||||||
|
"The fitted_model can generate the following which will be used for getting the engineered explanations using automl_setup_model_explanations:-\n",
|
||||||
|
"\n",
|
||||||
|
"1. Featurized data from train samples/test samples\n",
|
||||||
|
"2. Gather engineered name lists\n",
|
||||||
|
"3. Find the classes in your labeled column in classification scenarios\n",
|
||||||
|
"\n",
|
||||||
|
"The automl_explainer_setup_obj contains all the structures from above list."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"X_train = training_data.drop_columns(columns=[label_column_name])\n",
|
||||||
|
"y_train = training_data.keep_columns(columns=[label_column_name], validate=True)\n",
|
||||||
|
"X_test = validation_data.drop_columns(columns=[label_column_name])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations\n",
|
||||||
|
"\n",
|
||||||
|
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
|
||||||
|
" X_test=X_test, y=y_train, \n",
|
||||||
|
" task='classification')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Initialize the Mimic Explainer for feature importance\n",
|
||||||
|
"For explaining the AutoML models, use the MimicWrapper from azureml.explain.model package. The MimicWrapper can be initialized with fields in automl_explainer_setup_obj, your workspace and a surrogate model to explain the AutoML model (fitted_model here). The MimicWrapper also takes the automl_run object where engineered explanations will be uploaded."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
|
||||||
|
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
|
||||||
|
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
|
||||||
|
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
|
||||||
|
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||||
|
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
|
||||||
|
" classes=automl_explainer_setup_obj.classes,\n",
|
||||||
|
" explainer_kwargs=automl_explainer_setup_obj.surrogate_model_params)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
|
||||||
|
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
|
||||||
|
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||||
|
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -369,7 +504,7 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"authors": [
|
"authors": [
|
||||||
{
|
{
|
||||||
"name": "tzvikei"
|
"name": "anumamah"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"category": "tutorial",
|
"category": "tutorial",
|
||||||
|
|||||||
@@ -2,10 +2,6 @@ name: auto-ml-classification-credit-card-fraud-local
|
|||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- interpret
|
|
||||||
- azureml-defaults
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
|
|||||||
@@ -40,7 +40,7 @@
|
|||||||
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
||||||
"After training AutoML models for this regression data set, we show how you can compute model explanations on your remote compute using a sample explainer script.\n",
|
"After training AutoML models for this regression data set, we show how you can compute model explanations on your remote compute using a sample explainer script.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
|
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -51,8 +51,8 @@
|
|||||||
"4. Explore the results and featurization transparency options\n",
|
"4. Explore the results and featurization transparency options\n",
|
||||||
"5. Setup remote compute for computing the model explanations for a given AutoML model.\n",
|
"5. Setup remote compute for computing the model explanations for a given AutoML model.\n",
|
||||||
"6. Start an AzureML experiment on your remote compute to compute explanations for an AutoML model.\n",
|
"6. Start an AzureML experiment on your remote compute to compute explanations for an AutoML model.\n",
|
||||||
"7. Download the feature importance for engineered features and visualize the explanations for engineered features. \n",
|
"7. Download the feature importance for engineered features and visualize the explanations for engineered features on azure portal. \n",
|
||||||
"8. Download the feature importance for raw features and visualize the explanations for raw features. \n"
|
"8. Download the feature importance for raw features and visualize the explanations for raw features on azure portal. \n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -85,6 +85,23 @@
|
|||||||
"from azureml.core.dataset import Dataset"
|
"from azureml.core.dataset import Dataset"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -98,7 +115,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace Name'] = ws.name\n",
|
"output['Workspace Name'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -127,35 +143,22 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute\n",
|
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||||
"from azureml.core.compute import ComputeTarget\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your cluster.\n",
|
"# Choose a name for your cluster.\n",
|
||||||
"amlcompute_cluster_name = \"cpu-cluster-5\"\n",
|
"amlcompute_cluster_name = \"hardware-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"found = False\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"# Check if this compute target already exists in the workspace.\n",
|
"try:\n",
|
||||||
"cts = ws.compute_targets\n",
|
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
" print('Found existing cluster, use it.')\n",
|
||||||
" found = True\n",
|
"except ComputeTargetException:\n",
|
||||||
" print('Found existing compute target.')\n",
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
||||||
"\n",
|
|
||||||
"if not found:\n",
|
|
||||||
" print('Creating a new compute target...')\n",
|
|
||||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
||||||
" #vm_priority = 'lowpriority', # optional\n",
|
|
||||||
" max_nodes=4)\n",
|
" max_nodes=4)\n",
|
||||||
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Create the cluster.\\n\",\n",
|
"compute_target.wait_for_completion(show_output=True)"
|
||||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
||||||
"\n",
|
|
||||||
"print('Checking cluster status...')\n",
|
|
||||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
||||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
||||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
||||||
"\n",
|
|
||||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -206,9 +209,9 @@
|
|||||||
"|-|-|\n",
|
"|-|-|\n",
|
||||||
"|**task**|classification, regression or forecasting|\n",
|
"|**task**|classification, regression or forecasting|\n",
|
||||||
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
||||||
"|**experiment_timeout_minutes**| Maximum amount of time in minutes that all iterations combined can take before the experiment terminates.|\n",
|
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
|
||||||
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
|
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
|
||||||
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Note: If the input data is sparse, featurization cannot be turned on.|\n",
|
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Setting this enables AutoML to perform featurization on the input to handle *missing data*, and to perform some common *feature extraction*. Note: If the input data is sparse, featurization cannot be turned on.|\n",
|
||||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||||
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||||
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|"
|
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|"
|
||||||
@@ -244,7 +247,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"featurization_config = FeaturizationConfig()\n",
|
"featurization_config = FeaturizationConfig()\n",
|
||||||
"featurization_config.blocked_transformers = ['LabelEncoder']\n",
|
"featurization_config.blocked_transformers = ['LabelEncoder']\n",
|
||||||
"#featurization_config.drop_columns = ['ERP', 'MMIN']\n",
|
"#featurization_config.drop_columns = ['MMIN']\n",
|
||||||
"featurization_config.add_column_purpose('MYCT', 'Numeric')\n",
|
"featurization_config.add_column_purpose('MYCT', 'Numeric')\n",
|
||||||
"featurization_config.add_column_purpose('VendorName', 'CategoricalHash')\n",
|
"featurization_config.add_column_purpose('VendorName', 'CategoricalHash')\n",
|
||||||
"#default strategy mean, add transformer param for for 3 columns\n",
|
"#default strategy mean, add transformer param for for 3 columns\n",
|
||||||
@@ -262,7 +265,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"enable_early_stopping\": True, \n",
|
" \"enable_early_stopping\": True, \n",
|
||||||
" \"experiment_timeout_minutes\" : 10,\n",
|
" \"experiment_timeout_hours\" : 0.25,\n",
|
||||||
" \"max_concurrent_iterations\": 4,\n",
|
" \"max_concurrent_iterations\": 4,\n",
|
||||||
" \"max_cores_per_iteration\": -1,\n",
|
" \"max_cores_per_iteration\": -1,\n",
|
||||||
" \"n_cross_validations\": 5,\n",
|
" \"n_cross_validations\": 5,\n",
|
||||||
@@ -320,8 +323,6 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#from azureml.train.automl.run import AutoMLRun\n",
|
"#from azureml.train.automl.run import AutoMLRun\n",
|
||||||
"#experiment_name = 'automl-regression-hardware'\n",
|
|
||||||
"#experiment = Experiment(ws, experiment_name)\n",
|
|
||||||
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
|
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
|
||||||
"#remote_run"
|
"#remote_run"
|
||||||
]
|
]
|
||||||
@@ -514,7 +515,7 @@
|
|||||||
" content = cefr.read()\n",
|
" content = cefr.read()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Replace the values in train_explainer.py file with the appropriate values\n",
|
"# Replace the values in train_explainer.py file with the appropriate values\n",
|
||||||
"content = content.replace('<<experimnet_name>>', automl_run.experiment.name) # your experiment name.\n",
|
"content = content.replace('<<experiment_name>>', automl_run.experiment.name) # your experiment name.\n",
|
||||||
"content = content.replace('<<run_id>>', automl_run.id) # Run-id of the AutoML run for which you want to explain the model.\n",
|
"content = content.replace('<<run_id>>', automl_run.id) # Run-id of the AutoML run for which you want to explain the model.\n",
|
||||||
"content = content.replace('<<target_column_name>>', 'ERP') # Your target column name\n",
|
"content = content.replace('<<target_column_name>>', 'ERP') # Your target column name\n",
|
||||||
"content = content.replace('<<task>>', 'regression') # Training task type\n",
|
"content = content.replace('<<task>>', 'regression') # Training task type\n",
|
||||||
@@ -532,8 +533,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Create conda configuration for model explanations experiment\n",
|
"#### Create conda configuration for model explanations experiment from automl_run object"
|
||||||
"We need `azureml-explain-model`, `azureml-train-automl` and `azureml-core` packages for computing model explanations for your AutoML model on remote compute."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -552,14 +552,9 @@
|
|||||||
"# Set compute target to AmlCompute\n",
|
"# Set compute target to AmlCompute\n",
|
||||||
"conda_run_config.target = compute_target\n",
|
"conda_run_config.target = compute_target\n",
|
||||||
"conda_run_config.environment.docker.enabled = True\n",
|
"conda_run_config.environment.docker.enabled = True\n",
|
||||||
"azureml_pip_packages = [\n",
|
|
||||||
" 'azureml-train-automl', 'azureml-core', 'azureml-explain-model'\n",
|
|
||||||
"]\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# specify CondaDependencies obj\n",
|
"# specify CondaDependencies obj\n",
|
||||||
"conda_run_config.environment.python.conda_dependencies = CondaDependencies.create(\n",
|
"conda_run_config.environment.python.conda_dependencies = automl_run.get_environment().python.conda_dependencies"
|
||||||
" conda_packages=['scikit-learn', 'numpy','py-xgboost<=0.80'],\n",
|
|
||||||
" pip_packages=azureml_pip_packages)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -604,38 +599,8 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"### Feature importance and explanation dashboard\n",
|
"### Feature importance and visualizing explanation dashboard\n",
|
||||||
"In this section we describe how you can download the explanation results from the explanations experiment and visualize the feature importance for your AutoML model. "
|
"In this section we describe how you can download the explanation results from the explanations experiment and visualize the feature importance for your AutoML model on the azure portal."
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Setup for visualizing the model explanation results\n",
|
|
||||||
"For visualizing the explanation results for the *fitted_model* we need to perform the following steps:-\n",
|
|
||||||
"1. Featurize test data samples.\n",
|
|
||||||
"\n",
|
|
||||||
"The *automl_explainer_setup_obj* contains all the structures from above list. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"X_test = test_data.drop_columns([label]).to_pandas_dataframe()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
|
|
||||||
"explainer_setup_class = automl_setup_model_explanations(fitted_model, 'regression', X_test=X_test)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -643,7 +608,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Download engineered feature importance from artifact store\n",
|
"#### Download engineered feature importance from artifact store\n",
|
||||||
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the engineered features."
|
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *automl_run*. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -653,11 +618,10 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
|
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
|
||||||
"from interpret_community.widget import ExplanationDashboard\n",
|
|
||||||
"client = ExplanationClient.from_run(automl_run)\n",
|
"client = ExplanationClient.from_run(automl_run)\n",
|
||||||
"engineered_explanations = client.download_model_explanation(raw=False)\n",
|
"engineered_explanations = client.download_model_explanation(raw=False, comment='engineered explanations')\n",
|
||||||
"print(engineered_explanations.get_feature_importance_dict())\n",
|
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||||
"ExplanationDashboard(engineered_explanations, explainer_setup_class.automl_estimator, datasetX=explainer_setup_class.X_test_transform)"
|
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -665,7 +629,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Download raw feature importance from artifact store\n",
|
"#### Download raw feature importance from artifact store\n",
|
||||||
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the raw features."
|
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *automl_run*. You can also use azure portal url to view the dash board visualization of the feature importance values of the raw features."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -674,9 +638,9 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"raw_explanations = client.download_model_explanation(raw=True)\n",
|
"raw_explanations = client.download_model_explanation(raw=True, comment='raw explanations')\n",
|
||||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||||
"ExplanationDashboard(raw_explanations, explainer_setup_class.automl_pipeline, datasetX=explainer_setup_class.X_test_raw)"
|
"print(\"You can visualize the raw explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -718,20 +682,10 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
"conda_dep = automl_run.get_environment().python.conda_dependencies\n",
|
||||||
"\n",
|
|
||||||
"azureml_pip_packages = [\n",
|
|
||||||
" 'azureml-explain-model', 'azureml-train-automl', 'azureml-defaults'\n",
|
|
||||||
"]\n",
|
|
||||||
" \n",
|
|
||||||
"\n",
|
|
||||||
"# specify CondaDependencies obj\n",
|
|
||||||
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas', 'numpy', 'py-xgboost<=0.80'],\n",
|
|
||||||
" pip_packages=azureml_pip_packages,\n",
|
|
||||||
" pin_sdk_version=True)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||||
" f.write(myenv.serialize_to_string())\n",
|
" f.write(conda_dep.serialize_to_string())\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(\"myenv.yml\",\"r\") as f:\n",
|
"with open(\"myenv.yml\",\"r\") as f:\n",
|
||||||
" print(f.read())"
|
" print(f.read())"
|
||||||
@@ -772,6 +726,7 @@
|
|||||||
"from azureml.core.model import InferenceConfig\n",
|
"from azureml.core.model import InferenceConfig\n",
|
||||||
"from azureml.core.webservice import AciWebservice\n",
|
"from azureml.core.webservice import AciWebservice\n",
|
||||||
"from azureml.core.model import Model\n",
|
"from azureml.core.model import Model\n",
|
||||||
|
"from azureml.core.environment import Environment\n",
|
||||||
"\n",
|
"\n",
|
||||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||||
" memory_gb=1, \n",
|
" memory_gb=1, \n",
|
||||||
@@ -779,9 +734,8 @@
|
|||||||
" \"method\" : \"local_explanation\"}, \n",
|
" \"method\" : \"local_explanation\"}, \n",
|
||||||
" description='Get local explanations for Machine test data')\n",
|
" description='Get local explanations for Machine test data')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"inference_config = InferenceConfig(runtime= \"python\", \n",
|
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
|
||||||
" entry_script=\"score_explain.py\",\n",
|
"inference_config = InferenceConfig(entry_script=\"score_explain.py\", environment=myenv)\n",
|
||||||
" conda_file=\"myenv.yml\")\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# Use configs and models generated above\n",
|
"# Use configs and models generated above\n",
|
||||||
"service = Model.deploy(ws, 'model-scoring', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
"service = Model.deploy(ws, 'model-scoring', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||||
@@ -819,6 +773,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"if service.state == 'Healthy':\n",
|
"if service.state == 'Healthy':\n",
|
||||||
|
" X_test = test_data.drop_columns([label]).to_pandas_dataframe()\n",
|
||||||
" # Serialize the first row of the test data into json\n",
|
" # Serialize the first row of the test data into json\n",
|
||||||
" X_test_json = X_test[:1].to_json(orient='records')\n",
|
" X_test_json = X_test[:1].to_json(orient='records')\n",
|
||||||
" print(X_test_json)\n",
|
" print(X_test_json)\n",
|
||||||
@@ -1,10 +1,7 @@
|
|||||||
name: auto-ml-forecasting-grouping
|
name: auto-ml-regression-explanation-featurization
|
||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-pipeline
|
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- pandas_ml
|
|
||||||
- statsmodels
|
|
||||||
- matplotlib
|
- matplotlib
|
||||||
@@ -7,7 +7,7 @@ import azureml.train.automl
|
|||||||
import azureml.explain.model
|
import azureml.explain.model
|
||||||
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
||||||
automl_setup_model_explanations
|
automl_setup_model_explanations
|
||||||
from sklearn.externals import joblib
|
import joblib
|
||||||
from azureml.core.model import Model
|
from azureml.core.model import Model
|
||||||
|
|
||||||
|
|
||||||
@@ -4,15 +4,14 @@ import os
|
|||||||
|
|
||||||
from azureml.core.run import Run
|
from azureml.core.run import Run
|
||||||
from azureml.core.experiment import Experiment
|
from azureml.core.experiment import Experiment
|
||||||
from sklearn.externals import joblib
|
|
||||||
from azureml.core.dataset import Dataset
|
from azureml.core.dataset import Dataset
|
||||||
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
||||||
automl_setup_model_explanations
|
automl_setup_model_explanations, automl_check_model_if_explainable
|
||||||
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
|
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
|
||||||
from azureml.explain.model.mimic_wrapper import MimicWrapper
|
from azureml.explain.model.mimic_wrapper import MimicWrapper
|
||||||
from automl.client.core.common.constants import MODEL_PATH
|
from azureml.automl.core.shared.constants import MODEL_PATH
|
||||||
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save
|
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer
|
||||||
|
import joblib
|
||||||
|
|
||||||
OUTPUT_DIR = './outputs/'
|
OUTPUT_DIR = './outputs/'
|
||||||
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
||||||
@@ -22,9 +21,14 @@ run = Run.get_context()
|
|||||||
ws = run.experiment.workspace
|
ws = run.experiment.workspace
|
||||||
|
|
||||||
# Get the AutoML run object from the experiment name and the workspace
|
# Get the AutoML run object from the experiment name and the workspace
|
||||||
experiment = Experiment(ws, '<<experimnet_name>>')
|
experiment = Experiment(ws, '<<experiment_name>>')
|
||||||
automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
||||||
|
|
||||||
|
# Check if this AutoML model is explainable
|
||||||
|
if not automl_check_model_if_explainable(automl_run):
|
||||||
|
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get(
|
||||||
|
'run_algorithm'))
|
||||||
|
|
||||||
# Download the best model from the artifact store
|
# Download the best model from the artifact store
|
||||||
automl_run.download_file(name=MODEL_PATH, output_file_path='model.pkl')
|
automl_run.download_file(name=MODEL_PATH, output_file_path='model.pkl')
|
||||||
|
|
||||||
@@ -55,22 +59,22 @@ explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMEx
|
|||||||
classes=automl_explainer_setup_obj.classes)
|
classes=automl_explainer_setup_obj.classes)
|
||||||
|
|
||||||
# Compute the engineered explanations
|
# Compute the engineered explanations
|
||||||
engineered_explanations = explainer.explain(['local', 'global'],
|
engineered_explanations = explainer.explain(['local', 'global'], tag='engineered explanations',
|
||||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||||
|
|
||||||
# Compute the raw explanations
|
# Compute the raw explanations
|
||||||
raw_explanations = explainer.explain(['local', 'global'], get_raw=True,
|
raw_explanations = explainer.explain(['local', 'global'], get_raw=True, tag='raw explanations',
|
||||||
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
|
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
|
||||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||||
|
|
||||||
print("Engineered and raw explanations computed successfully")
|
print("Engineered and raw explanations computed successfully")
|
||||||
|
|
||||||
|
|
||||||
# Initialize the ScoringExplainer
|
# Initialize the ScoringExplainer
|
||||||
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
|
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
|
||||||
|
|
||||||
# Pickle scoring explainer locally
|
# Pickle scoring explainer locally
|
||||||
save(scoring_explainer, exist_ok=True)
|
with open('scoring_explainer.pkl', 'wb') as stream:
|
||||||
|
joblib.dump(scoring_explainer, stream)
|
||||||
|
|
||||||
# Upload the scoring explainer to the automl run
|
# Upload the scoring explainer to the automl run
|
||||||
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')
|
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')
|
||||||
@@ -1,13 +0,0 @@
|
|||||||
name: auto-ml-regression-hardware-performance-explanation-and-featurization
|
|
||||||
dependencies:
|
|
||||||
- pip:
|
|
||||||
- azureml-sdk
|
|
||||||
- interpret
|
|
||||||
- azureml-defaults
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-train-automl
|
|
||||||
- azureml-widgets
|
|
||||||
- matplotlib
|
|
||||||
- pandas_ml
|
|
||||||
- azureml-explain-model
|
|
||||||
- azureml-contrib-interpret
|
|
||||||
@@ -40,7 +40,7 @@
|
|||||||
"## Introduction\n",
|
"## Introduction\n",
|
||||||
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this notebook you will learn how to:\n",
|
"In this notebook you will learn how to:\n",
|
||||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||||
@@ -79,6 +79,23 @@
|
|||||||
"from azureml.train.automl import AutoMLConfig"
|
"from azureml.train.automl import AutoMLConfig"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||||
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -93,7 +110,6 @@
|
|||||||
"experiment = Experiment(ws, experiment_name)\n",
|
"experiment = Experiment(ws, experiment_name)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"output = {}\n",
|
"output = {}\n",
|
||||||
"output['SDK version'] = azureml.core.VERSION\n",
|
|
||||||
"output['Subscription ID'] = ws.subscription_id\n",
|
"output['Subscription ID'] = ws.subscription_id\n",
|
||||||
"output['Workspace'] = ws.name\n",
|
"output['Workspace'] = ws.name\n",
|
||||||
"output['Resource Group'] = ws.resource_group\n",
|
"output['Resource Group'] = ws.resource_group\n",
|
||||||
@@ -122,7 +138,7 @@
|
|||||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Choose a name for your CPU cluster\n",
|
"# Choose a name for your CPU cluster\n",
|
||||||
"cpu_cluster_name = \"cpu-cluster-2\"\n",
|
"cpu_cluster_name = \"reg-cluster\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Verify that cluster does not exist already\n",
|
"# Verify that cluster does not exist already\n",
|
||||||
"try:\n",
|
"try:\n",
|
||||||
@@ -188,15 +204,18 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"tags": [
|
||||||
|
"automlconfig-remarks-sample"
|
||||||
|
]
|
||||||
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"automl_settings = {\n",
|
"automl_settings = {\n",
|
||||||
" \"n_cross_validations\": 3,\n",
|
" \"n_cross_validations\": 3,\n",
|
||||||
" \"primary_metric\": 'r2_score',\n",
|
" \"primary_metric\": 'r2_score',\n",
|
||||||
" \"preprocess\": True,\n",
|
|
||||||
" \"enable_early_stopping\": True, \n",
|
" \"enable_early_stopping\": True, \n",
|
||||||
" \"experiment_timeout_minutes\": 20, #for real scenarios we reccommend a timeout of at least one hour \n",
|
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
|
||||||
" \"max_concurrent_iterations\": 4,\n",
|
" \"max_concurrent_iterations\": 4,\n",
|
||||||
" \"max_cores_per_iteration\": -1,\n",
|
" \"max_cores_per_iteration\": -1,\n",
|
||||||
" \"verbosity\": logging.INFO,\n",
|
" \"verbosity\": logging.INFO,\n",
|
||||||
|
|||||||
@@ -2,8 +2,7 @@ name: auto-ml-regression
|
|||||||
dependencies:
|
dependencies:
|
||||||
- pip:
|
- pip:
|
||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
|
- pandas==0.23.4
|
||||||
- azureml-train-automl
|
- azureml-train-automl
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- pandas_ml
|
|
||||||
- paramiko<2.5.0
|
|
||||||
|
|||||||
@@ -1,23 +0,0 @@
|
|||||||
-- This shows using the AutoMLForecast stored procedure to predict using a forecasting model for the nyc_energy dataset.
|
|
||||||
|
|
||||||
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
|
|
||||||
WHERE ExperimentName = 'automl-sql-forecast'
|
|
||||||
ORDER BY CreatedDate DESC)
|
|
||||||
|
|
||||||
DECLARE @max_horizon INT = 48
|
|
||||||
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
|
|
||||||
|
|
||||||
DECLARE @TestDataQuery NVARCHAR(MAX) = '
|
|
||||||
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
|
|
||||||
demand,
|
|
||||||
precip,
|
|
||||||
temp
|
|
||||||
FROM nyc_energy
|
|
||||||
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
|
|
||||||
AND timeStamp > ''' + @split_time + ''''
|
|
||||||
|
|
||||||
EXEC dbo.AutoMLForecast @input_query=@TestDataQuery,
|
|
||||||
@label_column='demand',
|
|
||||||
@time_column_name='timeStamp',
|
|
||||||
@model=@model
|
|
||||||
WITH RESULT SETS ((timeStamp DATETIME, grain NVARCHAR(255), predicted_demand FLOAT, precip FLOAT, temp FLOAT, actual_demand FLOAT))
|
|
||||||
@@ -1,10 +0,0 @@
|
|||||||
-- This lists all the metrics for all iterations for the most recent run.
|
|
||||||
|
|
||||||
DECLARE @RunId NVARCHAR(43)
|
|
||||||
DECLARE @ExperimentName NVARCHAR(255)
|
|
||||||
|
|
||||||
SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)
|
|
||||||
FROM aml_model
|
|
||||||
ORDER BY CreatedDate DESC
|
|
||||||
|
|
||||||
EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName
|
|
||||||
@@ -1,25 +0,0 @@
|
|||||||
-- This shows using the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset.
|
|
||||||
|
|
||||||
DECLARE @max_horizon INT = 48
|
|
||||||
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
|
|
||||||
|
|
||||||
DECLARE @TrainDataQuery NVARCHAR(MAX) = '
|
|
||||||
SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,
|
|
||||||
demand,
|
|
||||||
precip,
|
|
||||||
temp
|
|
||||||
FROM nyc_energy
|
|
||||||
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
|
|
||||||
and timeStamp < ''' + @split_time + ''''
|
|
||||||
|
|
||||||
INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
|
||||||
EXEC dbo.AutoMLTrain @input_query= @TrainDataQuery,
|
|
||||||
@label_column='demand',
|
|
||||||
@task='forecasting',
|
|
||||||
@iterations=10,
|
|
||||||
@iteration_timeout_minutes=5,
|
|
||||||
@time_column_name='timeStamp',
|
|
||||||
@max_horizon=@max_horizon,
|
|
||||||
@experiment_name='automl-sql-forecast',
|
|
||||||
@primary_metric='normalized_root_mean_squared_error'
|
|
||||||
|
|
||||||
@@ -1,161 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Train a model and use it for prediction\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"Before running this notebook, run the auto-ml-sql-setup.ipynb notebook."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Set the default database"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"USE [automl]\r\n",
|
|
||||||
"GO"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Use the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
|
||||||
"EXEC dbo.AutoMLTrain @input_query='\r\n",
|
|
||||||
"SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,\r\n",
|
|
||||||
" demand,\r\n",
|
|
||||||
"\t precip,\r\n",
|
|
||||||
"\t temp,\r\n",
|
|
||||||
"\t CASE WHEN timeStamp < ''2017-01-01'' THEN 0 ELSE 1 END AS is_validate_column\r\n",
|
|
||||||
"FROM nyc_energy\r\n",
|
|
||||||
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
|
||||||
"and timeStamp < ''2017-02-01''',\r\n",
|
|
||||||
"@label_column='demand',\r\n",
|
|
||||||
"@task='forecasting',\r\n",
|
|
||||||
"@iterations=10,\r\n",
|
|
||||||
"@iteration_timeout_minutes=5,\r\n",
|
|
||||||
"@time_column_name='timeStamp',\r\n",
|
|
||||||
"@is_validate_column='is_validate_column',\r\n",
|
|
||||||
"@experiment_name='automl-sql-forecast',\r\n",
|
|
||||||
"@primary_metric='normalized_root_mean_squared_error'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Use the AutoMLPredict stored procedure to predict using the forecasting model for the nyc_energy dataset."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model\r\n",
|
|
||||||
" WHERE ExperimentName = 'automl-sql-forecast'\r\n",
|
|
||||||
"\t\t\t\t\t\t\t\tORDER BY CreatedDate DESC)\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"EXEC dbo.AutoMLPredict @input_query='\r\n",
|
|
||||||
"SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,\r\n",
|
|
||||||
" demand,\r\n",
|
|
||||||
"\t precip,\r\n",
|
|
||||||
"\t temp\r\n",
|
|
||||||
"FROM nyc_energy\r\n",
|
|
||||||
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
|
||||||
"AND timeStamp >= ''2017-02-01''',\r\n",
|
|
||||||
"@label_column='demand',\r\n",
|
|
||||||
"@model=@model\r\n",
|
|
||||||
"WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## List all the metrics for all iterations for the most recent training run."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"DECLARE @RunId NVARCHAR(43)\r\n",
|
|
||||||
"DECLARE @ExperimentName NVARCHAR(255)\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)\r\n",
|
|
||||||
"FROM aml_model\r\n",
|
|
||||||
"ORDER BY CreatedDate DESC\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "jeffshep"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"category": "tutorial",
|
|
||||||
"compute": [
|
|
||||||
"Local"
|
|
||||||
],
|
|
||||||
"datasets": [
|
|
||||||
"NYC Energy"
|
|
||||||
],
|
|
||||||
"deployment": [
|
|
||||||
"None"
|
|
||||||
],
|
|
||||||
"exclude_from_index": false,
|
|
||||||
"framework": [
|
|
||||||
"Azure ML AutoML"
|
|
||||||
],
|
|
||||||
"tags": [
|
|
||||||
""
|
|
||||||
],
|
|
||||||
"friendly_name": "Forecasting with automated ML SQL integration",
|
|
||||||
"index_order": 1,
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "sql",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"name": "sql",
|
|
||||||
"version": ""
|
|
||||||
},
|
|
||||||
"task": "Forecasting"
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -1,92 +0,0 @@
|
|||||||
-- This procedure forecast values based on a forecasting model returned by AutoMLTrain.
|
|
||||||
-- It returns a dataset with the forecasted values.
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLForecast]
|
|
||||||
(
|
|
||||||
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
|
|
||||||
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
|
|
||||||
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
|
|
||||||
@label_column NVARCHAR(255)='', -- Optional name of the column from input_query, which should be ignored when predicting
|
|
||||||
@y_query_column NVARCHAR(255)='', -- Optional value column that can be used for predicting.
|
|
||||||
-- If specified, this can contain values for past times (after the model was trained)
|
|
||||||
-- and contain Nan for future times.
|
|
||||||
@forecast_column_name NVARCHAR(255) = 'predicted'
|
|
||||||
-- The name of the output column containing the forecast value.
|
|
||||||
) AS
|
|
||||||
BEGIN
|
|
||||||
|
|
||||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
|
||||||
import azureml.core
|
|
||||||
import numpy as np
|
|
||||||
from azureml.train.automl import AutoMLConfig
|
|
||||||
import pickle
|
|
||||||
import codecs
|
|
||||||
|
|
||||||
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
|
|
||||||
|
|
||||||
test_data = input_data.copy()
|
|
||||||
|
|
||||||
if label_column != "" and label_column is not None:
|
|
||||||
y_test = test_data.pop(label_column).values
|
|
||||||
else:
|
|
||||||
y_test = None
|
|
||||||
|
|
||||||
if y_query_column != "" and y_query_column is not None:
|
|
||||||
y_query = test_data.pop(y_query_column).values
|
|
||||||
else:
|
|
||||||
y_query = np.repeat(np.nan, len(test_data))
|
|
||||||
|
|
||||||
X_test = test_data
|
|
||||||
|
|
||||||
if time_column_name != "" and time_column_name is not None:
|
|
||||||
X_test[time_column_name] = pd.to_datetime(X_test[time_column_name])
|
|
||||||
|
|
||||||
y_fcst, X_trans = model_obj.forecast(X_test, y_query)
|
|
||||||
|
|
||||||
def align_outputs(y_forecast, X_trans, X_test, y_test, forecast_column_name):
|
|
||||||
# Demonstrates how to get the output aligned to the inputs
|
|
||||||
# using pandas indexes. Helps understand what happened if
|
|
||||||
# the output shape differs from the input shape, or if
|
|
||||||
# the data got re-sorted by time and grain during forecasting.
|
|
||||||
|
|
||||||
# Typical causes of misalignment are:
|
|
||||||
# * we predicted some periods that were missing in actuals -> drop from eval
|
|
||||||
# * model was asked to predict past max_horizon -> increase max horizon
|
|
||||||
# * data at start of X_test was needed for lags -> provide previous periods
|
|
||||||
|
|
||||||
df_fcst = pd.DataFrame({forecast_column_name : y_forecast})
|
|
||||||
# y and X outputs are aligned by forecast() function contract
|
|
||||||
df_fcst.index = X_trans.index
|
|
||||||
|
|
||||||
# align original X_test to y_test
|
|
||||||
X_test_full = X_test.copy()
|
|
||||||
if y_test is not None:
|
|
||||||
X_test_full[label_column] = y_test
|
|
||||||
|
|
||||||
# X_test_full does not include origin, so reset for merge
|
|
||||||
df_fcst.reset_index(inplace=True)
|
|
||||||
X_test_full = X_test_full.reset_index().drop(columns=''index'')
|
|
||||||
together = df_fcst.merge(X_test_full, how=''right'')
|
|
||||||
|
|
||||||
# drop rows where prediction or actuals are nan
|
|
||||||
# happens because of missing actuals
|
|
||||||
# or at edges of time due to lags/rolling windows
|
|
||||||
clean = together[together[[label_column, forecast_column_name]].notnull().all(axis=1)]
|
|
||||||
return(clean)
|
|
||||||
|
|
||||||
combined_output = align_outputs(y_fcst, X_trans, X_test, y_test, forecast_column_name)
|
|
||||||
|
|
||||||
'
|
|
||||||
, @input_data_1 = @input_query
|
|
||||||
, @input_data_1_name = N'input_data'
|
|
||||||
, @output_data_1_name = N'combined_output'
|
|
||||||
, @params = N'@model NVARCHAR(MAX), @time_column_name NVARCHAR(255), @label_column NVARCHAR(255), @y_query_column NVARCHAR(255), @forecast_column_name NVARCHAR(255)'
|
|
||||||
, @model = @model
|
|
||||||
, @time_column_name = @time_column_name
|
|
||||||
, @label_column = @label_column
|
|
||||||
, @y_query_column = @y_query_column
|
|
||||||
, @forecast_column_name = @forecast_column_name
|
|
||||||
END
|
|
||||||
@@ -1,70 +0,0 @@
|
|||||||
-- This procedure returns a list of metrics for each iteration of a run.
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]
|
|
||||||
(
|
|
||||||
@run_id NVARCHAR(250), -- The RunId
|
|
||||||
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
|
|
||||||
@connection_name NVARCHAR(255)='default' -- The AML connection to use.
|
|
||||||
) AS
|
|
||||||
BEGIN
|
|
||||||
DECLARE @tenantid NVARCHAR(255)
|
|
||||||
DECLARE @appid NVARCHAR(255)
|
|
||||||
DECLARE @password NVARCHAR(255)
|
|
||||||
DECLARE @config_file NVARCHAR(255)
|
|
||||||
|
|
||||||
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
|
|
||||||
FROM aml_connection
|
|
||||||
WHERE ConnectionName = @connection_name;
|
|
||||||
|
|
||||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
|
||||||
import logging
|
|
||||||
import azureml.core
|
|
||||||
import numpy as np
|
|
||||||
from azureml.core.experiment import Experiment
|
|
||||||
from azureml.train.automl.run import AutoMLRun
|
|
||||||
from azureml.core.authentication import ServicePrincipalAuthentication
|
|
||||||
from azureml.core.workspace import Workspace
|
|
||||||
|
|
||||||
auth = ServicePrincipalAuthentication(tenantid, appid, password)
|
|
||||||
|
|
||||||
ws = Workspace.from_config(path=config_file, auth=auth)
|
|
||||||
|
|
||||||
experiment = Experiment(ws, experiment_name)
|
|
||||||
|
|
||||||
ml_run = AutoMLRun(experiment = experiment, run_id = run_id)
|
|
||||||
|
|
||||||
children = list(ml_run.get_children())
|
|
||||||
iterationlist = []
|
|
||||||
metricnamelist = []
|
|
||||||
metricvaluelist = []
|
|
||||||
|
|
||||||
for run in children:
|
|
||||||
properties = run.get_properties()
|
|
||||||
if "iteration" in properties:
|
|
||||||
iteration = int(properties["iteration"])
|
|
||||||
for metric_name, metric_value in run.get_metrics().items():
|
|
||||||
if isinstance(metric_value, float):
|
|
||||||
iterationlist.append(iteration)
|
|
||||||
metricnamelist.append(metric_name)
|
|
||||||
metricvaluelist.append(metric_value)
|
|
||||||
|
|
||||||
metrics = pd.DataFrame({"iteration": iterationlist, "metric_name": metricnamelist, "metric_value": metricvaluelist})
|
|
||||||
'
|
|
||||||
, @output_data_1_name = N'metrics'
|
|
||||||
, @params = N'@run_id NVARCHAR(250),
|
|
||||||
@experiment_name NVARCHAR(32),
|
|
||||||
@tenantid NVARCHAR(255),
|
|
||||||
@appid NVARCHAR(255),
|
|
||||||
@password NVARCHAR(255),
|
|
||||||
@config_file NVARCHAR(255)'
|
|
||||||
, @run_id = @run_id
|
|
||||||
, @experiment_name = @experiment_name
|
|
||||||
, @tenantid = @tenantid
|
|
||||||
, @appid = @appid
|
|
||||||
, @password = @password
|
|
||||||
, @config_file = @config_file
|
|
||||||
WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))
|
|
||||||
END
|
|
||||||
@@ -1,41 +0,0 @@
|
|||||||
-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.
|
|
||||||
-- It returns the dataset with a new column added, which is the predicted value.
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]
|
|
||||||
(
|
|
||||||
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
|
|
||||||
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
|
|
||||||
@label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting
|
|
||||||
) AS
|
|
||||||
BEGIN
|
|
||||||
|
|
||||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
|
||||||
import azureml.core
|
|
||||||
import numpy as np
|
|
||||||
from azureml.train.automl import AutoMLConfig
|
|
||||||
import pickle
|
|
||||||
import codecs
|
|
||||||
|
|
||||||
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
|
|
||||||
|
|
||||||
test_data = input_data.copy()
|
|
||||||
|
|
||||||
if label_column != "" and label_column is not None:
|
|
||||||
y_test = test_data.pop(label_column).values
|
|
||||||
X_test = test_data
|
|
||||||
|
|
||||||
predicted = model_obj.predict(X_test)
|
|
||||||
|
|
||||||
combined_output = input_data.assign(predicted=predicted)
|
|
||||||
|
|
||||||
'
|
|
||||||
, @input_data_1 = @input_query
|
|
||||||
, @input_data_1_name = N'input_data'
|
|
||||||
, @output_data_1_name = N'combined_output'
|
|
||||||
, @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)'
|
|
||||||
, @model = @model
|
|
||||||
, @label_column = @label_column
|
|
||||||
END
|
|
||||||
@@ -1,240 +0,0 @@
|
|||||||
-- This stored procedure uses automated machine learning to train several models
|
|
||||||
-- and returns the best model.
|
|
||||||
--
|
|
||||||
-- The result set has several columns:
|
|
||||||
-- best_run - iteration ID for the best model
|
|
||||||
-- experiment_name - experiment name pass in with the @experiment_name parameter
|
|
||||||
-- fitted_model - best model found
|
|
||||||
-- log_file_text - AutoML debug_log contents
|
|
||||||
-- workspace - name of the Azure ML workspace where run history is stored
|
|
||||||
--
|
|
||||||
-- An example call for a classification problem is:
|
|
||||||
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
|
||||||
-- exec dbo.AutoMLTrain @input_query='
|
|
||||||
-- SELECT top 100000
|
|
||||||
-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime
|
|
||||||
-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime
|
|
||||||
-- ,[passenger_count]
|
|
||||||
-- ,[trip_time_in_secs]
|
|
||||||
-- ,[trip_distance]
|
|
||||||
-- ,[payment_type]
|
|
||||||
-- ,[tip_class]
|
|
||||||
-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',
|
|
||||||
-- @label_column = 'tip_class',
|
|
||||||
-- @iterations=10
|
|
||||||
--
|
|
||||||
-- An example call for forecasting is:
|
|
||||||
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
|
||||||
-- exec dbo.AutoMLTrain @input_query='
|
|
||||||
-- select cast(timeStamp as nvarchar(30)) as timeStamp,
|
|
||||||
-- demand,
|
|
||||||
-- precip,
|
|
||||||
-- temp,
|
|
||||||
-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column
|
|
||||||
-- from nyc_energy
|
|
||||||
-- where demand is not null and precip is not null and temp is not null
|
|
||||||
-- and timeStamp < ''2017-02-01''',
|
|
||||||
-- @label_column='demand',
|
|
||||||
-- @task='forecasting',
|
|
||||||
-- @iterations=10,
|
|
||||||
-- @iteration_timeout_minutes=5,
|
|
||||||
-- @time_column_name='timeStamp',
|
|
||||||
-- @is_validate_column='is_validate_column',
|
|
||||||
-- @experiment_name='automl-sql-forecast',
|
|
||||||
-- @primary_metric='normalized_root_mean_squared_error'
|
|
||||||
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]
|
|
||||||
(
|
|
||||||
@input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.
|
|
||||||
@label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.
|
|
||||||
@primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.
|
|
||||||
@iterations INT=100, -- The maximum number of pipelines to train.
|
|
||||||
@task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.
|
|
||||||
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
|
|
||||||
@iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline.
|
|
||||||
@experiment_timeout_minutes INT = 60, -- The maximum time in minutes for training all pipelines.
|
|
||||||
@n_cross_validations INT = 3, -- The number of cross validations.
|
|
||||||
@blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.
|
|
||||||
-- The list of possible models can be found at:
|
|
||||||
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
|
|
||||||
@whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.
|
|
||||||
-- The list of possible models can be found at:
|
|
||||||
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
|
|
||||||
@experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.
|
|
||||||
@sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.
|
|
||||||
@is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.
|
|
||||||
-- In the values of the column, 0 means for training and 1 means for validation.
|
|
||||||
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
|
|
||||||
@connection_name NVARCHAR(255)='default', -- The AML connection to use.
|
|
||||||
@max_horizon INT = 0 -- A forecast horizon is a time span into the future (or just beyond the latest date in the training data)
|
|
||||||
-- where forecasts of the target quantity are needed.
|
|
||||||
-- For example, if data is recorded daily and max_horizon is 5, we will predict 5 days ahead.
|
|
||||||
) AS
|
|
||||||
BEGIN
|
|
||||||
|
|
||||||
DECLARE @tenantid NVARCHAR(255)
|
|
||||||
DECLARE @appid NVARCHAR(255)
|
|
||||||
DECLARE @password NVARCHAR(255)
|
|
||||||
DECLARE @config_file NVARCHAR(255)
|
|
||||||
|
|
||||||
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
|
|
||||||
FROM aml_connection
|
|
||||||
WHERE ConnectionName = @connection_name;
|
|
||||||
|
|
||||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
|
||||||
import logging
|
|
||||||
import azureml.core
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
from azureml.core.experiment import Experiment
|
|
||||||
from azureml.train.automl import AutoMLConfig
|
|
||||||
from sklearn import datasets
|
|
||||||
import pickle
|
|
||||||
import codecs
|
|
||||||
from azureml.core.authentication import ServicePrincipalAuthentication
|
|
||||||
from azureml.core.workspace import Workspace
|
|
||||||
|
|
||||||
if __name__.startswith("sqlindb"):
|
|
||||||
auth = ServicePrincipalAuthentication(tenantid, appid, password)
|
|
||||||
|
|
||||||
ws = Workspace.from_config(path=config_file, auth=auth)
|
|
||||||
|
|
||||||
project_folder = "./sample_projects/" + experiment_name
|
|
||||||
|
|
||||||
experiment = Experiment(ws, experiment_name)
|
|
||||||
|
|
||||||
data_train = input_data
|
|
||||||
X_valid = None
|
|
||||||
y_valid = None
|
|
||||||
sample_weight_valid = None
|
|
||||||
|
|
||||||
if is_validate_column != "" and is_validate_column is not None:
|
|
||||||
data_train = input_data[input_data[is_validate_column] <= 0]
|
|
||||||
data_valid = input_data[input_data[is_validate_column] > 0]
|
|
||||||
data_train.pop(is_validate_column)
|
|
||||||
data_valid.pop(is_validate_column)
|
|
||||||
y_valid = data_valid.pop(label_column).values
|
|
||||||
if sample_weight_column != "" and sample_weight_column is not None:
|
|
||||||
sample_weight_valid = data_valid.pop(sample_weight_column).values
|
|
||||||
X_valid = data_valid
|
|
||||||
n_cross_validations = None
|
|
||||||
|
|
||||||
y_train = data_train.pop(label_column).values
|
|
||||||
|
|
||||||
sample_weight = None
|
|
||||||
if sample_weight_column != "" and sample_weight_column is not None:
|
|
||||||
sample_weight = data_train.pop(sample_weight_column).values
|
|
||||||
|
|
||||||
X_train = data_train
|
|
||||||
|
|
||||||
if experiment_timeout_minutes == 0:
|
|
||||||
experiment_timeout_minutes = None
|
|
||||||
|
|
||||||
if experiment_exit_score == 0:
|
|
||||||
experiment_exit_score = None
|
|
||||||
|
|
||||||
if blacklist_models == "":
|
|
||||||
blacklist_models = None
|
|
||||||
|
|
||||||
if blacklist_models is not None:
|
|
||||||
blacklist_models = blacklist_models.replace(" ", "").split(",")
|
|
||||||
|
|
||||||
if whitelist_models == "":
|
|
||||||
whitelist_models = None
|
|
||||||
|
|
||||||
if whitelist_models is not None:
|
|
||||||
whitelist_models = whitelist_models.replace(" ", "").split(",")
|
|
||||||
|
|
||||||
automl_settings = {}
|
|
||||||
preprocess = True
|
|
||||||
if time_column_name != "" and time_column_name is not None:
|
|
||||||
automl_settings = { "time_column_name": time_column_name }
|
|
||||||
preprocess = False
|
|
||||||
if max_horizon > 0:
|
|
||||||
automl_settings["max_horizon"] = max_horizon
|
|
||||||
|
|
||||||
log_file_name = "automl_sqlindb_errors.log"
|
|
||||||
|
|
||||||
automl_config = AutoMLConfig(task = task,
|
|
||||||
debug_log = log_file_name,
|
|
||||||
primary_metric = primary_metric,
|
|
||||||
iteration_timeout_minutes = iteration_timeout_minutes,
|
|
||||||
experiment_timeout_minutes = experiment_timeout_minutes,
|
|
||||||
iterations = iterations,
|
|
||||||
n_cross_validations = n_cross_validations,
|
|
||||||
preprocess = preprocess,
|
|
||||||
verbosity = logging.INFO,
|
|
||||||
X = X_train,
|
|
||||||
y = y_train,
|
|
||||||
path = project_folder,
|
|
||||||
blacklist_models = blacklist_models,
|
|
||||||
whitelist_models = whitelist_models,
|
|
||||||
experiment_exit_score = experiment_exit_score,
|
|
||||||
sample_weight = sample_weight,
|
|
||||||
X_valid = X_valid,
|
|
||||||
y_valid = y_valid,
|
|
||||||
sample_weight_valid = sample_weight_valid,
|
|
||||||
**automl_settings)
|
|
||||||
|
|
||||||
local_run = experiment.submit(automl_config, show_output = True)
|
|
||||||
|
|
||||||
best_run, fitted_model = local_run.get_output()
|
|
||||||
|
|
||||||
pickled_model = codecs.encode(pickle.dumps(fitted_model), "base64").decode()
|
|
||||||
|
|
||||||
log_file_text = ""
|
|
||||||
|
|
||||||
try:
|
|
||||||
with open(log_file_name, "r") as log_file:
|
|
||||||
log_file_text = log_file.read()
|
|
||||||
except:
|
|
||||||
log_file_text = "Log file not found"
|
|
||||||
|
|
||||||
returned_model = pd.DataFrame({"best_run": [best_run.id], "experiment_name": [experiment_name], "fitted_model": [pickled_model], "log_file_text": [log_file_text], "workspace": [ws.name]}, dtype=np.dtype(np.str))
|
|
||||||
'
|
|
||||||
, @input_data_1 = @input_query
|
|
||||||
, @input_data_1_name = N'input_data'
|
|
||||||
, @output_data_1_name = N'returned_model'
|
|
||||||
, @params = N'@label_column NVARCHAR(255),
|
|
||||||
@primary_metric NVARCHAR(40),
|
|
||||||
@iterations INT, @task NVARCHAR(40),
|
|
||||||
@experiment_name NVARCHAR(32),
|
|
||||||
@iteration_timeout_minutes INT,
|
|
||||||
@experiment_timeout_minutes INT,
|
|
||||||
@n_cross_validations INT,
|
|
||||||
@blacklist_models NVARCHAR(MAX),
|
|
||||||
@whitelist_models NVARCHAR(MAX),
|
|
||||||
@experiment_exit_score FLOAT,
|
|
||||||
@sample_weight_column NVARCHAR(255),
|
|
||||||
@is_validate_column NVARCHAR(255),
|
|
||||||
@time_column_name NVARCHAR(255),
|
|
||||||
@tenantid NVARCHAR(255),
|
|
||||||
@appid NVARCHAR(255),
|
|
||||||
@password NVARCHAR(255),
|
|
||||||
@config_file NVARCHAR(255),
|
|
||||||
@max_horizon INT'
|
|
||||||
, @label_column = @label_column
|
|
||||||
, @primary_metric = @primary_metric
|
|
||||||
, @iterations = @iterations
|
|
||||||
, @task = @task
|
|
||||||
, @experiment_name = @experiment_name
|
|
||||||
, @iteration_timeout_minutes = @iteration_timeout_minutes
|
|
||||||
, @experiment_timeout_minutes = @experiment_timeout_minutes
|
|
||||||
, @n_cross_validations = @n_cross_validations
|
|
||||||
, @blacklist_models = @blacklist_models
|
|
||||||
, @whitelist_models = @whitelist_models
|
|
||||||
, @experiment_exit_score = @experiment_exit_score
|
|
||||||
, @sample_weight_column = @sample_weight_column
|
|
||||||
, @is_validate_column = @is_validate_column
|
|
||||||
, @time_column_name = @time_column_name
|
|
||||||
, @tenantid = @tenantid
|
|
||||||
, @appid = @appid
|
|
||||||
, @password = @password
|
|
||||||
, @config_file = @config_file
|
|
||||||
, @max_horizon = @max_horizon
|
|
||||||
WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))
|
|
||||||
END
|
|
||||||
@@ -1,18 +0,0 @@
|
|||||||
-- This is a table to store the Azure ML connection information.
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
|
|
||||||
CREATE TABLE [dbo].[aml_connection](
|
|
||||||
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
|
|
||||||
[ConnectionName] [nvarchar](255) NULL,
|
|
||||||
[TenantId] [nvarchar](255) NULL,
|
|
||||||
[AppId] [nvarchar](255) NULL,
|
|
||||||
[Password] [nvarchar](255) NULL,
|
|
||||||
[ConfigFile] [nvarchar](255) NULL
|
|
||||||
) ON [PRIMARY]
|
|
||||||
GO
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,22 +0,0 @@
|
|||||||
-- This is a table to hold the results from the AutoMLTrain procedure.
|
|
||||||
SET ANSI_NULLS ON
|
|
||||||
GO
|
|
||||||
|
|
||||||
SET QUOTED_IDENTIFIER ON
|
|
||||||
GO
|
|
||||||
|
|
||||||
CREATE TABLE [dbo].[aml_model](
|
|
||||||
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
|
|
||||||
[Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.
|
|
||||||
[RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.
|
|
||||||
[CreatedDate] [datetime] NULL,
|
|
||||||
[ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name
|
|
||||||
[WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name
|
|
||||||
[LogFileText] [nvarchar](max) NULL
|
|
||||||
)
|
|
||||||
GO
|
|
||||||
|
|
||||||
ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]
|
|
||||||
GO
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,581 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Set up Azure ML Automated Machine Learning on SQL Server 2019 CTP 2.4 big data cluster\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# Prerequisites: \r\n",
|
|
||||||
"\\# - An Azure subscription and resource group \r\n",
|
|
||||||
"\\# - An Azure Machine Learning workspace \r\n",
|
|
||||||
"\\# - A SQL Server 2019 CTP 2.4 big data cluster with Internet access and a database named 'automl' \r\n",
|
|
||||||
"\\# - Azure CLI \r\n",
|
|
||||||
"\\# - kubectl command \r\n",
|
|
||||||
"\\# - The https://github.com/Azure/MachineLearningNotebooks repository downloaded (cloned) to your local machine\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# In the 'automl' database, create a table named 'dbo.nyc_energy' as follows: \r\n",
|
|
||||||
"\\# - In SQL Server Management Studio, right-click the 'automl' database, select Tasks, then Import Flat File. \r\n",
|
|
||||||
"\\# - Select the file AzureMlCli\\notebooks\\how-to-use-azureml\\automated-machine-learning\\forecasting-energy-demand\\nyc_energy.csv. \r\n",
|
|
||||||
"\\# - Using the \"Modify Columns\" page, allow nulls for all columns. \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# Create an Azure Machine Learning Workspace using the instructions at https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# Create an Azure service principal. You can do this with the following commands: \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"az login \r\n",
|
|
||||||
"az account set --subscription *subscriptionid* \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# The following command prints out the **appId** and **tenant**, \r\n",
|
|
||||||
"\\# which you insert into the indicated cell later in this notebook \r\n",
|
|
||||||
"\\# to allow AutoML to authenticate with Azure: \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"az ad sp create-for-rbac --name *principlename* --password *password*\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# Log into the master instance of SQL Server 2019 CTP 2.4: \r\n",
|
|
||||||
"kubectl exec -it mssql-master-pool-0 -n *clustername* -c mssql-server -- /bin/bash\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"mkdir /tmp/aml\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"cd /tmp/aml\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# **Modify** the following with your subscription_id, resource_group, and workspace_name: \r\n",
|
|
||||||
"cat > config.json << EOF \r\n",
|
|
||||||
"{ \r\n",
|
|
||||||
" \"subscription_id\": \"123456ab-78cd-0123-45ef-abcd12345678\", \r\n",
|
|
||||||
" \"resource_group\": \"myrg1\", \r\n",
|
|
||||||
" \"workspace_name\": \"myws1\" \r\n",
|
|
||||||
"} \r\n",
|
|
||||||
"EOF\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\\# The directory referenced below is appropriate for the master instance of SQL Server 2019 CTP 2.4.\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"cd /opt/mssql/mlservices/runtime/python/bin\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"./python -m pip install azureml-sdk[automl]\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"./python -m pip install --upgrade numpy \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"./python -m pip install --upgrade sklearn\r\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- Enable external scripts to allow invoking Python\r\n",
|
|
||||||
"sp_configure 'external scripts enabled',1 \r\n",
|
|
||||||
"reconfigure with override \r\n",
|
|
||||||
"GO\r\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- Use database 'automl'\r\n",
|
|
||||||
"USE [automl]\r\n",
|
|
||||||
"GO"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- This is a table to hold the Azure ML connection information.\r\n",
|
|
||||||
"SET ANSI_NULLS ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"CREATE TABLE [dbo].[aml_connection](\r\n",
|
|
||||||
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
|
|
||||||
"\t[ConnectionName] [nvarchar](255) NULL,\r\n",
|
|
||||||
"\t[TenantId] [nvarchar](255) NULL,\r\n",
|
|
||||||
"\t[AppId] [nvarchar](255) NULL,\r\n",
|
|
||||||
"\t[Password] [nvarchar](255) NULL,\r\n",
|
|
||||||
"\t[ConfigFile] [nvarchar](255) NULL\r\n",
|
|
||||||
") ON [PRIMARY]\r\n",
|
|
||||||
"GO"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Copy the values from create-for-rbac above into the cell below"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- Use the following values:\r\n",
|
|
||||||
"-- Leave the name as 'Default'\r\n",
|
|
||||||
"-- Insert <tenant> returned by create-for-rbac above\r\n",
|
|
||||||
"-- Insert <AppId> returned by create-for-rbac above\r\n",
|
|
||||||
"-- Insert <password> used in create-for-rbac above\r\n",
|
|
||||||
"-- Leave <path> as '/tmp/aml/config.json'\r\n",
|
|
||||||
"INSERT INTO [dbo].[aml_connection] \r\n",
|
|
||||||
"VALUES (\r\n",
|
|
||||||
" N'Default', -- Name\r\n",
|
|
||||||
" N'11111111-2222-3333-4444-555555555555', -- Tenant\r\n",
|
|
||||||
" N'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', -- AppId\r\n",
|
|
||||||
" N'insertpasswordhere', -- Password\r\n",
|
|
||||||
" N'/tmp/aml/config.json' -- Path\r\n",
|
|
||||||
" );\r\n",
|
|
||||||
"GO"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- This is a table to hold the results from the AutoMLTrain procedure.\r\n",
|
|
||||||
"SET ANSI_NULLS ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"CREATE TABLE [dbo].[aml_model](\r\n",
|
|
||||||
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
|
|
||||||
" [Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.\r\n",
|
|
||||||
" [RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.\r\n",
|
|
||||||
" [CreatedDate] [datetime] NULL,\r\n",
|
|
||||||
" [ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name\r\n",
|
|
||||||
" [WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name\r\n",
|
|
||||||
"\t[LogFileText] [nvarchar](max) NULL\r\n",
|
|
||||||
") \r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]\r\n",
|
|
||||||
"GO\r\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- This stored procedure uses automated machine learning to train several models\r\n",
|
|
||||||
"-- and return the best model.\r\n",
|
|
||||||
"--\r\n",
|
|
||||||
"-- The result set has several columns:\r\n",
|
|
||||||
"-- best_run - ID of the best model found\r\n",
|
|
||||||
"-- experiment_name - training run name\r\n",
|
|
||||||
"-- fitted_model - best model found\r\n",
|
|
||||||
"-- log_file_text - console output\r\n",
|
|
||||||
"-- workspace - name of the Azure ML workspace where run history is stored\r\n",
|
|
||||||
"--\r\n",
|
|
||||||
"-- An example call for a classification problem is:\r\n",
|
|
||||||
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
|
||||||
"-- exec dbo.AutoMLTrain @input_query='\r\n",
|
|
||||||
"-- SELECT top 100000 \r\n",
|
|
||||||
"-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime\r\n",
|
|
||||||
"-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime\r\n",
|
|
||||||
"-- ,[passenger_count]\r\n",
|
|
||||||
"-- ,[trip_time_in_secs]\r\n",
|
|
||||||
"-- ,[trip_distance]\r\n",
|
|
||||||
"-- ,[payment_type]\r\n",
|
|
||||||
"-- ,[tip_class]\r\n",
|
|
||||||
"-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',\r\n",
|
|
||||||
"-- @label_column = 'tip_class',\r\n",
|
|
||||||
"-- @iterations=10\r\n",
|
|
||||||
"-- \r\n",
|
|
||||||
"-- An example call for forecasting is:\r\n",
|
|
||||||
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
|
||||||
"-- exec dbo.AutoMLTrain @input_query='\r\n",
|
|
||||||
"-- select cast(timeStamp as nvarchar(30)) as timeStamp,\r\n",
|
|
||||||
"-- demand,\r\n",
|
|
||||||
"-- \t precip,\r\n",
|
|
||||||
"-- \t temp,\r\n",
|
|
||||||
"-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column\r\n",
|
|
||||||
"-- from nyc_energy\r\n",
|
|
||||||
"-- where demand is not null and precip is not null and temp is not null\r\n",
|
|
||||||
"-- and timeStamp < ''2017-02-01''',\r\n",
|
|
||||||
"-- @label_column='demand',\r\n",
|
|
||||||
"-- @task='forecasting',\r\n",
|
|
||||||
"-- @iterations=10,\r\n",
|
|
||||||
"-- @iteration_timeout_minutes=5,\r\n",
|
|
||||||
"-- @time_column_name='timeStamp',\r\n",
|
|
||||||
"-- @is_validate_column='is_validate_column',\r\n",
|
|
||||||
"-- @experiment_name='automl-sql-forecast',\r\n",
|
|
||||||
"-- @primary_metric='normalized_root_mean_squared_error'\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"SET ANSI_NULLS ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]\r\n",
|
|
||||||
" (\r\n",
|
|
||||||
" @input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.\r\n",
|
|
||||||
" @label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.\r\n",
|
|
||||||
" @primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.\r\n",
|
|
||||||
" @iterations INT=100, -- The maximum number of pipelines to train.\r\n",
|
|
||||||
" @task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.\r\n",
|
|
||||||
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
|
|
||||||
" @iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline. \r\n",
|
|
||||||
" @experiment_timeout_minutes INT = 60, -- The maximum time in minutes for training all pipelines.\r\n",
|
|
||||||
" @n_cross_validations INT = 3, -- The number of cross validations.\r\n",
|
|
||||||
" @blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.\r\n",
|
|
||||||
" -- The list of possible models can be found at:\r\n",
|
|
||||||
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
|
|
||||||
" @whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.\r\n",
|
|
||||||
" -- The list of possible models can be found at:\r\n",
|
|
||||||
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
|
|
||||||
" @experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.\r\n",
|
|
||||||
" @sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.\r\n",
|
|
||||||
" @is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.\r\n",
|
|
||||||
"\t -- In the values of the column, 0 means for training and 1 means for validation.\r\n",
|
|
||||||
" @time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.\r\n",
|
|
||||||
"\t@connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
|
|
||||||
" ) AS\r\n",
|
|
||||||
"BEGIN\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" DECLARE @tenantid NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @appid NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @password NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @config_file NVARCHAR(255)\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
|
|
||||||
"\tFROM aml_connection\r\n",
|
|
||||||
"\tWHERE ConnectionName = @connection_name;\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\tEXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
|
|
||||||
"import logging \r\n",
|
|
||||||
"import azureml.core \r\n",
|
|
||||||
"import pandas as pd\r\n",
|
|
||||||
"import numpy as np\r\n",
|
|
||||||
"from azureml.core.experiment import Experiment \r\n",
|
|
||||||
"from azureml.train.automl import AutoMLConfig \r\n",
|
|
||||||
"from sklearn import datasets \r\n",
|
|
||||||
"import pickle\r\n",
|
|
||||||
"import codecs\r\n",
|
|
||||||
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
|
|
||||||
"from azureml.core.workspace import Workspace \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"if __name__.startswith(\"sqlindb\"):\r\n",
|
|
||||||
" auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
" ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
" project_folder = \"./sample_projects/\" + experiment_name\r\n",
|
|
||||||
" \r\n",
|
|
||||||
" experiment = Experiment(ws, experiment_name) \r\n",
|
|
||||||
"\r\n",
|
|
||||||
" data_train = input_data\r\n",
|
|
||||||
" X_valid = None\r\n",
|
|
||||||
" y_valid = None\r\n",
|
|
||||||
" sample_weight_valid = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if is_validate_column != \"\" and is_validate_column is not None:\r\n",
|
|
||||||
" data_train = input_data[input_data[is_validate_column] <= 0]\r\n",
|
|
||||||
" data_valid = input_data[input_data[is_validate_column] > 0]\r\n",
|
|
||||||
" data_train.pop(is_validate_column)\r\n",
|
|
||||||
" data_valid.pop(is_validate_column)\r\n",
|
|
||||||
" y_valid = data_valid.pop(label_column).values\r\n",
|
|
||||||
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
|
|
||||||
" sample_weight_valid = data_valid.pop(sample_weight_column).values\r\n",
|
|
||||||
" X_valid = data_valid\r\n",
|
|
||||||
" n_cross_validations = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" y_train = data_train.pop(label_column).values\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" sample_weight = None\r\n",
|
|
||||||
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
|
|
||||||
" sample_weight = data_train.pop(sample_weight_column).values\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" X_train = data_train\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if experiment_timeout_minutes == 0:\r\n",
|
|
||||||
" experiment_timeout_minutes = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if experiment_exit_score == 0:\r\n",
|
|
||||||
" experiment_exit_score = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if blacklist_models == \"\":\r\n",
|
|
||||||
" blacklist_models = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if blacklist_models is not None:\r\n",
|
|
||||||
" blacklist_models = blacklist_models.replace(\" \", \"\").split(\",\")\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if whitelist_models == \"\":\r\n",
|
|
||||||
" whitelist_models = None\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" if whitelist_models is not None:\r\n",
|
|
||||||
" whitelist_models = whitelist_models.replace(\" \", \"\").split(\",\")\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" automl_settings = {}\r\n",
|
|
||||||
" preprocess = True\r\n",
|
|
||||||
" if time_column_name != \"\" and time_column_name is not None:\r\n",
|
|
||||||
" automl_settings = { \"time_column_name\": time_column_name }\r\n",
|
|
||||||
" preprocess = False\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" log_file_name = \"automl_errors.log\"\r\n",
|
|
||||||
"\t \r\n",
|
|
||||||
" automl_config = AutoMLConfig(task = task, \r\n",
|
|
||||||
" debug_log = log_file_name, \r\n",
|
|
||||||
" primary_metric = primary_metric, \r\n",
|
|
||||||
" iteration_timeout_minutes = iteration_timeout_minutes, \r\n",
|
|
||||||
" experiment_timeout_minutes = experiment_timeout_minutes,\r\n",
|
|
||||||
" iterations = iterations, \r\n",
|
|
||||||
" n_cross_validations = n_cross_validations, \r\n",
|
|
||||||
" preprocess = preprocess,\r\n",
|
|
||||||
" verbosity = logging.INFO, \r\n",
|
|
||||||
" X = X_train, \r\n",
|
|
||||||
" y = y_train, \r\n",
|
|
||||||
" path = project_folder,\r\n",
|
|
||||||
" blacklist_models = blacklist_models,\r\n",
|
|
||||||
" whitelist_models = whitelist_models,\r\n",
|
|
||||||
" experiment_exit_score = experiment_exit_score,\r\n",
|
|
||||||
" sample_weight = sample_weight,\r\n",
|
|
||||||
" X_valid = X_valid,\r\n",
|
|
||||||
" y_valid = y_valid,\r\n",
|
|
||||||
" sample_weight_valid = sample_weight_valid,\r\n",
|
|
||||||
" **automl_settings) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
" local_run = experiment.submit(automl_config, show_output = True) \r\n",
|
|
||||||
"\r\n",
|
|
||||||
" best_run, fitted_model = local_run.get_output()\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" pickled_model = codecs.encode(pickle.dumps(fitted_model), \"base64\").decode()\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" log_file_text = \"\"\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" try:\r\n",
|
|
||||||
" with open(log_file_name, \"r\") as log_file:\r\n",
|
|
||||||
" log_file_text = log_file.read()\r\n",
|
|
||||||
" except:\r\n",
|
|
||||||
" log_file_text = \"Log file not found\"\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" returned_model = pd.DataFrame({\"best_run\": [best_run.id], \"experiment_name\": [experiment_name], \"fitted_model\": [pickled_model], \"log_file_text\": [log_file_text], \"workspace\": [ws.name]}, dtype=np.dtype(np.str))\r\n",
|
|
||||||
"'\r\n",
|
|
||||||
"\t, @input_data_1 = @input_query\r\n",
|
|
||||||
"\t, @input_data_1_name = N'input_data'\r\n",
|
|
||||||
"\t, @output_data_1_name = N'returned_model'\r\n",
|
|
||||||
"\t, @params = N'@label_column NVARCHAR(255), \r\n",
|
|
||||||
"\t @primary_metric NVARCHAR(40),\r\n",
|
|
||||||
"\t\t\t\t @iterations INT, @task NVARCHAR(40),\r\n",
|
|
||||||
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
|
|
||||||
"\t\t\t\t @iteration_timeout_minutes INT,\r\n",
|
|
||||||
"\t\t\t\t @experiment_timeout_minutes INT,\r\n",
|
|
||||||
"\t\t\t\t @n_cross_validations INT,\r\n",
|
|
||||||
"\t\t\t\t @blacklist_models NVARCHAR(MAX),\r\n",
|
|
||||||
"\t\t\t\t @whitelist_models NVARCHAR(MAX),\r\n",
|
|
||||||
"\t\t\t\t @experiment_exit_score FLOAT,\r\n",
|
|
||||||
"\t\t\t\t @sample_weight_column NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @is_validate_column NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @time_column_name NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @tenantid NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @appid NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @password NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
|
|
||||||
"\t, @label_column = @label_column\r\n",
|
|
||||||
"\t, @primary_metric = @primary_metric\r\n",
|
|
||||||
"\t, @iterations = @iterations\r\n",
|
|
||||||
"\t, @task = @task\r\n",
|
|
||||||
"\t, @experiment_name = @experiment_name\r\n",
|
|
||||||
"\t, @iteration_timeout_minutes = @iteration_timeout_minutes\r\n",
|
|
||||||
"\t, @experiment_timeout_minutes = @experiment_timeout_minutes\r\n",
|
|
||||||
"\t, @n_cross_validations = @n_cross_validations\r\n",
|
|
||||||
"\t, @blacklist_models = @blacklist_models\r\n",
|
|
||||||
"\t, @whitelist_models = @whitelist_models\r\n",
|
|
||||||
"\t, @experiment_exit_score = @experiment_exit_score\r\n",
|
|
||||||
"\t, @sample_weight_column = @sample_weight_column\r\n",
|
|
||||||
"\t, @is_validate_column = @is_validate_column\r\n",
|
|
||||||
"\t, @time_column_name = @time_column_name\r\n",
|
|
||||||
"\t, @tenantid = @tenantid\r\n",
|
|
||||||
"\t, @appid = @appid\r\n",
|
|
||||||
"\t, @password = @password\r\n",
|
|
||||||
"\t, @config_file = @config_file\r\n",
|
|
||||||
"WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))\r\n",
|
|
||||||
"END"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- This procedure returns a list of metrics for each iteration of a training run.\r\n",
|
|
||||||
"SET ANSI_NULLS ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]\r\n",
|
|
||||||
" (\r\n",
|
|
||||||
"\t@run_id NVARCHAR(250), -- The RunId\r\n",
|
|
||||||
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
|
|
||||||
" @connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
|
|
||||||
" ) AS\r\n",
|
|
||||||
"BEGIN\r\n",
|
|
||||||
" DECLARE @tenantid NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @appid NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @password NVARCHAR(255)\r\n",
|
|
||||||
" DECLARE @config_file NVARCHAR(255)\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
|
|
||||||
"\tFROM aml_connection\r\n",
|
|
||||||
"\tWHERE ConnectionName = @connection_name;\r\n",
|
|
||||||
"\r\n",
|
|
||||||
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
|
|
||||||
"import logging \r\n",
|
|
||||||
"import azureml.core \r\n",
|
|
||||||
"import numpy as np\r\n",
|
|
||||||
"from azureml.core.experiment import Experiment \r\n",
|
|
||||||
"from azureml.train.automl.run import AutoMLRun\r\n",
|
|
||||||
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
|
|
||||||
"from azureml.core.workspace import Workspace \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"experiment = Experiment(ws, experiment_name) \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"children = list(ml_run.get_children())\r\n",
|
|
||||||
"iterationlist = []\r\n",
|
|
||||||
"metricnamelist = []\r\n",
|
|
||||||
"metricvaluelist = []\r\n",
|
|
||||||
"\r\n",
|
|
||||||
"for run in children:\r\n",
|
|
||||||
" properties = run.get_properties()\r\n",
|
|
||||||
" if \"iteration\" in properties:\r\n",
|
|
||||||
" iteration = int(properties[\"iteration\"])\r\n",
|
|
||||||
" for metric_name, metric_value in run.get_metrics().items():\r\n",
|
|
||||||
" if isinstance(metric_value, float):\r\n",
|
|
||||||
" iterationlist.append(iteration)\r\n",
|
|
||||||
" metricnamelist.append(metric_name)\r\n",
|
|
||||||
" metricvaluelist.append(metric_value)\r\n",
|
|
||||||
" \r\n",
|
|
||||||
"metrics = pd.DataFrame({\"iteration\": iterationlist, \"metric_name\": metricnamelist, \"metric_value\": metricvaluelist})\r\n",
|
|
||||||
"'\r\n",
|
|
||||||
" , @output_data_1_name = N'metrics'\r\n",
|
|
||||||
"\t, @params = N'@run_id NVARCHAR(250), \r\n",
|
|
||||||
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
|
|
||||||
" \t\t\t\t @tenantid NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @appid NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @password NVARCHAR(255),\r\n",
|
|
||||||
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
|
|
||||||
" , @run_id = @run_id\r\n",
|
|
||||||
"\t, @experiment_name = @experiment_name\r\n",
|
|
||||||
"\t, @tenantid = @tenantid\r\n",
|
|
||||||
"\t, @appid = @appid\r\n",
|
|
||||||
"\t, @password = @password\r\n",
|
|
||||||
"\t, @config_file = @config_file\r\n",
|
|
||||||
"WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))\r\n",
|
|
||||||
"END"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.\r\n",
|
|
||||||
"-- It returns the dataset with a new column added, which is the predicted value.\r\n",
|
|
||||||
"SET ANSI_NULLS ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
|
||||||
"GO\r\n",
|
|
||||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]\r\n",
|
|
||||||
" (\r\n",
|
|
||||||
" @input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.\r\n",
|
|
||||||
" @model NVARCHAR(MAX), -- A model returned from AutoMLTrain.\r\n",
|
|
||||||
" @label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting\r\n",
|
|
||||||
" ) AS \r\n",
|
|
||||||
"BEGIN \r\n",
|
|
||||||
" \r\n",
|
|
||||||
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd \r\n",
|
|
||||||
"import azureml.core \r\n",
|
|
||||||
"import numpy as np \r\n",
|
|
||||||
"from azureml.train.automl import AutoMLConfig \r\n",
|
|
||||||
"import pickle \r\n",
|
|
||||||
"import codecs \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"model_obj = pickle.loads(codecs.decode(model.encode(), \"base64\")) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"test_data = input_data.copy() \r\n",
|
|
||||||
"\r\n",
|
|
||||||
"if label_column != \"\" and label_column is not None:\r\n",
|
|
||||||
" y_test = test_data.pop(label_column).values \r\n",
|
|
||||||
"X_test = test_data \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"predicted = model_obj.predict(X_test) \r\n",
|
|
||||||
" \r\n",
|
|
||||||
"combined_output = input_data.assign(predicted=predicted)\r\n",
|
|
||||||
" \r\n",
|
|
||||||
"' \r\n",
|
|
||||||
" , @input_data_1 = @input_query \r\n",
|
|
||||||
" , @input_data_1_name = N'input_data' \r\n",
|
|
||||||
" , @output_data_1_name = N'combined_output' \r\n",
|
|
||||||
" , @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)' \r\n",
|
|
||||||
" , @model = @model \r\n",
|
|
||||||
"\t, @label_column = @label_column\r\n",
|
|
||||||
"END"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "jeffshep"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"category": "tutorial",
|
|
||||||
"compute": [
|
|
||||||
"None"
|
|
||||||
],
|
|
||||||
"datasets": [
|
|
||||||
"None"
|
|
||||||
],
|
|
||||||
"deployment": [
|
|
||||||
"None"
|
|
||||||
],
|
|
||||||
"exclude_from_index": false,
|
|
||||||
"framework": [
|
|
||||||
"Azure ML AutoML"
|
|
||||||
],
|
|
||||||
"tags": [
|
|
||||||
""
|
|
||||||
],
|
|
||||||
"friendly_name": "Setup automated ML SQL integration",
|
|
||||||
"index_order": 1,
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "sql",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"name": "sql",
|
|
||||||
"version": ""
|
|
||||||
},
|
|
||||||
"task": "None"
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -11,6 +11,13 @@
|
|||||||
"Licensed under the MIT License."
|
"Licensed under the MIT License."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Register Azure Databricks trained model and deploy it to ACI\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@@ -163,7 +170,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) # showing how to add libs as an eg. - not needed for this model.\n",
|
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) # showing how to add libs as an eg. - not needed for this model.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(\"mydeployenv.yml\",\"w\") as f:\n",
|
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||||
" f.write(myacienv.serialize_to_string())"
|
" f.write(myacienv.serialize_to_string())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -177,6 +184,9 @@
|
|||||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||||
"from azureml.exceptions import WebserviceException\n",
|
"from azureml.exceptions import WebserviceException\n",
|
||||||
"from azureml.core.model import InferenceConfig\n",
|
"from azureml.core.model import InferenceConfig\n",
|
||||||
|
"from azureml.core.environment import Environment\n",
|
||||||
|
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||||
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"myaci_config = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
|
"myaci_config = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
|
||||||
" memory_gb = 2, \n",
|
" memory_gb = 2, \n",
|
||||||
@@ -191,9 +201,16 @@
|
|||||||
"except WebserviceException:\n",
|
"except WebserviceException:\n",
|
||||||
" pass\n",
|
" pass\n",
|
||||||
"\n",
|
"\n",
|
||||||
"inference_config = InferenceConfig(runtime= 'spark-py', \n",
|
"myenv = Environment.get(ws, name='AzureML-PySpark-MmlSpark-0.15')\n",
|
||||||
" entry_script='score_sparkml.py',\n",
|
"# we need to add extra packages to procured environment\n",
|
||||||
" conda_file='mydeployenv.yml')\n",
|
"# in order to deploy amended environment we need to rename it\n",
|
||||||
|
"myenv.name = 'myenv'\n",
|
||||||
|
"model_dependencies = CondaDependencies('myenv.yml')\n",
|
||||||
|
"for pip_dep in model_dependencies.pip_packages:\n",
|
||||||
|
" myenv.python.conda_dependencies.add_pip_package(pip_dep)\n",
|
||||||
|
"for conda_dep in model_dependencies.conda_packages:\n",
|
||||||
|
" myenv.python.conda_dependencies.add_conda_package(conda_dep)\n",
|
||||||
|
"inference_config = InferenceConfig(entry_script='score_sparkml.py', environment=myenv)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"myservice = Model.deploy(ws, service_name, [mymodel], inference_config, myaci_config)\n",
|
"myservice = Model.deploy(ws, service_name, [mymodel], inference_config, myaci_config)\n",
|
||||||
"myservice.wait_for_deployment(show_output=True)"
|
"myservice.wait_for_deployment(show_output=True)"
|
||||||
@@ -255,6 +272,15 @@
|
|||||||
"myservice.delete()"
|
"myservice.delete()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Deploying to other types of computes\n",
|
||||||
|
"\n",
|
||||||
|
"In order to learn how to deploy to other types of compute targets, such as AKS, please take a look at the set of notebooks in the [deployment](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment) folder."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -1,312 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
|
|
||||||
"\n",
|
|
||||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"Licensed under the MIT License."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This notebook uses image from ACI notebook for deploying to AKS."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import azureml.core\n",
|
|
||||||
"\n",
|
|
||||||
"# Check core SDK version number\n",
|
|
||||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Set auth to be used by workspace related APIs.\n",
|
|
||||||
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
|
|
||||||
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
|
|
||||||
"auth = None"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core import Workspace\n",
|
|
||||||
"\n",
|
|
||||||
"ws = Workspace.from_config(auth = auth)\n",
|
|
||||||
"print('Workspace name: ' + ws.name, \n",
|
|
||||||
" 'Azure region: ' + ws.location, \n",
|
|
||||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
|
||||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#Register the model\n",
|
|
||||||
"import os\n",
|
|
||||||
"from azureml.core.model import Model\n",
|
|
||||||
"\n",
|
|
||||||
"model_name = \"AdultCensus_runHistory_aks.mml\" # \n",
|
|
||||||
"model_name_dbfs = os.path.join(\"/dbfs\", model_name)\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"copy model from dbfs to local\")\n",
|
|
||||||
"model_local = \"file:\" + os.getcwd() + \"/\" + model_name\n",
|
|
||||||
"dbutils.fs.cp(model_name, model_local, True)\n",
|
|
||||||
"\n",
|
|
||||||
"mymodel = Model.register(model_path = model_name, # this points to a local file\n",
|
|
||||||
" model_name = model_name, # this is the name the model is registered as, am using same name for both path and name. \n",
|
|
||||||
" description = \"ADB trained model by Parashar\",\n",
|
|
||||||
" workspace = ws)\n",
|
|
||||||
"\n",
|
|
||||||
"print(mymodel.name, mymodel.description, mymodel.version)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#%%writefile score_sparkml.py\n",
|
|
||||||
"score_sparkml = \"\"\"\n",
|
|
||||||
" \n",
|
|
||||||
"import json\n",
|
|
||||||
" \n",
|
|
||||||
"def init():\n",
|
|
||||||
" # One-time initialization of PySpark and predictive model\n",
|
|
||||||
" import pyspark\n",
|
|
||||||
" from azureml.core.model import Model\n",
|
|
||||||
" from pyspark.ml import PipelineModel\n",
|
|
||||||
" \n",
|
|
||||||
" global trainedModel\n",
|
|
||||||
" global spark\n",
|
|
||||||
" \n",
|
|
||||||
" spark = pyspark.sql.SparkSession.builder.appName(\"ADB and AML notebook by Parashar\").getOrCreate()\n",
|
|
||||||
" model_name = \"{model_name}\" #interpolated\n",
|
|
||||||
" model_path = Model.get_model_path(model_name)\n",
|
|
||||||
" trainedModel = PipelineModel.load(model_path)\n",
|
|
||||||
" \n",
|
|
||||||
"def run(input_json):\n",
|
|
||||||
" if isinstance(trainedModel, Exception):\n",
|
|
||||||
" return json.dumps({{\"trainedModel\":str(trainedModel)}})\n",
|
|
||||||
" \n",
|
|
||||||
" try:\n",
|
|
||||||
" sc = spark.sparkContext\n",
|
|
||||||
" input_list = json.loads(input_json)\n",
|
|
||||||
" input_rdd = sc.parallelize(input_list)\n",
|
|
||||||
" input_df = spark.read.json(input_rdd)\n",
|
|
||||||
" \n",
|
|
||||||
" # Compute prediction\n",
|
|
||||||
" prediction = trainedModel.transform(input_df)\n",
|
|
||||||
" #result = prediction.first().prediction\n",
|
|
||||||
" predictions = prediction.collect()\n",
|
|
||||||
" \n",
|
|
||||||
" #Get each scored result\n",
|
|
||||||
" preds = [str(x['prediction']) for x in predictions]\n",
|
|
||||||
" result = \",\".join(preds)\n",
|
|
||||||
" # you can return any data type as long as it is JSON-serializable\n",
|
|
||||||
" return result.tolist()\n",
|
|
||||||
" except Exception as e:\n",
|
|
||||||
" result = str(e)\n",
|
|
||||||
" return result\n",
|
|
||||||
" \n",
|
|
||||||
"\"\"\".format(model_name=model_name)\n",
|
|
||||||
" \n",
|
|
||||||
"exec(score_sparkml)\n",
|
|
||||||
" \n",
|
|
||||||
"with open(\"score_sparkml.py\", \"w\") as file:\n",
|
|
||||||
" file.write(score_sparkml)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
|
||||||
"\n",
|
|
||||||
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) #showing how to add libs as an eg. - not needed for this model.\n",
|
|
||||||
"\n",
|
|
||||||
"with open(\"mydeployenv.yml\",\"w\") as f:\n",
|
|
||||||
" f.write(myacienv.serialize_to_string())"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#create AKS compute\n",
|
|
||||||
"#it may take 20-25 minutes to create a new cluster\n",
|
|
||||||
"\n",
|
|
||||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
|
||||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
|
||||||
"\n",
|
|
||||||
"aks_name = 'ps-aks-demo2' \n",
|
|
||||||
"\n",
|
|
||||||
"try:\n",
|
|
||||||
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
|
|
||||||
" print('Found existing cluster, use it.')\n",
|
|
||||||
"except ComputeTargetException:\n",
|
|
||||||
" # Use the default configuration (can also provide parameters to customize)\n",
|
|
||||||
" prov_config = AksCompute.provisioning_configuration()\n",
|
|
||||||
" \n",
|
|
||||||
" # Create the cluster\n",
|
|
||||||
" aks_target = ComputeTarget.create(workspace = ws, \n",
|
|
||||||
" name = aks_name, \n",
|
|
||||||
" provisioning_configuration = prov_config)\n",
|
|
||||||
"\n",
|
|
||||||
"aks_target.wait_for_completion(show_output = True)\n",
|
|
||||||
"\n",
|
|
||||||
"print(aks_target.provisioning_state)\n",
|
|
||||||
"print(aks_target.provisioning_errors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#deploy to AKS\n",
|
|
||||||
"from azureml.core.webservice import AksWebservice, Webservice\n",
|
|
||||||
"from azureml.exceptions import WebserviceException\n",
|
|
||||||
"from azureml.core.model import InferenceConfig\n",
|
|
||||||
"\n",
|
|
||||||
"aks_config = AksWebservice.deploy_configuration(enable_app_insights=True)\n",
|
|
||||||
"\n",
|
|
||||||
"service_name = 'ps-aks-service'\n",
|
|
||||||
"\n",
|
|
||||||
"# Remove any existing service under the same name.\n",
|
|
||||||
"try:\n",
|
|
||||||
" Webservice(ws, service_name).delete()\n",
|
|
||||||
"except WebserviceException:\n",
|
|
||||||
" pass\n",
|
|
||||||
"\n",
|
|
||||||
"inference_config = InferenceConfig(runtime = 'spark-py', \n",
|
|
||||||
" entry_script ='score_sparkml.py',\n",
|
|
||||||
" conda_file ='mydeployenv.yml')\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service = Model.deploy(ws, service_name, [mymodel], inference_config, aks_config, aks_target)\n",
|
|
||||||
"aks_service.wait_for_deployment(show_output=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"aks_service.deployment_status"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#for using the Web HTTP API \n",
|
|
||||||
"print(aks_service.scoring_uri)\n",
|
|
||||||
"print(aks_service.get_keys())"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import json\n",
|
|
||||||
"\n",
|
|
||||||
"#get the some sample data\n",
|
|
||||||
"test_data_path = \"AdultCensusIncomeTest\"\n",
|
|
||||||
"test = spark.read.parquet(test_data_path).limit(5)\n",
|
|
||||||
"\n",
|
|
||||||
"test_json = json.dumps(test.toJSON().collect())\n",
|
|
||||||
"\n",
|
|
||||||
"print(test_json)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#using data defined above predict if income is >50K (1) or <=50K (0)\n",
|
|
||||||
"aks_service.run(input_data=test_json)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#comment to not delete the web service\n",
|
|
||||||
"aks_service.delete()\n",
|
|
||||||
"#model.delete()\n",
|
|
||||||
"aks_target.delete() "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "pasha"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.6.8"
|
|
||||||
},
|
|
||||||
"name": "deploy-to-aks-existingimage-05",
|
|
||||||
"notebookId": 1030695628045968
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 1
|
|
||||||
}
|
|
||||||
@@ -512,9 +512,11 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"### Retrieve the Best Model after the above run is complete \n",
|
"## Deploy\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
"### Retrieve the Best Model\n",
|
||||||
|
"\n",
|
||||||
|
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -523,17 +525,15 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"best_run, fitted_model = local_run.get_output()\n",
|
"best_run, fitted_model = local_run.get_output()"
|
||||||
"print(best_run)\n",
|
|
||||||
"print(fitted_model)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
|
"### Download the conda environment file\n",
|
||||||
"Show the run and the model that has the smallest `log_loss` value:"
|
"From the *best_run* download the conda environment file that was used to train the AutoML model."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -542,10 +542,34 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"lookup_metric = \"log_loss\"\n",
|
"from azureml.automl.core.shared import constants\n",
|
||||||
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
|
"conda_env_file_name = 'conda_env.yml'\n",
|
||||||
"print(best_run)\n",
|
"best_run.download_file(name=\"outputs/conda_env_v_1_0_0.yml\", output_file_path=conda_env_file_name)\n",
|
||||||
"print(fitted_model)"
|
"with open(conda_env_file_name, \"r\") as conda_file:\n",
|
||||||
|
" conda_file_contents = conda_file.read()\n",
|
||||||
|
" print(conda_file_contents)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Download the model scoring file\n",
|
||||||
|
"From the *best_run* download the scoring file to get the predictions from the AutoML model."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.automl.core.shared import constants\n",
|
||||||
|
"script_file_name = 'scoring_file.py'\n",
|
||||||
|
"best_run.download_file(name=\"outputs/scoring_file_v_1_0_0.py\", output_file_path=script_file_name)\n",
|
||||||
|
"with open(script_file_name, \"r\") as scoring_file:\n",
|
||||||
|
" scoring_file_contents = scoring_file.read()\n",
|
||||||
|
" print(scoring_file_contents)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -572,8 +596,9 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Create Scoring Script\n",
|
"### Deploy the model as a Web Service on Azure Container Instance\n",
|
||||||
"Replace model_id with name of model from output of above register cell"
|
"\n",
|
||||||
|
"Create the configuration needed for deploying the model as a web service service."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -582,113 +607,17 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"%%writefile score.py\n",
|
|
||||||
"import pickle\n",
|
|
||||||
"import json\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import azureml.train.automl\n",
|
|
||||||
"from sklearn.externals import joblib\n",
|
|
||||||
"from azureml.core.model import Model\n",
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"\n",
|
|
||||||
"def init():\n",
|
|
||||||
" global model\n",
|
|
||||||
" model_path = Model.get_model_path(model_name = '<<model_id>>') # this name is model.id of model that we want to deploy\n",
|
|
||||||
" # deserialize the model file back into a sklearn model\n",
|
|
||||||
" model = joblib.load(model_path)\n",
|
|
||||||
"\n",
|
|
||||||
"def run(raw_data):\n",
|
|
||||||
" try:\n",
|
|
||||||
" data = (pd.DataFrame(np.array(json.loads(raw_data)['data']), columns=[str(i) for i in range(0,64)]))\n",
|
|
||||||
" result = model.predict(data)\n",
|
|
||||||
" except Exception as e:\n",
|
|
||||||
" result = str(e)\n",
|
|
||||||
" return json.dumps({\"error\": result})\n",
|
|
||||||
" return json.dumps({\"result\":result.tolist()})"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#Replace <<model_id>>\n",
|
|
||||||
"content = \"\"\n",
|
|
||||||
"with open(\"score.py\", \"r\") as fo:\n",
|
|
||||||
" content = fo.read()\n",
|
|
||||||
"\n",
|
|
||||||
"new_content = content.replace(\"<<model_id>>\", local_run.model_id)\n",
|
|
||||||
"with open(\"score.py\", \"w\") as fw:\n",
|
|
||||||
" fw.write(new_content)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Create a YAML File for the Environment"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
|
||||||
"\n",
|
|
||||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-defaults', 'azureml-sdk[automl]'])\n",
|
|
||||||
"\n",
|
|
||||||
"conda_env_file_name = 'mydeployenv.yml'\n",
|
|
||||||
"myenv.save_to_file('.', conda_env_file_name)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Deploy the model as a Web Service on Azure Container Instance\n",
|
|
||||||
"Replace servicename with any meaningful name of service"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# this will take 10-15 minutes to finish\n",
|
|
||||||
"\n",
|
|
||||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
|
||||||
"from azureml.exceptions import WebserviceException\n",
|
|
||||||
"from azureml.core.model import InferenceConfig\n",
|
"from azureml.core.model import InferenceConfig\n",
|
||||||
"from azureml.core.model import Model\n",
|
"from azureml.core.webservice import AciWebservice\n",
|
||||||
"import uuid\n",
|
"from azureml.core.environment import Environment\n",
|
||||||
"\n",
|
"\n",
|
||||||
"myaci_config = AciWebservice.deploy_configuration(\n",
|
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=conda_env_file_name)\n",
|
||||||
" cpu_cores = 2, \n",
|
"inference_config = InferenceConfig(entry_script=script_file_name, environment=myenv)\n",
|
||||||
" memory_gb = 2, \n",
|
|
||||||
" tags = {'name':'Databricks Azure ML ACI'}, \n",
|
|
||||||
" description = 'This is for ADB and AutoML example.')\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"inference_config = InferenceConfig(runtime= 'spark-py', \n",
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||||
" entry_script='score.py',\n",
|
" memory_gb = 1, \n",
|
||||||
" conda_file='mydeployenv.yml')\n",
|
" tags = {'area': \"digits\", 'type': \"automl_classification\"}, \n",
|
||||||
"\n",
|
" description = 'sample service for Automl Classification')"
|
||||||
"guid = str(uuid.uuid4()).split(\"-\")[0]\n",
|
|
||||||
"service_name = \"myservice-{}\".format(guid)\n",
|
|
||||||
"\n",
|
|
||||||
"# Remove any existing service under the same name.\n",
|
|
||||||
"try:\n",
|
|
||||||
" Webservice(ws, service_name).delete()\n",
|
|
||||||
"except WebserviceException:\n",
|
|
||||||
" pass\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Creating service with name: {}\".format(service_name))\n",
|
|
||||||
"\n",
|
|
||||||
"myservice = Model.deploy(ws, service_name, [model], inference_config, myaci_config)\n",
|
|
||||||
"myservice.wait_for_deployment(show_output=True)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -697,8 +626,14 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#for using the Web HTTP API \n",
|
"from azureml.core.webservice import Webservice\n",
|
||||||
"print(myservice.scoring_uri)"
|
"from azureml.core.model import Model\n",
|
||||||
|
"\n",
|
||||||
|
"aci_service_name = 'automl-databricks-local'\n",
|
||||||
|
"print(aci_service_name)\n",
|
||||||
|
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||||
|
"aci_service.wait_for_deployment(True)\n",
|
||||||
|
"print(aci_service.state)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -742,7 +677,7 @@
|
|||||||
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
|
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
|
||||||
" print(index)\n",
|
" print(index)\n",
|
||||||
" test_sample = json.dumps({'data':X_test[index:index + 1].values.tolist()})\n",
|
" test_sample = json.dumps({'data':X_test[index:index + 1].values.tolist()})\n",
|
||||||
" predicted = myservice.run(input_data = test_sample)\n",
|
" predicted = aci_service.run(input_data = test_sample)\n",
|
||||||
" label = y_test.values[index]\n",
|
" label = y_test.values[index]\n",
|
||||||
" predictedDict = json.loads(predicted)\n",
|
" predictedDict = json.loads(predicted)\n",
|
||||||
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0]) \n",
|
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0]) \n",
|
||||||
|
|||||||
36
how-to-use-azureml/azureml-sdk-for-r/README.md
Normal file
36
how-to-use-azureml/azureml-sdk-for-r/README.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
## Examples to get started with Azure Machine Learning SDK for R
|
||||||
|
|
||||||
|
Learn how to use Azure Machine Learning SDK for R for experimentation and model management.
|
||||||
|
|
||||||
|
As a pre-requisite, go through the [Installation](vignettes/installation.Rmd) and [Configuration](vignettes/configuration.Rmd) vignettes to first install the package and set up your Azure Machine Learning Workspace unless you are running these examples on an Azure Machine Learning compute instance. Azure Machine Learning compute instances have the Azure Machine Learning SDK pre-installed and your workspace details pre-configured.
|
||||||
|
|
||||||
|
|
||||||
|
Samples
|
||||||
|
* Deployment
|
||||||
|
* [deploy-to-aci](./samples/deployment/deploy-to-aci): Deploy a model as a web service to Azure Container Instances (ACI).
|
||||||
|
* [deploy-to-local](./samples/deployment/deploy-to-local): Deploy a model as a web service locally.
|
||||||
|
* Training
|
||||||
|
* [train-on-amlcompute](./samples/training/train-on-amlcompute): Train a model on a remote AmlCompute cluster.
|
||||||
|
* [train-on-local](./samples/training/train-on-local): Train a model locally with Docker.
|
||||||
|
|
||||||
|
Vignettes
|
||||||
|
* [deploy-to-aks](./vignettes/deploy-to-aks): Production deploy a model as a web service to Azure Kubernetes Service (AKS).
|
||||||
|
* [hyperparameter-tune-with-keras](./vignettes/hyperparameter-tune-with-keras): Hyperparameter tune a Keras model using HyperDrive, Azure ML's hyperparameter tuning functionality.
|
||||||
|
* [train-and-deploy-to-aci](./vignettes/train-and-deploy-to-aci): Train a caret model and deploy as a web service to Azure Container Instances (ACI).
|
||||||
|
* [train-with-tensorflow](./vignettes/train-with-tensorflow): Train a deep learning TensorFlow model with Azure ML.
|
||||||
|
|
||||||
|
Find more information on the [official documentation site for Azure Machine Learning SDK for R](https://azure.github.io/azureml-sdk-for-r/).
|
||||||
|
|
||||||
|
|
||||||
|
### Troubleshooting
|
||||||
|
|
||||||
|
- If the following error occurs when submitting an experiment using RStudio:
|
||||||
|
```R
|
||||||
|
Error in py_call_impl(callable, dots$args, dots$keywords) :
|
||||||
|
PermissionError: [Errno 13] Permission denied
|
||||||
|
```
|
||||||
|
Move the files for your project into a subdirectory and reset the working directory to that directory before re-submitting.
|
||||||
|
|
||||||
|
In order to submit an experiment, the Azure ML SDK must create a .zip file of the project directory to send to the service. However,
|
||||||
|
the SDK does not have permission to write into the .Rproj.user subdirectory that is automatically created during an RStudio
|
||||||
|
session. For this reason, the recommended best practice is to isolate project files into their own directory.
|
||||||
11
how-to-use-azureml/azureml-sdk-for-r/samples/README.md
Normal file
11
how-to-use-azureml/azureml-sdk-for-r/samples/README.md
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
## Azure Machine Learning samples
|
||||||
|
These samples are short code examples for using Azure Machine Learning SDK for R. If you are new to the R SDK, we recommend that you first take a look at the more detailed end-to-end [vignettes](../vignettes).
|
||||||
|
|
||||||
|
Before running a sample in RStudio, set the working directory to the folder that contains the sample script in RStudio using `setwd(dirname)` or Session -> Set Working Directory -> To Source File Location. Each vignette assumes that the data and scripts are in the current working directory.
|
||||||
|
|
||||||
|
1. [train-on-amlcompute](training/train-on-amlcompute): Train a model on a remote AmlCompute cluster.
|
||||||
|
2. [train-on-local](training/train-on-local): Train a model locally with Docker.
|
||||||
|
2. [deploy-to-aci](deployment/deploy-to-aci): Deploy a model as a web service to Azure Container Instances (ACI).
|
||||||
|
3. [deploy-to-local](deployment/deploy-to-local): Deploy a model as a web service locally.
|
||||||
|
|
||||||
|
> Before you run these samples, make sure you have an Azure Machine Learning workspace. You can follow the [configuration vignette](../vignettes/configuration.Rmd) to set up a workspace. (You do not need to do this if you are running these examples on an Azure Machine Learning compute instance).
|
||||||
@@ -0,0 +1,59 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
|
||||||
|
# Register the model
|
||||||
|
model <- register_model(ws, model_path = "project_files/model.rds",
|
||||||
|
model_name = "model.rds")
|
||||||
|
|
||||||
|
# Create environment
|
||||||
|
r_env <- r_environment(name = "r_env")
|
||||||
|
|
||||||
|
# Create inference config
|
||||||
|
inference_config <- inference_config(
|
||||||
|
entry_script = "score.R",
|
||||||
|
source_directory = "project_files",
|
||||||
|
environment = r_env)
|
||||||
|
|
||||||
|
# Create ACI deployment config
|
||||||
|
deployment_config <- aci_webservice_deployment_config(cpu_cores = 1,
|
||||||
|
memory_gb = 1)
|
||||||
|
|
||||||
|
# Deploy the web service
|
||||||
|
service <- deploy_model(ws,
|
||||||
|
'rservice',
|
||||||
|
list(model),
|
||||||
|
inference_config,
|
||||||
|
deployment_config)
|
||||||
|
wait_for_deployment(service, show_output = TRUE)
|
||||||
|
|
||||||
|
# If you encounter any issue in deploying the webservice, please visit
|
||||||
|
# https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment
|
||||||
|
|
||||||
|
# Inferencing
|
||||||
|
# versicolor
|
||||||
|
plant <- data.frame(Sepal.Length = 6.4,
|
||||||
|
Sepal.Width = 2.8,
|
||||||
|
Petal.Length = 4.6,
|
||||||
|
Petal.Width = 1.8)
|
||||||
|
# setosa
|
||||||
|
plant <- data.frame(Sepal.Length = 5.1,
|
||||||
|
Sepal.Width = 3.5,
|
||||||
|
Petal.Length = 1.4,
|
||||||
|
Petal.Width = 0.2)
|
||||||
|
# virginica
|
||||||
|
plant <- data.frame(Sepal.Length = 6.7,
|
||||||
|
Sepal.Width = 3.3,
|
||||||
|
Petal.Length = 5.2,
|
||||||
|
Petal.Width = 2.3)
|
||||||
|
|
||||||
|
# Test the web service
|
||||||
|
predicted_val <- invoke_webservice(service, toJSON(plant))
|
||||||
|
predicted_val
|
||||||
|
|
||||||
|
# Delete the web service
|
||||||
|
delete_webservice(service)
|
||||||
Binary file not shown.
@@ -0,0 +1,17 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
init <- function() {
|
||||||
|
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
|
||||||
|
model <- readRDS(file.path(model_path, "model.rds"))
|
||||||
|
message("model is loaded")
|
||||||
|
|
||||||
|
function(data) {
|
||||||
|
plant <- as.data.frame(fromJSON(data))
|
||||||
|
prediction <- predict(model, plant)
|
||||||
|
result <- as.character(prediction)
|
||||||
|
toJSON(result)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,112 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
# Register model and deploy locally
|
||||||
|
# This example shows how to deploy a web service in step-by-step fashion:
|
||||||
|
#
|
||||||
|
# 1) Register model
|
||||||
|
# 2) Deploy the model as a web service in a local Docker container.
|
||||||
|
# 3) Invoke web service with SDK or call web service with raw HTTP call.
|
||||||
|
# 4) Quickly test changes to your entry script by reloading the local service.
|
||||||
|
# 5) Optionally, you can also make changes to model and update the local service.
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
|
||||||
|
# Register the model
|
||||||
|
model <- register_model(ws, model_path = "project_files/model.rds",
|
||||||
|
model_name = "model.rds")
|
||||||
|
|
||||||
|
# Create environment
|
||||||
|
r_env <- r_environment(name = "r_env")
|
||||||
|
|
||||||
|
# Create inference config
|
||||||
|
inference_config <- inference_config(
|
||||||
|
entry_script = "score.R",
|
||||||
|
source_directory = "project_files",
|
||||||
|
environment = r_env)
|
||||||
|
|
||||||
|
# Create local deployment config
|
||||||
|
local_deployment_config <- local_webservice_deployment_config()
|
||||||
|
|
||||||
|
# Deploy the web service
|
||||||
|
# NOTE:
|
||||||
|
# The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:
|
||||||
|
# # PowerShell command to switch to Linux engine
|
||||||
|
# & 'C:\Program Files\Docker\Docker\DockerCli.exe' -SwitchLinuxEngine
|
||||||
|
service <- deploy_model(ws,
|
||||||
|
'rservice-local',
|
||||||
|
list(model),
|
||||||
|
inference_config,
|
||||||
|
local_deployment_config)
|
||||||
|
# Wait for deployment
|
||||||
|
wait_for_deployment(service, show_output = TRUE)
|
||||||
|
|
||||||
|
# Show the port of local service
|
||||||
|
message(service$port)
|
||||||
|
|
||||||
|
# If you encounter any issue in deploying the webservice, please visit
|
||||||
|
# https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment
|
||||||
|
|
||||||
|
# Inferencing
|
||||||
|
# versicolor
|
||||||
|
# plant <- data.frame(Sepal.Length = 6.4,
|
||||||
|
# Sepal.Width = 2.8,
|
||||||
|
# Petal.Length = 4.6,
|
||||||
|
# Petal.Width = 1.8)
|
||||||
|
# setosa
|
||||||
|
plant <- data.frame(Sepal.Length = 5.1,
|
||||||
|
Sepal.Width = 3.5,
|
||||||
|
Petal.Length = 1.4,
|
||||||
|
Petal.Width = 0.2)
|
||||||
|
# # virginica
|
||||||
|
# plant <- data.frame(Sepal.Length = 6.7,
|
||||||
|
# Sepal.Width = 3.3,
|
||||||
|
# Petal.Length = 5.2,
|
||||||
|
# Petal.Width = 2.3)
|
||||||
|
|
||||||
|
#Test the web service
|
||||||
|
invoke_webservice(service, toJSON(plant))
|
||||||
|
|
||||||
|
## The last few lines of the logs should have the correct prediction and should display -> R[write to console]: "setosa"
|
||||||
|
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
|
||||||
|
|
||||||
|
## Test the web service with a HTTP Raw request
|
||||||
|
#
|
||||||
|
# NOTE:
|
||||||
|
# To test the service locally use the https://localhost:<local_service$port> URL
|
||||||
|
|
||||||
|
# Import the request library
|
||||||
|
library(httr)
|
||||||
|
# Get the service scoring URL from the service object, its URL is for testing locally
|
||||||
|
local_service_url <- service$scoring_uri #Same as https://localhost:<local_service$port>
|
||||||
|
|
||||||
|
#POST request to web service
|
||||||
|
resp <- POST(local_service_url, body = plant, encode = "json", verbose())
|
||||||
|
|
||||||
|
## The last few lines of the logs should have the correct prediction and should display -> R[write to console]: "setosa"
|
||||||
|
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
|
||||||
|
|
||||||
|
|
||||||
|
# Optional, use a new scoring script
|
||||||
|
inference_config <- inference_config(
|
||||||
|
entry_script = "score_new.R",
|
||||||
|
source_directory = "project_files",
|
||||||
|
environment = r_env)
|
||||||
|
|
||||||
|
## Then reload the service to see the changes made
|
||||||
|
reload_local_webservice_assets(service)
|
||||||
|
|
||||||
|
## Check reloaded service, you will see the last line will say "this is a new scoring script! I was reloaded"
|
||||||
|
invoke_webservice(service, toJSON(plant))
|
||||||
|
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
|
||||||
|
|
||||||
|
# Update service
|
||||||
|
# If you want to change your model(s), environment, or deployment configuration, call update() to rebuild the Docker image.
|
||||||
|
|
||||||
|
# update_local_webservice(service, models = [NewModelObject], deployment_config = deployment_config, wait = FALSE, inference_config = inference_config)
|
||||||
|
|
||||||
|
# Delete service
|
||||||
|
delete_local_webservice(service)
|
||||||
Binary file not shown.
@@ -0,0 +1,18 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
init <- function() {
|
||||||
|
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
|
||||||
|
model <- readRDS(file.path(model_path, "model.rds"))
|
||||||
|
message("model is loaded")
|
||||||
|
|
||||||
|
function(data) {
|
||||||
|
plant <- as.data.frame(fromJSON(data))
|
||||||
|
prediction <- predict(model, plant)
|
||||||
|
result <- as.character(prediction)
|
||||||
|
message(result)
|
||||||
|
toJSON(result)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,19 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
init <- function() {
|
||||||
|
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
|
||||||
|
model <- readRDS(file.path(model_path, "model.rds"))
|
||||||
|
message("model is loaded")
|
||||||
|
|
||||||
|
function(data) {
|
||||||
|
plant <- as.data.frame(fromJSON(data))
|
||||||
|
prediction <- predict(model, plant)
|
||||||
|
result <- as.character(prediction)
|
||||||
|
message(result)
|
||||||
|
message("this is a new scoring script! I was reloaded")
|
||||||
|
toJSON(result)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,34 @@
|
|||||||
|
# This script loads a dataset of which the last column is supposed to be the
|
||||||
|
# class and logs the accuracy
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
library(caret)
|
||||||
|
library(optparse)
|
||||||
|
library(datasets)
|
||||||
|
|
||||||
|
|
||||||
|
iris_data <- data(iris)
|
||||||
|
summary(iris_data)
|
||||||
|
|
||||||
|
in_train <- createDataPartition(y = iris_data$Species, p = .8, list = FALSE)
|
||||||
|
train_data <- iris_data[in_train,]
|
||||||
|
test_data <- iris_data[-in_train,]
|
||||||
|
|
||||||
|
# Run algorithms using 10-fold cross validation
|
||||||
|
control <- trainControl(method = "cv", number = 10)
|
||||||
|
metric <- "Accuracy"
|
||||||
|
|
||||||
|
set.seed(7)
|
||||||
|
model <- train(Species ~ .,
|
||||||
|
data = train_data,
|
||||||
|
method = "lda",
|
||||||
|
metric = metric,
|
||||||
|
trControl = control)
|
||||||
|
predictions <- predict(model, test_data)
|
||||||
|
conf_matrix <- confusionMatrix(predictions, test_data$Species)
|
||||||
|
message(conf_matrix)
|
||||||
|
|
||||||
|
log_metric_to_run(metric, conf_matrix$overall["Accuracy"])
|
||||||
|
|
||||||
|
saveRDS(model, file = "./outputs/model.rds")
|
||||||
|
message("Model saved")
|
||||||
@@ -0,0 +1,41 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
# Reminder: set working directory to current file location prior to running this script
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
|
||||||
|
# Create AmlCompute cluster
|
||||||
|
cluster_name <- "r-cluster"
|
||||||
|
compute_target <- get_compute(ws, cluster_name = cluster_name)
|
||||||
|
if (is.null(compute_target)) {
|
||||||
|
vm_size <- "STANDARD_D2_V2"
|
||||||
|
compute_target <- create_aml_compute(workspace = ws,
|
||||||
|
cluster_name = cluster_name,
|
||||||
|
vm_size = vm_size,
|
||||||
|
max_nodes = 1)
|
||||||
|
|
||||||
|
wait_for_provisioning_completion(compute_target, show_output = TRUE)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Define estimator
|
||||||
|
est <- estimator(source_directory = "scripts",
|
||||||
|
entry_script = "train.R",
|
||||||
|
compute_target = compute_target)
|
||||||
|
|
||||||
|
experiment_name <- "train-r-script-on-amlcompute"
|
||||||
|
exp <- experiment(ws, experiment_name)
|
||||||
|
|
||||||
|
# Submit job and display the run details
|
||||||
|
run <- submit_experiment(exp, est)
|
||||||
|
view_run_details(run)
|
||||||
|
wait_for_run_completion(run, show_output = TRUE)
|
||||||
|
|
||||||
|
# Get the run metrics
|
||||||
|
metrics <- get_run_metrics(run)
|
||||||
|
metrics
|
||||||
|
|
||||||
|
# Delete cluster
|
||||||
|
delete_compute(compute_target)
|
||||||
@@ -0,0 +1,28 @@
|
|||||||
|
# This script loads a dataset of which the last column is supposed to be the
|
||||||
|
# class and logs the accuracy
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
library(caret)
|
||||||
|
library(datasets)
|
||||||
|
|
||||||
|
iris_data <- data(iris)
|
||||||
|
summary(iris_data)
|
||||||
|
|
||||||
|
in_train <- createDataPartition(y = iris_data$Species, p = .8, list = FALSE)
|
||||||
|
train_data <- iris_data[in_train,]
|
||||||
|
test_data <- iris_data[-in_train,]
|
||||||
|
# Run algorithms using 10-fold cross validation
|
||||||
|
control <- trainControl(method = "cv", number = 10)
|
||||||
|
metric <- "Accuracy"
|
||||||
|
|
||||||
|
set.seed(7)
|
||||||
|
model <- train(Species ~ .,
|
||||||
|
data = train_data,
|
||||||
|
method = "lda",
|
||||||
|
metric = metric,
|
||||||
|
trControl = control)
|
||||||
|
predictions <- predict(model, test_data)
|
||||||
|
conf_matrix <- confusionMatrix(predictions, test_data$Species)
|
||||||
|
message(conf_matrix)
|
||||||
|
|
||||||
|
log_metric_to_run(metric, conf_matrix$overall["Accuracy"])
|
||||||
@@ -0,0 +1,26 @@
|
|||||||
|
# Copyright(c) Microsoft Corporation.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
# Reminder: set working directory to current file location prior to running this script
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
|
||||||
|
# Define estimator
|
||||||
|
est <- estimator(source_directory = "scripts",
|
||||||
|
entry_script = "train.R",
|
||||||
|
compute_target = "local")
|
||||||
|
|
||||||
|
# Initialize experiment
|
||||||
|
experiment_name <- "train-r-script-on-local"
|
||||||
|
exp <- experiment(ws, experiment_name)
|
||||||
|
|
||||||
|
# Submit job and display the run details
|
||||||
|
run <- submit_experiment(exp, est)
|
||||||
|
view_run_details(run)
|
||||||
|
wait_for_run_completion(run, show_output = TRUE)
|
||||||
|
|
||||||
|
# Get the run metrics
|
||||||
|
metrics <- get_run_metrics(run)
|
||||||
|
metrics
|
||||||
17
how-to-use-azureml/azureml-sdk-for-r/vignettes/README.md
Normal file
17
how-to-use-azureml/azureml-sdk-for-r/vignettes/README.md
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
## Azure Machine Learning vignettes
|
||||||
|
|
||||||
|
These vignettes are end-to-end tutorials for using Azure Machine Learning SDK for R.
|
||||||
|
|
||||||
|
Before running a vignette in RStudio, set the working directory to the folder that contains the vignette file (.Rmd file) in RStudio using `setwd(dirname)` or Session -> Set Working Directory -> To Source File Location. Each vignette assumes that the data and scripts are in the current working directory.
|
||||||
|
|
||||||
|
The following vignettes are included:
|
||||||
|
1. [installation](installation.Rmd): Install the Azure ML SDK for R.
|
||||||
|
2. [configuration](configuration.Rmd): Set up an Azure ML workspace.
|
||||||
|
3. [train-and-deploy-to-aci](train-and-deploy-to-aci): Train a caret model and deploy as a web service to Azure Container Instances (ACI).
|
||||||
|
4. [train-with-tensorflow](train-with-tensorflow/): Train a deep learning TensorFlow model with Azure ML.
|
||||||
|
5. [hyperparameter-tune-with-keras](hyperparameter-tune-with-keras/): Hyperparameter tune a Keras model using HyperDrive, Azure ML's hyperparameter tuning functionality.
|
||||||
|
6. [deploy-to-aks](deploy-to-aks/): Production deploy a model as a web service to Azure Kubernetes Service (AKS).
|
||||||
|
|
||||||
|
> Before you run these samples, make sure you have an Azure Machine Learning workspace. You can follow the [configuration vignette](../vignettes/configuration.Rmd) to set up a workspace. (You do not need to do this if you are running these examples on an Azure Machine Learning compute instance).
|
||||||
|
|
||||||
|
For additional examples on using the R SDK, see the [samples](../samples) folder.
|
||||||
108
how-to-use-azureml/azureml-sdk-for-r/vignettes/configuration.Rmd
Normal file
108
how-to-use-azureml/azureml-sdk-for-r/vignettes/configuration.Rmd
Normal file
@@ -0,0 +1,108 @@
|
|||||||
|
---
|
||||||
|
title: "Set up an Azure ML workspace"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Set up an Azure ML workspace}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
This tutorial gets you started with the Azure Machine Learning service by walking through the requirements and instructions for setting up a workspace, the top-level resource for Azure ML.
|
||||||
|
|
||||||
|
You do not need run this if you are working on an Azure Machine Learning Compute Instance, as the compute instance is already associated with an existing workspace.
|
||||||
|
|
||||||
|
## What is an Azure ML workspace?
|
||||||
|
The workspace is the top-level resource for Azure ML, providing a centralized place to work with all the artifacts you create when you use Azure ML. The workspace keeps a history of all training runs, including logs, metrics, output, and a snapshot of your scripts.
|
||||||
|
|
||||||
|
When you create a new workspace, it automatically creates several Azure resources that are used by the workspace:
|
||||||
|
|
||||||
|
* Azure Container Registry: Registers docker containers that you use during training and when you deploy a model. To minimize costs, ACR is lazy-loaded until deployment images are created.
|
||||||
|
* Azure Storage account: Used as the default datastore for the workspace.
|
||||||
|
* Azure Application Insights: Stores monitoring information about your models.
|
||||||
|
* Azure Key Vault: Stores secrets that are used by compute targets and other sensitive information that's needed by the workspace.
|
||||||
|
|
||||||
|
## Setup
|
||||||
|
This section describes the steps required before you can access any Azure ML service functionality.
|
||||||
|
|
||||||
|
### Azure subscription
|
||||||
|
In order to create an Azure ML workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com/). Later in this tutorial you will need information such as your subscription ID in order to create and access workspaces.
|
||||||
|
|
||||||
|
### Azure ML SDK installation
|
||||||
|
Follow the [installation guide](https://azure.github.io/azureml-sdk-for-r/articles/installation.html) to install **azuremlsdk** on your machine.
|
||||||
|
|
||||||
|
## Configure your workspace
|
||||||
|
### Workspace parameters
|
||||||
|
To use an Azure ML workspace, you will need to supply the following information:
|
||||||
|
|
||||||
|
* Your subscription ID
|
||||||
|
* A resource group name
|
||||||
|
* (Optional) The region that will host your workspace
|
||||||
|
* A name for your workspace
|
||||||
|
|
||||||
|
You can get your subscription ID from the [Azure portal](https://portal.azure.com/).
|
||||||
|
|
||||||
|
You will also need access to a [resource group](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the Azure portal. If you don't have a resource group, the `create_workspace()` method will create one for you using the name you provide.
|
||||||
|
|
||||||
|
The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.
|
||||||
|
|
||||||
|
The name for your workspace is unique within the subscription and should be descriptive enough to discern among other workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.
|
||||||
|
|
||||||
|
The following code chunk allows you to specify your workspace parameters. It uses `Sys.getenv` to read values from environment variables, which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. Replace the default values in the code below with your default parameter values.
|
||||||
|
|
||||||
|
``` {r configure_parameters, eval=FALSE}
|
||||||
|
subscription_id <- Sys.getenv("SUBSCRIPTION_ID", unset = "<my-subscription-id>")
|
||||||
|
resource_group <- Sys.getenv("RESOURCE_GROUP", default="<my-resource-group>")
|
||||||
|
workspace_name <- Sys.getenv("WORKSPACE_NAME", default="<my-workspace-name>")
|
||||||
|
workspace_region <- Sys.getenv("WORKSPACE_REGION", default="eastus2")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Create a new workspace
|
||||||
|
If you don't have an existing workspace and are the owner of the subscription or resource group, you can create a new workspace. If you don't have a resource group, `create_workspace()` will create one for you using the name you provide. If you don't want it to do so, set the `create_resource_group = FALSE` parameter.
|
||||||
|
|
||||||
|
Note: As with other Azure services, there are limits on certain resources (e.g. AmlCompute quota) associated with the Azure ML service. Please read this [article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota.
|
||||||
|
|
||||||
|
This cell will create an Azure ML workspace for you in a subscription, provided you have the correct permissions.
|
||||||
|
|
||||||
|
This will fail if:
|
||||||
|
|
||||||
|
* You do not have permission to create a workspace in the resource group.
|
||||||
|
* You do not have permission to create a resource group if it does not exist.
|
||||||
|
* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.
|
||||||
|
|
||||||
|
If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources.
|
||||||
|
|
||||||
|
There are additional parameters that are not shown below that can be configured when creating a workspace. Please see [`create_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/create_workspace.html) for more details.
|
||||||
|
|
||||||
|
``` {r create_workspace, eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
|
||||||
|
ws <- create_workspace(name = workspace_name,
|
||||||
|
subscription_id = subscription_id,
|
||||||
|
resource_group = resource_group,
|
||||||
|
location = workspace_region,
|
||||||
|
exist_ok = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can out write out the workspace ARM properties to a config file with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html). The method provides a simple way of reusing the same workspace across multiple files or projects. Users can save the workspace details with `write_workspace_config()`, and use [`load_workspace_from_config()`](https://azure.github.io/azureml-sdk-for-r/reference/load_workspace_from_config.html) to load the same workspace in different files or projects without retyping the workspace ARM properties. The method defaults to writing out the config file to the current working directory with "config.json" as the file name. To specify a different path or file name, set the `path` and `file_name` parameters.
|
||||||
|
|
||||||
|
``` {r write_config, eval=FALSE}
|
||||||
|
write_workspace_config(ws)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Access an existing workspace
|
||||||
|
You can access an existing workspace in a couple of ways. If your workspace properties were previously saved to a config file, you can load the workspace as follows:
|
||||||
|
|
||||||
|
``` {r load_config, eval=FALSE}
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
```
|
||||||
|
|
||||||
|
If Azure ML cannot find the config file, specify the path to the config file with the `path` parameter. The method defaults to starting the search in the current directory.
|
||||||
|
|
||||||
|
You can also initialize a workspace using the [`get_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html) method.
|
||||||
|
|
||||||
|
``` {r get_workspace, eval=FALSE}
|
||||||
|
ws <- get_workspace(name = workspace_name,
|
||||||
|
subscription_id = subscription_id,
|
||||||
|
resource_group = resource_group)
|
||||||
|
```
|
||||||
@@ -0,0 +1,188 @@
|
|||||||
|
---
|
||||||
|
title: "Deploy a web service to Azure Kubernetes Service"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Deploy a web service to Azure Kubernetes Service}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
This tutorial demonstrates how to deploy a model as a web service on [Azure Kubernetes Service](https://azure.microsoft.com/en-us/services/kubernetes-service/) (AKS). AKS is good for high-scale production deployments; use it if you need one or more of the following capabilities:
|
||||||
|
|
||||||
|
* Fast response time
|
||||||
|
* Autoscaling of the deployed service
|
||||||
|
* Hardware acceleration options such as GPU
|
||||||
|
|
||||||
|
You will learn to:
|
||||||
|
|
||||||
|
* Set up your testing environment
|
||||||
|
* Register a model
|
||||||
|
* Provision an AKS cluster
|
||||||
|
* Deploy the model to AKS
|
||||||
|
* Test the deployed service
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
If you don’t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
|
||||||
|
|
||||||
|
## Set up your testing environment
|
||||||
|
Start by setting up your environment. This includes importing the **azuremlsdk** package and connecting to your workspace.
|
||||||
|
|
||||||
|
### Import package
|
||||||
|
```{r import_package, eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load your workspace
|
||||||
|
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with `write_workspace_config()`.
|
||||||
|
```{r load_workspace, eval=FALSE}
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, you can retrieve a workspace by directly specifying your workspace details:
|
||||||
|
```{r get_workspace, eval=FALSE}
|
||||||
|
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Register the model
|
||||||
|
In this tutorial we will deploy a model that was trained in one of the [samples](https://github.com/Azure/azureml-sdk-for-r/blob/master/samples/training/train-on-amlcompute/train-on-amlcompute.R). The model was trained with the Iris dataset and can be used to determine if a flower is one of three Iris flower species (setosa, versicolor, virginica). We have provided the model file (`model.rds`) for the tutorial; it is located in the "project_files" directory of this vignette.
|
||||||
|
|
||||||
|
First, register the model to your workspace with [`register_model()`](https://azure.github.io/azureml-sdk-for-r/reference/register_model.html). A registered model can be any collection of files, but in this case the R model file is sufficient. Azure ML will use the registered model for deployment.
|
||||||
|
|
||||||
|
```{r register_model, eval=FALSE}
|
||||||
|
model <- register_model(ws,
|
||||||
|
model_path = "project_files/model.rds",
|
||||||
|
model_name = "iris_model",
|
||||||
|
description = "Predict an Iris flower type")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provision an AKS cluster
|
||||||
|
When deploying a web service to AKS, you deploy to an AKS cluster that is connected to your workspace. There are two ways to connect an AKS cluster to your workspace:
|
||||||
|
|
||||||
|
* Create the AKS cluster. The process automatically connects the cluster to the workspace.
|
||||||
|
* Attach an existing AKS cluster to your workspace. You can attach a cluster with the [`attach_aks_compute()`](https://azure.github.io/azureml-sdk-for-r/reference/attach_aks_compute.html) method.
|
||||||
|
|
||||||
|
Creating or attaching an AKS cluster is a one-time process for your workspace. You can reuse this cluster for multiple deployments. If you delete the cluster or the resource group that contains it, you must create a new cluster the next time you need to deploy.
|
||||||
|
|
||||||
|
In this tutorial, we will go with the first method of provisioning a new cluster. See the [`create_aks_compute()`](https://azure.github.io/azureml-sdk-for-r/reference/create_aks_compute.html) reference for the full set of configurable parameters. If you pick custom values for the `agent_count` and `vm_size` parameters, you need to make sure `agent_count` multiplied by `vm_size` is greater than or equal to `12` virtual CPUs.
|
||||||
|
|
||||||
|
``` {r provision_cluster, eval=FALSE}
|
||||||
|
aks_target <- create_aks_compute(ws, cluster_name = 'myakscluster')
|
||||||
|
|
||||||
|
wait_for_provisioning_completion(aks_target, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
The Azure ML SDK does not provide support for scaling an AKS cluster. To scale the nodes in the cluster, use the UI for your AKS cluster in the Azure portal. You can only change the node count, not the VM size of the cluster.
|
||||||
|
|
||||||
|
## Deploy as a web service
|
||||||
|
### Define the inference dependencies
|
||||||
|
To deploy a model, you need an **inference configuration**, which describes the environment needed to host the model and web service. To create an inference config, you will first need a scoring script and an Azure ML environment.
|
||||||
|
|
||||||
|
The scoring script (`entry_script`) is an R script that will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use the provided scoring file `score.R`. The scoring script must contain an `init()` method that loads your model and returns a function that uses the model to make a prediction based on the input data. See the [documentation](https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details) for more details.
|
||||||
|
|
||||||
|
Next, define an Azure ML **environment** for your script’s package dependencies. With an environment, you specify R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of environment variables that your script can reference to modify its behavior.
|
||||||
|
|
||||||
|
By default Azure ML will build a default Docker image that includes R, the Azure ML SDK, and additional required dependencies for deployment. See the documentation here for the full list of dependencies that will be installed in the default container. You can also specify additional packages to be installed at runtime, or even a custom Docker image to be used instead of the base image that will be built, using the other available parameters to [`r_environment()`](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
|
||||||
|
|
||||||
|
```{r create_env, eval=FALSE}
|
||||||
|
r_env <- r_environment(name = "deploy_env")
|
||||||
|
```
|
||||||
|
|
||||||
|
Now you have everything you need to create an inference config for encapsulating your scoring script and environment dependencies.
|
||||||
|
|
||||||
|
``` {r create_inference_config, eval=FALSE}
|
||||||
|
inference_config <- inference_config(
|
||||||
|
entry_script = "score.R",
|
||||||
|
source_directory = "project_files",
|
||||||
|
environment = r_env)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Deploy to AKS
|
||||||
|
Now, define the deployment configuration that describes the compute resources needed, for example, the number of cores and memory. See the [`aks_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aks_webservice_deployment_config.html) for the full set of configurable parameters.
|
||||||
|
|
||||||
|
``` {r deploy_config, eval=FALSE}
|
||||||
|
aks_config <- aks_webservice_deployment_config(cpu_cores = 1, memory_gb = 1)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, deploy your model as a web service to the AKS cluster you created earlier.
|
||||||
|
|
||||||
|
```{r deploy_service, eval=FALSE}
|
||||||
|
aks_service <- deploy_model(ws,
|
||||||
|
'my-new-aksservice',
|
||||||
|
models = list(model),
|
||||||
|
inference_config = inference_config,
|
||||||
|
deployment_config = aks_config,
|
||||||
|
deployment_target = aks_target)
|
||||||
|
|
||||||
|
wait_for_deployment(aks_service, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
To inspect the logs from the deployment:
|
||||||
|
```{r get_logs, eval=FALSE}
|
||||||
|
get_webservice_logs(aks_service)
|
||||||
|
```
|
||||||
|
|
||||||
|
If you encounter any issue in deploying the web service, please visit the [troubleshooting guide](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment).
|
||||||
|
|
||||||
|
## Test the deployed service
|
||||||
|
Now that your model is deployed as a service, you can test the service from R using [`invoke_webservice()`](https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html). Provide a new set of data to predict from, convert it to JSON, and send it to the service.
|
||||||
|
|
||||||
|
``` {r test_service, eval=FALSE}
|
||||||
|
library(jsonlite)
|
||||||
|
# versicolor
|
||||||
|
plant <- data.frame(Sepal.Length = 6.4,
|
||||||
|
Sepal.Width = 2.8,
|
||||||
|
Petal.Length = 4.6,
|
||||||
|
Petal.Width = 1.8)
|
||||||
|
|
||||||
|
# setosa
|
||||||
|
# plant <- data.frame(Sepal.Length = 5.1,
|
||||||
|
# Sepal.Width = 3.5,
|
||||||
|
# Petal.Length = 1.4,
|
||||||
|
# Petal.Width = 0.2)
|
||||||
|
|
||||||
|
# virginica
|
||||||
|
# plant <- data.frame(Sepal.Length = 6.7,
|
||||||
|
# Sepal.Width = 3.3,
|
||||||
|
# Petal.Length = 5.2,
|
||||||
|
# Petal.Width = 2.3)
|
||||||
|
|
||||||
|
predicted_val <- invoke_webservice(aks_service, toJSON(plant))
|
||||||
|
message(predicted_val)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also get the web service’s HTTP endpoint, which accepts REST client calls. You can share this endpoint with anyone who wants to test the web service or integrate it into an application.
|
||||||
|
|
||||||
|
``` {r eval=FALSE}
|
||||||
|
aks_service$scoring_uri
|
||||||
|
```
|
||||||
|
|
||||||
|
## Web service authentication
|
||||||
|
When deploying to AKS, key-based authentication is enabled by default. You can also enable token-based authentication. Token-based authentication requires clients to use an Azure Active Directory account to request an authentication token, which is used to make requests to the deployed service.
|
||||||
|
|
||||||
|
To disable key-based auth, set the `auth_enabled = FALSE` parameter when creating the deployment configuration with [`aks_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aks_webservice_deployment_config.html).
|
||||||
|
To enable token-based auth, set `token_auth_enabled = TRUE` when creating the deployment config.
|
||||||
|
|
||||||
|
### Key-based authentication
|
||||||
|
If key authentication is enabled, you can use the [`get_webservice_keys()`](https://azure.github.io/azureml-sdk-for-r/reference/get_webservice_keys.html) method to retrieve a primary and secondary authentication key. To generate a new key, use [`generate_new_webservice_key()`](https://azure.github.io/azureml-sdk-for-r/reference/generate_new_webservice_key.html).
|
||||||
|
|
||||||
|
### Token-based authentication
|
||||||
|
If token authentication is enabled, you can use the [`get_webservice_token()`](https://azure.github.io/azureml-sdk-for-r/reference/get_webservice_token.html) method to retrieve a JWT token and that token's expiration time. Make sure to request a new token after the token's expiration time.
|
||||||
|
|
||||||
|
## Clean up resources
|
||||||
|
Delete the resources once you no longer need them. Do not delete any resource you plan on still using.
|
||||||
|
|
||||||
|
Delete the web service:
|
||||||
|
```{r delete_service, eval=FALSE}
|
||||||
|
delete_webservice(aks_service)
|
||||||
|
```
|
||||||
|
|
||||||
|
Delete the registered model:
|
||||||
|
```{r delete_model, eval=FALSE}
|
||||||
|
delete_model(model)
|
||||||
|
```
|
||||||
|
|
||||||
|
Delete the AKS cluster:
|
||||||
|
```{r delete_cluster, eval=FALSE}
|
||||||
|
delete_compute(aks_target)
|
||||||
|
```
|
||||||
Binary file not shown.
@@ -0,0 +1,17 @@
|
|||||||
|
#' Copyright(c) Microsoft Corporation.
|
||||||
|
#' Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
init <- function() {
|
||||||
|
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
|
||||||
|
model <- readRDS(file.path(model_path, "model.rds"))
|
||||||
|
message("model is loaded")
|
||||||
|
|
||||||
|
function(data) {
|
||||||
|
plant <- as.data.frame(fromJSON(data))
|
||||||
|
prediction <- predict(model, plant)
|
||||||
|
result <- as.character(prediction)
|
||||||
|
toJSON(result)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,242 @@
|
|||||||
|
---
|
||||||
|
title: "Hyperparameter tune a Keras model"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Hyperparameter tune a Keras model}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
This tutorial demonstrates how you can efficiently tune hyperparameters for a model using HyperDrive, Azure ML's hyperparameter tuning functionality. You will train a Keras model on the CIFAR10 dataset, automate hyperparameter exploration, launch parallel jobs, log your results, and find the best run.
|
||||||
|
|
||||||
|
### What are hyperparameters?
|
||||||
|
|
||||||
|
Hyperparameters are variable parameters chosen to train a model. Learning rate, number of epochs, and batch size are all examples of hyperparameters.
|
||||||
|
|
||||||
|
Using brute-force methods to find the optimal values for parameters can be time-consuming, and poor-performing runs can result in wasted money. To avoid this, HyperDrive automates hyperparameter exploration in a time-saving and cost-effective manner by launching several parallel runs with different configurations and finding the configuration that results in best performance on your primary metric.
|
||||||
|
|
||||||
|
Let's get started with the example to see how it works!
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
If you don’t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
|
||||||
|
|
||||||
|
## Set up development environment
|
||||||
|
The setup for your development work in this tutorial includes the following actions:
|
||||||
|
|
||||||
|
* Import required packages
|
||||||
|
* Connect to a workspace
|
||||||
|
* Create an experiment to track your runs
|
||||||
|
* Create a remote compute target to use for training
|
||||||
|
|
||||||
|
### Import **azuremlsdk** package
|
||||||
|
```{r eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load your workspace
|
||||||
|
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html).
|
||||||
|
```{r load_workpace, eval=FALSE}
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, you can retrieve a workspace by directly specifying your workspace details:
|
||||||
|
```{r get_workpace, eval=FALSE}
|
||||||
|
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Create an experiment
|
||||||
|
An Azure ML **experiment** tracks a grouping of runs, typically from the same training script. Create an experiment to track hyperparameter tuning runs for the Keras model.
|
||||||
|
|
||||||
|
```{r create_experiment, eval=FALSE}
|
||||||
|
exp <- experiment(workspace = ws, name = 'hyperdrive-cifar10')
|
||||||
|
```
|
||||||
|
|
||||||
|
If you would like to track your runs in an existing experiment, simply specify that experiment's name to the `name` parameter of `experiment()`.
|
||||||
|
|
||||||
|
### Create a compute target
|
||||||
|
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. In this tutorial, you create a GPU-enabled cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
|
||||||
|
|
||||||
|
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
|
||||||
|
|
||||||
|
```{r create_cluster, eval=FALSE}
|
||||||
|
cluster_name <- "gpucluster"
|
||||||
|
|
||||||
|
compute_target <- get_compute(ws, cluster_name = cluster_name)
|
||||||
|
if (is.null(compute_target))
|
||||||
|
{
|
||||||
|
vm_size <- "STANDARD_NC6"
|
||||||
|
compute_target <- create_aml_compute(workspace = ws,
|
||||||
|
cluster_name = cluster_name,
|
||||||
|
vm_size = vm_size,
|
||||||
|
max_nodes = 4)
|
||||||
|
|
||||||
|
wait_for_provisioning_completion(compute_target, show_output = TRUE)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Prepare the training script
|
||||||
|
A training script called `cifar10_cnn.R` has been provided for you in the "project_files" directory of this tutorial.
|
||||||
|
|
||||||
|
In order to leverage HyperDrive, the training script for your model must log the relevant metrics during model training. When you configure the hyperparameter tuning run, you specify the primary metric to use for evaluating run performance. You must log this metric so it is available to the hyperparameter tuning process.
|
||||||
|
|
||||||
|
In order to log the required metrics, you need to do the following **inside the training script**:
|
||||||
|
|
||||||
|
* Import the **azuremlsdk** package
|
||||||
|
```
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
* Take the hyperparameters as command-line arguments to the script. This is necessary so that when HyperDrive carries out the hyperparameter sweep, it can run the training script with different values to the hyperparameters as defined by the search space.
|
||||||
|
|
||||||
|
* Use the [`log_metric_to_run()`](https://azure.github.io/azureml-sdk-for-r/reference/log_metric_to_run.html) function to log the hyperparameters and the primary metric.
|
||||||
|
```
|
||||||
|
log_metric_to_run("batch_size", batch_size)
|
||||||
|
...
|
||||||
|
log_metric_to_run("epochs", epochs)
|
||||||
|
...
|
||||||
|
log_metric_to_run("lr", lr)
|
||||||
|
...
|
||||||
|
log_metric_to_run("decay", decay)
|
||||||
|
...
|
||||||
|
log_metric_to_run("Loss", results[[1]])
|
||||||
|
```
|
||||||
|
|
||||||
|
## Create an estimator
|
||||||
|
|
||||||
|
An Azure ML **estimator** encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html). The estimator is used to define the configuration for each of the child runs that the parent HyperDrive run will kick off.
|
||||||
|
|
||||||
|
To create the estimator, define the following:
|
||||||
|
|
||||||
|
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
|
||||||
|
* The training script that will be executed (`entry_script`).
|
||||||
|
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
|
||||||
|
* Any environment dependencies required for training. Since the training script requires the Keras package, which is not included in the image by default, pass the package name to the `cran_packages` parameter to have it installed in the Docker container where the job will run. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
|
||||||
|
* Set the `use_gpu = TRUE` flag so the default base GPU Docker image will be built, since the job will be run on a GPU cluster.
|
||||||
|
|
||||||
|
```{r create_estimator, eval=FALSE}
|
||||||
|
est <- estimator(source_directory = "project_files",
|
||||||
|
entry_script = "cifar10_cnn.R",
|
||||||
|
compute_target = compute_target,
|
||||||
|
cran_packages = c("keras"),
|
||||||
|
use_gpu = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configure the HyperDrive run
|
||||||
|
To kick off hyperparameter tuning in Azure ML, you will need to configure a HyperDrive run, which will in turn launch individual children runs of the training scripts with the corresponding hyperparameter values.
|
||||||
|
|
||||||
|
### Define search space
|
||||||
|
|
||||||
|
In this experiment, we will use four hyperparameters: batch size, number of epochs, learning rate, and decay. In order to begin tuning, we must define the range of values we would like to explore from and how they will be distributed. This is called a parameter space definition and can be created with discrete or continuous ranges.
|
||||||
|
|
||||||
|
__Discrete hyperparameters__ are specified as a choice among discrete values represented as a list.
|
||||||
|
|
||||||
|
Advanced discrete hyperparameters can also be specified using a distribution. The following distributions are supported:
|
||||||
|
|
||||||
|
* `quniform(low, high, q)`
|
||||||
|
* `qloguniform(low, high, q)`
|
||||||
|
* `qnormal(mu, sigma, q)`
|
||||||
|
* `qlognormal(mu, sigma, q)`
|
||||||
|
|
||||||
|
__Continuous hyperparameters__ are specified as a distribution over a continuous range of values. The following distributions are supported:
|
||||||
|
|
||||||
|
* `uniform(low, high)`
|
||||||
|
* `loguniform(low, high)`
|
||||||
|
* `normal(mu, sigma)`
|
||||||
|
* `lognormal(mu, sigma)`
|
||||||
|
|
||||||
|
Here, we will use the [`random_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/random_parameter_sampling.html) function to define the search space for each hyperparameter. `batch_size` and `epochs` will be chosen from discrete sets while `lr` and `decay` will be drawn from continuous distributions.
|
||||||
|
|
||||||
|
Other available sampling function options are:
|
||||||
|
|
||||||
|
* [`grid_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/grid_parameter_sampling.html)
|
||||||
|
* [`bayesian_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/bayesian_parameter_sampling.html)
|
||||||
|
|
||||||
|
```{r search_space, eval=FALSE}
|
||||||
|
sampling <- random_parameter_sampling(list(batch_size = choice(c(16, 32, 64)),
|
||||||
|
epochs = choice(c(200, 350, 500)),
|
||||||
|
lr = normal(0.0001, 0.005),
|
||||||
|
decay = uniform(1e-6, 3e-6)))
|
||||||
|
```
|
||||||
|
|
||||||
|
### Define termination policy
|
||||||
|
|
||||||
|
To prevent resource waste, Azure ML can detect and terminate poorly performing runs. HyperDrive will do this automatically if you specify an early termination policy.
|
||||||
|
|
||||||
|
Here, you will use the [`bandit_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/bandit_policy.html), which terminates any runs where the primary metric is not within the specified slack factor with respect to the best performing training run.
|
||||||
|
|
||||||
|
```{r termination_policy, eval=FALSE}
|
||||||
|
policy <- bandit_policy(slack_factor = 0.15)
|
||||||
|
```
|
||||||
|
|
||||||
|
Other termination policy options are:
|
||||||
|
|
||||||
|
* [`median_stopping_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/median_stopping_policy.html)
|
||||||
|
* [`truncation_selection_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/truncation_selection_policy.html)
|
||||||
|
|
||||||
|
If no policy is provided, all runs will continue to completion regardless of performance.
|
||||||
|
|
||||||
|
### Finalize configuration
|
||||||
|
|
||||||
|
Now, you can create a `HyperDriveConfig` object to define your HyperDrive run. Along with the sampling and policy definitions, you need to specify the name of the primary metric that you want to track and whether we want to maximize it or minimize it. The `primary_metric_name` must correspond with the name of the primary metric you logged in your training script. `max_total_runs` specifies the total number of child runs to launch. See the [hyperdrive_config()](https://azure.github.io/azureml-sdk-for-r/reference/hyperdrive_config.html) reference for the full set of configurable parameters.
|
||||||
|
|
||||||
|
```{r create_config, eval=FALSE}
|
||||||
|
hyperdrive_config <- hyperdrive_config(hyperparameter_sampling = sampling,
|
||||||
|
primary_metric_goal("MINIMIZE"),
|
||||||
|
primary_metric_name = "Loss",
|
||||||
|
max_total_runs = 4,
|
||||||
|
policy = policy,
|
||||||
|
estimator = est)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Submit the HyperDrive run
|
||||||
|
|
||||||
|
Finally submit the experiment to run on your cluster. The parent HyperDrive run will launch the individual child runs. `submit_experiment()` will return a `HyperDriveRun` object that you will use to interface with the run. In this tutorial, since the cluster we created scales to a max of `4` nodes, all 4 child runs will be launched in parallel.
|
||||||
|
|
||||||
|
```{r submit_run, eval=FALSE}
|
||||||
|
hyperdrive_run <- submit_experiment(exp, hyperdrive_config)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can view the HyperDrive run’s details as a table. Clicking the “Web View” link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
view_run_details(hyperdrive_run)
|
||||||
|
```
|
||||||
|
|
||||||
|
Wait until hyperparameter tuning is complete before you run more code.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
wait_for_run_completion(hyperdrive_run, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Analyse runs by performance
|
||||||
|
|
||||||
|
Finally, you can view and compare the metrics collected during all of the child runs!
|
||||||
|
|
||||||
|
```{r analyse_runs, eval=FALSE}
|
||||||
|
# Get the metrics of all the child runs
|
||||||
|
child_run_metrics <- get_child_run_metrics(hyperdrive_run)
|
||||||
|
child_run_metrics
|
||||||
|
|
||||||
|
# Get the child run objects sorted in descending order by the best primary metric
|
||||||
|
child_runs <- get_child_runs_sorted_by_primary_metric(hyperdrive_run)
|
||||||
|
child_runs
|
||||||
|
|
||||||
|
# Directly get the run object of the best performing run
|
||||||
|
best_run <- get_best_run_by_primary_metric(hyperdrive_run)
|
||||||
|
|
||||||
|
# Get the metrics of the best performing run
|
||||||
|
metrics <- get_run_metrics(best_run)
|
||||||
|
metrics
|
||||||
|
```
|
||||||
|
|
||||||
|
The `metrics` variable will include the values of the hyperparameters that resulted in the best performing run.
|
||||||
|
|
||||||
|
## Clean up resources
|
||||||
|
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
|
||||||
|
|
||||||
|
Delete the compute cluster:
|
||||||
|
```{r delete_compute, eval=FALSE}
|
||||||
|
delete_compute(compute_target)
|
||||||
|
```
|
||||||
@@ -0,0 +1,124 @@
|
|||||||
|
#' Modified from: "https://github.com/rstudio/keras/blob/master/vignettes/
|
||||||
|
#' examples/cifar10_cnn.R"
|
||||||
|
#'
|
||||||
|
#' Train a simple deep CNN on the CIFAR10 small images dataset.
|
||||||
|
#'
|
||||||
|
#' It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50
|
||||||
|
#' epochs, though it is still underfitting at that point.
|
||||||
|
|
||||||
|
library(keras)
|
||||||
|
install_keras()
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
|
||||||
|
# Parameters --------------------------------------------------------------
|
||||||
|
|
||||||
|
args <- commandArgs(trailingOnly = TRUE)
|
||||||
|
|
||||||
|
batch_size <- as.numeric(args[2])
|
||||||
|
log_metric_to_run("batch_size", batch_size)
|
||||||
|
|
||||||
|
epochs <- as.numeric(args[4])
|
||||||
|
log_metric_to_run("epochs", epochs)
|
||||||
|
|
||||||
|
lr <- as.numeric(args[6])
|
||||||
|
log_metric_to_run("lr", lr)
|
||||||
|
|
||||||
|
decay <- as.numeric(args[8])
|
||||||
|
log_metric_to_run("decay", decay)
|
||||||
|
|
||||||
|
data_augmentation <- TRUE
|
||||||
|
|
||||||
|
|
||||||
|
# Data Preparation --------------------------------------------------------
|
||||||
|
|
||||||
|
# See ?dataset_cifar10 for more info
|
||||||
|
cifar10 <- dataset_cifar10()
|
||||||
|
|
||||||
|
# Feature scale RGB values in test and train inputs
|
||||||
|
x_train <- cifar10$train$x / 255
|
||||||
|
x_test <- cifar10$test$x / 255
|
||||||
|
y_train <- to_categorical(cifar10$train$y, num_classes = 10)
|
||||||
|
y_test <- to_categorical(cifar10$test$y, num_classes = 10)
|
||||||
|
|
||||||
|
|
||||||
|
# Defining Model ----------------------------------------------------------
|
||||||
|
|
||||||
|
# Initialize sequential model
|
||||||
|
model <- keras_model_sequential()
|
||||||
|
|
||||||
|
model %>%
|
||||||
|
|
||||||
|
# Start with hidden 2D convolutional layer being fed 32x32 pixel images
|
||||||
|
layer_conv_2d(
|
||||||
|
filter = 32, kernel_size = c(3, 3), padding = "same",
|
||||||
|
input_shape = c(32, 32, 3)
|
||||||
|
) %>%
|
||||||
|
layer_activation("relu") %>%
|
||||||
|
|
||||||
|
# Second hidden layer
|
||||||
|
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
|
||||||
|
layer_activation("relu") %>%
|
||||||
|
|
||||||
|
# Use max pooling
|
||||||
|
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
|
||||||
|
layer_dropout(0.25) %>%
|
||||||
|
|
||||||
|
# 2 additional hidden 2D convolutional layers
|
||||||
|
layer_conv_2d(filter = 32, kernel_size = c(3, 3), padding = "same") %>%
|
||||||
|
layer_activation("relu") %>%
|
||||||
|
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
|
||||||
|
layer_activation("relu") %>%
|
||||||
|
|
||||||
|
# Use max pooling once more
|
||||||
|
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
|
||||||
|
layer_dropout(0.25) %>%
|
||||||
|
|
||||||
|
# Flatten max filtered output into feature vector
|
||||||
|
# and feed into dense layer
|
||||||
|
layer_flatten() %>%
|
||||||
|
layer_dense(512) %>%
|
||||||
|
layer_activation("relu") %>%
|
||||||
|
layer_dropout(0.5) %>%
|
||||||
|
|
||||||
|
# Outputs from dense layer are projected onto 10 unit output layer
|
||||||
|
layer_dense(10) %>%
|
||||||
|
layer_activation("softmax")
|
||||||
|
|
||||||
|
opt <- optimizer_rmsprop(lr, decay)
|
||||||
|
|
||||||
|
model %>%
|
||||||
|
compile(loss = "categorical_crossentropy",
|
||||||
|
optimizer = opt,
|
||||||
|
metrics = "accuracy"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Training ----------------------------------------------------------------
|
||||||
|
|
||||||
|
if (!data_augmentation) {
|
||||||
|
|
||||||
|
model %>%
|
||||||
|
fit(x_train,
|
||||||
|
y_train,
|
||||||
|
batch_size = batch_size,
|
||||||
|
epochs = epochs,
|
||||||
|
validation_data = list(x_test, y_test),
|
||||||
|
shuffle = TRUE
|
||||||
|
)
|
||||||
|
|
||||||
|
} else {
|
||||||
|
|
||||||
|
datagen <- image_data_generator(rotation_range = 20,
|
||||||
|
width_shift_range = 0.2,
|
||||||
|
height_shift_range = 0.2,
|
||||||
|
horizontal_flip = TRUE
|
||||||
|
)
|
||||||
|
|
||||||
|
datagen %>% fit_image_data_generator(x_train)
|
||||||
|
|
||||||
|
results <- evaluate(model, x_train, y_train, batch_size)
|
||||||
|
log_metric_to_run("Loss", results[[1]])
|
||||||
|
cat("Loss: ", results[[1]], "\n")
|
||||||
|
cat("Accuracy: ", results[[2]], "\n")
|
||||||
|
}
|
||||||
100
how-to-use-azureml/azureml-sdk-for-r/vignettes/installation.Rmd
Normal file
100
how-to-use-azureml/azureml-sdk-for-r/vignettes/installation.Rmd
Normal file
@@ -0,0 +1,100 @@
|
|||||||
|
---
|
||||||
|
title: "Install the Azure ML SDK for R"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Install the Azure ML SDK for R}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
This article covers the step-by-step instructions for installing the Azure ML SDK for R.
|
||||||
|
|
||||||
|
You do not need run this if you are working on an Azure Machine Learning Compute Instance, as the compute instance already has the Azure ML SDK preinstalled.
|
||||||
|
|
||||||
|
## Install Conda
|
||||||
|
|
||||||
|
If you do not have Conda already installed on your machine, you will first need to install it, since the Azure ML R SDK uses **reticulate** to bind to the Python SDK. We recommend installing [Miniconda](https://docs.conda.io/en/latest/miniconda.html), which is a smaller, lightweight version of Anaconda. Choose the 64-bit binary for Python 3.5 or later.
|
||||||
|
|
||||||
|
## Install the **azuremlsdk** R package
|
||||||
|
You will need **remotes** to install **azuremlsdk** from the GitHub repo.
|
||||||
|
``` {r install_remotes, eval=FALSE}
|
||||||
|
install.packages('remotes')
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you can use the `install_github` function to install the package.
|
||||||
|
``` {r install_azuremlsdk, eval=FALSE}
|
||||||
|
remotes::install_cran('azuremlsdk', repos = 'https://cloud.r-project.org/')
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are using R installed from CRAN, which comes with 32-bit and 64-bit binaries, you may need to specify the parameter `INSTALL_opts=c("--no-multiarch")` to only build for the current 64-bit architecture.
|
||||||
|
``` {r eval=FALSE}
|
||||||
|
remotes::install_cran('azuremlsdk', repos = 'https://cloud.r-project.org/', INSTALL_opts=c("--no-multiarch"))
|
||||||
|
```
|
||||||
|
|
||||||
|
## Install the Azure ML Python SDK
|
||||||
|
Lastly, use the **azuremlsdk** R library to install the Python SDK. By default, `azuremlsdk::install_azureml()` will install the [latest version of the Python SDK](https://pypi.org/project/azureml-sdk/) in a conda environment called `r-azureml` if reticulate < 1.14 or `r-reticulate` if reticulate ≥ 1.14.
|
||||||
|
``` {r install_pythonsdk, eval=FALSE}
|
||||||
|
azuremlsdk::install_azureml()
|
||||||
|
```
|
||||||
|
|
||||||
|
If you would like to override the default version, environment name, or Python version, you can pass in those arguments. If you would like to restart the R session after installation or delete the conda environment if it already exists and create a new environment, you can also do so:
|
||||||
|
``` {r eval=FALSE}
|
||||||
|
azuremlsdk::install_azureml(version = NULL,
|
||||||
|
custom_envname = "<your conda environment name>",
|
||||||
|
conda_python_version = "<desired python version>",
|
||||||
|
restart_session = TRUE,
|
||||||
|
remove_existing_env = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Test installation
|
||||||
|
You can confirm your installation worked by loading the library and successfully retrieving a run.
|
||||||
|
``` {r test_installation, eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
get_current_run()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
- In step 3 of the installation, if you get ssl errors on windows, it is due to an
|
||||||
|
outdated openssl binary. Install the latest openssl binaries from
|
||||||
|
[here](https://wiki.openssl.org/index.php/Binaries).
|
||||||
|
|
||||||
|
- If installation fails due to this error:
|
||||||
|
|
||||||
|
```R
|
||||||
|
Error in strptime(xx, f, tz = tz) :
|
||||||
|
(converted from warning) unable to identify current timezone 'C':
|
||||||
|
please set environment variable 'TZ'
|
||||||
|
In R CMD INSTALL
|
||||||
|
Error in i.p(...) :
|
||||||
|
(converted from warning) installation of package ‘C:/.../azureml_0.4.0.tar.gz’ had non-zero exit
|
||||||
|
status
|
||||||
|
```
|
||||||
|
|
||||||
|
You will need to set your time zone environment variable to GMT and restart the installation process.
|
||||||
|
|
||||||
|
```R
|
||||||
|
Sys.setenv(TZ='GMT')
|
||||||
|
```
|
||||||
|
|
||||||
|
- If the following permission error occurs while installing in RStudio,
|
||||||
|
change your RStudio session to administrator mode, and re-run the installation command.
|
||||||
|
|
||||||
|
```R
|
||||||
|
Downloading GitHub repo Azure/azureml-sdk-for-r@master
|
||||||
|
Skipping 2 packages ahead of CRAN: reticulate, rlang
|
||||||
|
Running `R CMD build`...
|
||||||
|
|
||||||
|
Error: (converted from warning) invalid package
|
||||||
|
'C:/.../file2b441bf23631'
|
||||||
|
In R CMD INSTALL
|
||||||
|
Error in i.p(...) :
|
||||||
|
(converted from warning) installation of package
|
||||||
|
‘C:/.../file2b441bf23631’ had non-zero exit status
|
||||||
|
In addition: Warning messages:
|
||||||
|
1: In file(con, "r") :
|
||||||
|
cannot open file 'C:...\file2b44144a540f': Permission denied
|
||||||
|
2: In file(con, "r") :
|
||||||
|
cannot open file 'C:...\file2b4463c21577': Permission denied
|
||||||
|
```
|
||||||
|
|
||||||
@@ -0,0 +1,16 @@
|
|||||||
|
#' Copyright(c) Microsoft Corporation.
|
||||||
|
#' Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
init <- function() {
|
||||||
|
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
|
||||||
|
model <- readRDS(file.path(model_path, "model.rds"))
|
||||||
|
message("logistic regression model loaded")
|
||||||
|
|
||||||
|
function(data) {
|
||||||
|
vars <- as.data.frame(fromJSON(data))
|
||||||
|
prediction <- as.numeric(predict(model, vars, type = "response") * 100)
|
||||||
|
toJSON(prediction)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,33 @@
|
|||||||
|
#' Copyright(c) Microsoft Corporation.
|
||||||
|
#' Licensed under the MIT license.
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
library(optparse)
|
||||||
|
library(caret)
|
||||||
|
|
||||||
|
options <- list(
|
||||||
|
make_option(c("-d", "--data_folder"))
|
||||||
|
)
|
||||||
|
|
||||||
|
opt_parser <- OptionParser(option_list = options)
|
||||||
|
opt <- parse_args(opt_parser)
|
||||||
|
|
||||||
|
paste(opt$data_folder)
|
||||||
|
|
||||||
|
accidents <- readRDS(file.path(opt$data_folder, "accidents.Rd"))
|
||||||
|
summary(accidents)
|
||||||
|
|
||||||
|
mod <- glm(dead ~ dvcat + seatbelt + frontal + sex + ageOFocc + yearVeh + airbag + occRole, family = binomial, data = accidents)
|
||||||
|
summary(mod)
|
||||||
|
predictions <- factor(ifelse(predict(mod) > 0.1, "dead", "alive"))
|
||||||
|
conf_matrix <- confusionMatrix(predictions, accidents$dead)
|
||||||
|
message(conf_matrix)
|
||||||
|
|
||||||
|
log_metric_to_run("Accuracy", conf_matrix$overall["Accuracy"])
|
||||||
|
|
||||||
|
output_dir = "outputs"
|
||||||
|
if (!dir.exists(output_dir)) {
|
||||||
|
dir.create(output_dir)
|
||||||
|
}
|
||||||
|
saveRDS(mod, file = "./outputs/model.rds")
|
||||||
|
message("Model saved")
|
||||||
@@ -0,0 +1,326 @@
|
|||||||
|
---
|
||||||
|
title: "Train and deploy your first model with Azure ML"
|
||||||
|
author: "David Smith"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Train and deploy your first model with Azure ML}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
In this tutorial, you learn the foundational design patterns in Azure Machine Learning. You'll train and deploy a **caret** model to predict the likelihood of a fatality in an automobile accident. After completing this tutorial, you'll have the practical knowledge of the R SDK to scale up to developing more-complex experiments and workflows.
|
||||||
|
|
||||||
|
In this tutorial, you learn the following tasks:
|
||||||
|
|
||||||
|
* Connect your workspace
|
||||||
|
* Load data and prepare for training
|
||||||
|
* Upload data to the datastore so it is available for remote training
|
||||||
|
* Create a compute resource
|
||||||
|
* Train a caret model to predict probability of fatality
|
||||||
|
* Deploy a prediction endpoint
|
||||||
|
* Test the model from R
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
If you don't have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
|
||||||
|
|
||||||
|
## Set up your development environment
|
||||||
|
The setup for your development work in this tutorial includes the following actions:
|
||||||
|
|
||||||
|
* Install required packages
|
||||||
|
* Connect to a workspace, so that your local computer can communicate with remote resources
|
||||||
|
* Create an experiment to track your runs
|
||||||
|
* Create a remote compute target to use for training
|
||||||
|
|
||||||
|
### Install required packages
|
||||||
|
This tutorial assumes you already have the Azure ML SDK installed. Go ahead and import the **azuremlsdk** package.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
The tutorial uses data from the [**DAAG** package](https://cran.r-project.org/package=DAAG). Install the package if you don't have it.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
install.packages("DAAG")
|
||||||
|
```
|
||||||
|
|
||||||
|
The training and scoring scripts (`accidents.R` and `accident_predict.R`) have some additional dependencies. If you plan on running those scripts locally, make sure you have those required packages as well.
|
||||||
|
|
||||||
|
### Load your workspace
|
||||||
|
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from the **config.json** file. You can also retrieve a workspace using [`get_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html).
|
||||||
|
|
||||||
|
```{r load_workpace, eval=FALSE}
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Create an experiment
|
||||||
|
An Azure ML experiment tracks a grouping of runs, typically from the same training script. Create an experiment to track the runs for training the caret model on the accidents data.
|
||||||
|
|
||||||
|
```{r create_experiment, eval=FALSE}
|
||||||
|
experiment_name <- "accident-logreg"
|
||||||
|
exp <- experiment(ws, experiment_name)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Create a compute target
|
||||||
|
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you create a single-node AmlCompute cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
|
||||||
|
|
||||||
|
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
|
||||||
|
|
||||||
|
```{r create_cluster, eval=FALSE}
|
||||||
|
cluster_name <- "rcluster"
|
||||||
|
compute_target <- get_compute(ws, cluster_name = cluster_name)
|
||||||
|
if (is.null(compute_target)) {
|
||||||
|
vm_size <- "STANDARD_D2_V2"
|
||||||
|
compute_target <- create_aml_compute(workspace = ws,
|
||||||
|
cluster_name = cluster_name,
|
||||||
|
vm_size = vm_size,
|
||||||
|
max_nodes = 1)
|
||||||
|
|
||||||
|
wait_for_provisioning_completion(compute_target, show_output = TRUE)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Prepare data for training
|
||||||
|
This tutorial uses data from the **DAAG** package. This dataset includes data from over 25,000 car crashes in the US, with variables you can use to predict the likelihood of a fatality. First, import the data into R and transform it into a new dataframe `accidents` for analysis, and export it to an `Rdata` file.
|
||||||
|
|
||||||
|
```{r load_data, eval=FALSE}
|
||||||
|
library(DAAG)
|
||||||
|
data(nassCDS)
|
||||||
|
|
||||||
|
accidents <- na.omit(nassCDS[,c("dead","dvcat","seatbelt","frontal","sex","ageOFocc","yearVeh","airbag","occRole")])
|
||||||
|
accidents$frontal <- factor(accidents$frontal, labels=c("notfrontal","frontal"))
|
||||||
|
accidents$occRole <- factor(accidents$occRole)
|
||||||
|
|
||||||
|
saveRDS(accidents, file="accidents.Rd")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Upload data to the datastore
|
||||||
|
Upload data to the cloud so that it can be access by your remote training environment. Each Azure ML workspace comes with a default datastore that stores the connection information to the Azure blob container that is provisioned in the storage account attached to the workspace. The following code will upload the accidents data you created above to that datastore.
|
||||||
|
|
||||||
|
```{r upload_data, eval=FALSE}
|
||||||
|
ds <- get_default_datastore(ws)
|
||||||
|
|
||||||
|
target_path <- "accidentdata"
|
||||||
|
upload_files_to_datastore(ds,
|
||||||
|
list("./project_files/accidents.Rd"),
|
||||||
|
target_path = target_path,
|
||||||
|
overwrite = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Train a model
|
||||||
|
|
||||||
|
For this tutorial, fit a logistic regression model on your uploaded data using your remote compute cluster. To submit a job, you need to:
|
||||||
|
|
||||||
|
* Prepare the training script
|
||||||
|
* Create an estimator
|
||||||
|
* Submit the job
|
||||||
|
|
||||||
|
### Prepare the training script
|
||||||
|
A training script called `accidents.R` has been provided for you in the "project_files" directory of this tutorial. Notice the following details **inside the training script** that have been done to leverage the Azure ML service for training:
|
||||||
|
|
||||||
|
* The training script takes an argument `-d` to find the directory that contains the training data. When you define and submit your job later, you point to the datastore for this argument. Azure ML will mount the storage folder to the remote cluster for the training job.
|
||||||
|
* The training script logs the final accuracy as a metric to the run record in Azure ML using `log_metric_to_run()`. The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These metrics are recorded and persisted in the experiment run record. The metrics can then be accessed at any time or viewed in the run details page in [Azure Machine Learning studio](http://ml.azure.com). See the [reference](https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation) for the full set of logging methods `log_*()`.
|
||||||
|
* The training script saves your model into a directory named **outputs**. The `./outputs` folder receives special treatment by Azure ML. During training, files written to `./outputs` are automatically uploaded to your run record by Azure ML and persisted as artifacts. By saving the trained model to `./outputs`, you'll be able to access and retrieve your model file even after the run is over and you no longer have access to your remote training environment.
|
||||||
|
|
||||||
|
### Create an estimator
|
||||||
|
|
||||||
|
An Azure ML estimator encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
|
||||||
|
|
||||||
|
To create the estimator, define:
|
||||||
|
|
||||||
|
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
|
||||||
|
* The training script that will be executed (`entry_script`).
|
||||||
|
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
|
||||||
|
* The parameters required from the training script (`script_params`). Azure ML will run your training script as a command-line script with `Rscript`. In this tutorial you specify one argument to the script, the data directory mounting point, which you can access with `ds$path(target_path)`.
|
||||||
|
* Any environment dependencies required for training. The default Docker image built for training already contains the three packages (`caret`, `e1071`, and `optparse`) needed in the training script. So you don't need to specify additional information. If you are using R packages that are not included by default, use the estimator's `cran_packages` parameter to add additional CRAN packages. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
|
||||||
|
|
||||||
|
```{r create_estimator, eval=FALSE}
|
||||||
|
est <- estimator(source_directory = "project_files",
|
||||||
|
entry_script = "accidents.R",
|
||||||
|
script_params = list("--data_folder" = ds$path(target_path)),
|
||||||
|
compute_target = compute_target
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Submit the job on the remote cluster
|
||||||
|
|
||||||
|
Finally submit the job to run on your cluster. `submit_experiment()` returns a Run object that you then use to interface with the run. In total, the first run takes **about 10 minutes**. But for later runs, the same Docker image is reused as long as the script dependencies don't change. In this case, the image is cached and the container startup time is much faster.
|
||||||
|
|
||||||
|
```{r submit_job, eval=FALSE}
|
||||||
|
run <- submit_experiment(exp, est)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can view a table of the run's details. Clicking the "Web View" link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
|
||||||
|
|
||||||
|
```{r view_run, eval=FALSE}
|
||||||
|
view_run_details(run)
|
||||||
|
```
|
||||||
|
|
||||||
|
Model training happens in the background. Wait until the model has finished training before you run more code.
|
||||||
|
|
||||||
|
```{r wait_run, eval=FALSE}
|
||||||
|
wait_for_run_completion(run, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
You -- and colleagues with access to the workspace -- can submit multiple experiments in parallel, and Azure ML will take of scheduling the tasks on the compute cluster. You can even configure the cluster to automatically scale up to multiple nodes, and scale back when there are no more compute tasks in the queue. This configuration is a cost-effective way for teams to share compute resources.
|
||||||
|
|
||||||
|
## Retrieve training results
|
||||||
|
Once your model has finished training, you can access the artifacts of your job that were persisted to the run record, including any metrics logged and the final trained model.
|
||||||
|
|
||||||
|
### Get the logged metrics
|
||||||
|
In the training script `accidents.R`, you logged a metric from your model: the accuracy of the predictions in the training data. You can see metrics in the [studio](https://ml.azure.com), or extract them to the local session as an R list as follows:
|
||||||
|
|
||||||
|
```{r metrics, eval=FALSE}
|
||||||
|
metrics <- get_run_metrics(run)
|
||||||
|
metrics
|
||||||
|
```
|
||||||
|
|
||||||
|
If you've run multiple experiments (say, using differing variables, algorithms, or hyperparamers), you can use the metrics from each run to compare and choose the model you'll use in production.
|
||||||
|
|
||||||
|
### Get the trained model
|
||||||
|
You can retrieve the trained model and look at the results in your local R session. The following code will download the contents of the `./outputs` directory, which includes the model file.
|
||||||
|
|
||||||
|
```{r retrieve_model, eval=FALSE}
|
||||||
|
download_files_from_run(run, prefix="outputs/")
|
||||||
|
accident_model <- readRDS("project_files/outputs/model.rds")
|
||||||
|
summary(accident_model)
|
||||||
|
```
|
||||||
|
|
||||||
|
You see some factors that contribute to an increase in the estimated probability of death:
|
||||||
|
|
||||||
|
* higher impact speed
|
||||||
|
* male driver
|
||||||
|
* older occupant
|
||||||
|
* passenger
|
||||||
|
|
||||||
|
You see lower probabilities of death with:
|
||||||
|
|
||||||
|
* presence of airbags
|
||||||
|
* presence seatbelts
|
||||||
|
* frontal collision
|
||||||
|
|
||||||
|
The vehicle year of manufacture does not have a significant effect.
|
||||||
|
|
||||||
|
You can use this model to make new predictions:
|
||||||
|
|
||||||
|
```{r manual_predict, eval=FALSE}
|
||||||
|
newdata <- data.frame( # valid values shown below
|
||||||
|
dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
|
||||||
|
seatbelt="none", # "none" "belted"
|
||||||
|
frontal="frontal", # "notfrontal" "frontal"
|
||||||
|
sex="f", # "f" "m"
|
||||||
|
ageOFocc=16, # age in years, 16-97
|
||||||
|
yearVeh=2002, # year of vehicle, 1955-2003
|
||||||
|
airbag="none", # "none" "airbag"
|
||||||
|
occRole="pass" # "driver" "pass"
|
||||||
|
)
|
||||||
|
|
||||||
|
## predicted probability of death for these variables, as a percentage
|
||||||
|
as.numeric(predict(accident_model,newdata, type="response")*100)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deploy as a web service
|
||||||
|
|
||||||
|
With your model, you can predict the danger of death from a collision. Use Azure ML to deploy your model as a prediction service. In this tutorial, you will deploy the web service in [Azure Container Instances](https://docs.microsoft.com/en-us/azure/container-instances/) (ACI).
|
||||||
|
|
||||||
|
### Register the model
|
||||||
|
|
||||||
|
First, register the model you downloaded to your workspace with [`register_model()`](https://azure.github.io/azureml-sdk-for-r/reference/register_model.html). A registered model can be any collection of files, but in this case the R model object is sufficient. Azure ML will use the registered model for deployment.
|
||||||
|
|
||||||
|
```{r register_model, eval=FALSE}
|
||||||
|
model <- register_model(ws,
|
||||||
|
model_path = "project_files/outputs/model.rds",
|
||||||
|
model_name = "accidents_model",
|
||||||
|
description = "Predict probablity of auto accident")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Define the inference dependencies
|
||||||
|
To create a web service for your model, you first need to create a scoring script (`entry_script`), an R script that will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use the provided scoring file `accident_predict.R`. The scoring script must contain an `init()` method that loads your model and returns a function that uses the model to make a prediction based on the input data. See the [documentation](https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details) for more details.
|
||||||
|
|
||||||
|
Next, define an Azure ML **environment** for your script's package dependencies. With an environment, you specify R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of environment variables that your script can reference to modify its behavior. By default, Azure ML will build the same default Docker image used with the estimator for training. Since the tutorial has no special requirements, create an environment with no special attributes.
|
||||||
|
|
||||||
|
```{r create_environment, eval=FALSE}
|
||||||
|
r_env <- r_environment(name = "basic_env")
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to use your own Docker image for deployment instead, specify the `custom_docker_image` parameter. See the [`r_environment()`](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html) reference for the full set of configurable options for defining an environment.
|
||||||
|
|
||||||
|
Now you have everything you need to create an **inference config** for encapsulating your scoring script and environment dependencies.
|
||||||
|
|
||||||
|
``` {r create_inference_config, eval=FALSE}
|
||||||
|
inference_config <- inference_config(
|
||||||
|
entry_script = "accident_predict.R",
|
||||||
|
source_directory = "project_files",
|
||||||
|
environment = r_env)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Deploy to ACI
|
||||||
|
In this tutorial, you will deploy your service to ACI. This code provisions a single container to respond to inbound requests, which is suitable for testing and light loads. See [`aci_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aci_webservice_deployment_config.html) for additional configurable options. (For production-scale deployments, you can also [deploy to Azure Kubernetes Service](https://azure.github.io/azureml-sdk-for-r/articles/deploy-to-aks/deploy-to-aks.html).)
|
||||||
|
|
||||||
|
``` {r create_aci_config, eval=FALSE}
|
||||||
|
aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now you deploy your model as a web service. Deployment **can take several minutes**.
|
||||||
|
|
||||||
|
```{r deploy_service, eval=FALSE}
|
||||||
|
aci_service <- deploy_model(ws,
|
||||||
|
'accident-pred',
|
||||||
|
list(model),
|
||||||
|
inference_config,
|
||||||
|
aci_config)
|
||||||
|
|
||||||
|
wait_for_deployment(aci_service, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
If you encounter any issue in deploying the web service, please visit the [troubleshooting guide](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment).
|
||||||
|
|
||||||
|
## Test the deployed service
|
||||||
|
|
||||||
|
Now that your model is deployed as a service, you can test the service from R using [`invoke_webservice()`](https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html). Provide a new set of data to predict from, convert it to JSON, and send it to the service.
|
||||||
|
|
||||||
|
```{r test_deployment, eval=FALSE}
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
newdata <- data.frame( # valid values shown below
|
||||||
|
dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
|
||||||
|
seatbelt="none", # "none" "belted"
|
||||||
|
frontal="frontal", # "notfrontal" "frontal"
|
||||||
|
sex="f", # "f" "m"
|
||||||
|
ageOFocc=22, # age in years, 16-97
|
||||||
|
yearVeh=2002, # year of vehicle, 1955-2003
|
||||||
|
airbag="none", # "none" "airbag"
|
||||||
|
occRole="pass" # "driver" "pass"
|
||||||
|
)
|
||||||
|
|
||||||
|
prob <- invoke_webservice(aci_service, toJSON(newdata))
|
||||||
|
prob
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also get the web service's HTTP endpoint, which accepts REST client calls. You can share this endpoint with anyone who wants to test the web service or integrate it into an application.
|
||||||
|
|
||||||
|
```{r get_endpoint, eval=FALSE}
|
||||||
|
aci_service$scoring_uri
|
||||||
|
```
|
||||||
|
|
||||||
|
## Clean up resources
|
||||||
|
|
||||||
|
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
|
||||||
|
|
||||||
|
Delete the web service:
|
||||||
|
```{r delete_service, eval=FALSE}
|
||||||
|
delete_webservice(aci_service)
|
||||||
|
```
|
||||||
|
|
||||||
|
Delete the registered model:
|
||||||
|
```{r delete_model, eval=FALSE}
|
||||||
|
delete_model(model)
|
||||||
|
```
|
||||||
|
|
||||||
|
Delete the compute cluster:
|
||||||
|
```{r delete_compute, eval=FALSE}
|
||||||
|
delete_compute(compute_target)
|
||||||
|
```
|
||||||
@@ -0,0 +1,62 @@
|
|||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
# Copyright 2016 RStudio, Inc. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
library(tensorflow)
|
||||||
|
install_tensorflow(version = "1.13.2-gpu")
|
||||||
|
|
||||||
|
library(azuremlsdk)
|
||||||
|
|
||||||
|
# Create the model
|
||||||
|
x <- tf$placeholder(tf$float32, shape(NULL, 784L))
|
||||||
|
W <- tf$Variable(tf$zeros(shape(784L, 10L)))
|
||||||
|
b <- tf$Variable(tf$zeros(shape(10L)))
|
||||||
|
|
||||||
|
y <- tf$nn$softmax(tf$matmul(x, W) + b)
|
||||||
|
|
||||||
|
# Define loss and optimizer
|
||||||
|
y_ <- tf$placeholder(tf$float32, shape(NULL, 10L))
|
||||||
|
cross_entropy <- tf$reduce_mean(-tf$reduce_sum(y_ * log(y),
|
||||||
|
reduction_indices = 1L))
|
||||||
|
train_step <- tf$train$GradientDescentOptimizer(0.5)$minimize(cross_entropy)
|
||||||
|
|
||||||
|
# Create session and initialize variables
|
||||||
|
sess <- tf$Session()
|
||||||
|
sess$run(tf$global_variables_initializer())
|
||||||
|
|
||||||
|
# Load mnist data )
|
||||||
|
datasets <- tf$contrib$learn$datasets
|
||||||
|
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)
|
||||||
|
|
||||||
|
# Train
|
||||||
|
for (i in 1:1000) {
|
||||||
|
batches <- mnist$train$next_batch(100L)
|
||||||
|
batch_xs <- batches[[1]]
|
||||||
|
batch_ys <- batches[[2]]
|
||||||
|
sess$run(train_step,
|
||||||
|
feed_dict = dict(x = batch_xs, y_ = batch_ys))
|
||||||
|
}
|
||||||
|
|
||||||
|
# Test trained model
|
||||||
|
correct_prediction <- tf$equal(tf$argmax(y, 1L), tf$argmax(y_, 1L))
|
||||||
|
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))
|
||||||
|
cat("Accuracy: ", sess$run(accuracy,
|
||||||
|
feed_dict = dict(x = mnist$test$images,
|
||||||
|
y_ = mnist$test$labels)))
|
||||||
|
|
||||||
|
log_metric_to_run("accuracy",
|
||||||
|
sess$run(accuracy, feed_dict = dict(x = mnist$test$images,
|
||||||
|
y_ = mnist$test$labels)))
|
||||||
@@ -0,0 +1,143 @@
|
|||||||
|
---
|
||||||
|
title: "Train a TensorFlow model"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Train a TensorFlow model}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
\use_package{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
This tutorial demonstrates how run a TensorFlow job at scale using Azure ML. You will train a TensorFlow model to classify handwritten digits (MNIST) using a deep neural network (DNN) and log your results to the Azure ML service.
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
If you don’t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
|
||||||
|
|
||||||
|
## Set up development environment
|
||||||
|
The setup for your development work in this tutorial includes the following actions:
|
||||||
|
|
||||||
|
* Import required packages
|
||||||
|
* Connect to a workspace
|
||||||
|
* Create an experiment to track your runs
|
||||||
|
* Create a remote compute target to use for training
|
||||||
|
|
||||||
|
### Import **azuremlsdk** package
|
||||||
|
```{r eval=FALSE}
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load your workspace
|
||||||
|
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html).
|
||||||
|
```{r load_workpace, eval=FALSE}
|
||||||
|
ws <- load_workspace_from_config()
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, you can retrieve a workspace by directly specifying your workspace details:
|
||||||
|
```{r get_workpace, eval=FALSE}
|
||||||
|
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Create an experiment
|
||||||
|
An Azure ML **experiment** tracks a grouping of runs, typically from the same training script. Create an experiment to track the runs for training the TensorFlow model on the MNIST data.
|
||||||
|
|
||||||
|
```{r create_experiment, eval=FALSE}
|
||||||
|
exp <- experiment(workspace = ws, name = "tf-mnist")
|
||||||
|
```
|
||||||
|
|
||||||
|
If you would like to track your runs in an existing experiment, simply specify that experiment's name to the `name` parameter of `experiment()`.
|
||||||
|
|
||||||
|
### Create a compute target
|
||||||
|
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. In this tutorial, you create a GPU-enabled cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
|
||||||
|
|
||||||
|
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
|
||||||
|
|
||||||
|
```{r create_cluster, eval=FALSE}
|
||||||
|
cluster_name <- "gpucluster"
|
||||||
|
compute_target <- get_compute(ws, cluster_name = cluster_name)
|
||||||
|
if (is.null(compute_target))
|
||||||
|
{
|
||||||
|
vm_size <- "STANDARD_NC6"
|
||||||
|
compute_target <- create_aml_compute(workspace = ws,
|
||||||
|
cluster_name = cluster_name,
|
||||||
|
vm_size = vm_size,
|
||||||
|
max_nodes = 4)
|
||||||
|
|
||||||
|
wait_for_provisioning_completion(compute_target, show_output = TRUE)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Prepare the training script
|
||||||
|
|
||||||
|
A training script called `tf_mnist.R` has been provided for you in the "project_files" directory of this tutorial. The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These metrics are recorded and persisted in the experiment run record, and can be be accessed at any time or viewed in the run details page in [Azure Machine Learning studio](http://ml.azure.com/).
|
||||||
|
|
||||||
|
In order to collect and upload run metrics, you need to do the following **inside the training script**:
|
||||||
|
|
||||||
|
* Import the **azuremlsdk** package
|
||||||
|
```
|
||||||
|
library(azuremlsdk)
|
||||||
|
```
|
||||||
|
|
||||||
|
* Add the [`log_metric_to_run()`](https://azure.github.io/azureml-sdk-for-r/reference/log_metric_to_run.html) function to track our primary metric, "accuracy", for this experiment. If you have your own training script with several important metrics, simply create a logging call for each one within the script.
|
||||||
|
```
|
||||||
|
log_metric_to_run("accuracy",
|
||||||
|
sess$run(accuracy,
|
||||||
|
feed_dict = dict(x = mnist$test$images, y_ = mnist$test$labels)))
|
||||||
|
```
|
||||||
|
|
||||||
|
See the [reference](https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation) for the full set of logging methods `log_*()` available from the R SDK.
|
||||||
|
|
||||||
|
## Create an estimator
|
||||||
|
|
||||||
|
An Azure ML **estimator** encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
|
||||||
|
|
||||||
|
To create the estimator, define the following:
|
||||||
|
|
||||||
|
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
|
||||||
|
* The training script that will be executed (`entry_script`).
|
||||||
|
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
|
||||||
|
* Any environment dependencies required for training. Since the training script requires the TensorFlow package, which is not included in the image by default, pass the package name to the `cran_packages` parameter to have it installed in the Docker container where the job will run. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
|
||||||
|
* Set the `use_gpu = TRUE` flag so the default base GPU Docker image will be built, since the job will be run on a GPU cluster.
|
||||||
|
|
||||||
|
```{r create_estimator, eval=FALSE}
|
||||||
|
est <- estimator(source_directory = "project_files",
|
||||||
|
entry_script = "tf_mnist.R",
|
||||||
|
compute_target = compute_target,
|
||||||
|
cran_packages = c("tensorflow"),
|
||||||
|
use_gpu = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Submit the job
|
||||||
|
|
||||||
|
Finally submit the job to run on your cluster. [`submit_experiment()`](https://azure.github.io/azureml-sdk-for-r/reference/submit_experiment.html) returns a `Run` object that you can then use to interface with the run.
|
||||||
|
|
||||||
|
```{r submit_job, eval=FALSE}
|
||||||
|
run <- submit_experiment(exp, est)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can view the run’s details as a table. Clicking the “Web View” link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
view_run_details(run)
|
||||||
|
```
|
||||||
|
|
||||||
|
Model training happens in the background. Wait until the model has finished training before you run more code.
|
||||||
|
|
||||||
|
```{r eval=FALSE}
|
||||||
|
wait_for_run_completion(run, show_output = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## View run metrics
|
||||||
|
Once your job has finished, you can view the metrics collected during your TensorFlow run.
|
||||||
|
|
||||||
|
```{r get_metrics, eval=FALSE}
|
||||||
|
metrics <- get_run_metrics(run)
|
||||||
|
metrics
|
||||||
|
```
|
||||||
|
|
||||||
|
## Clean up resources
|
||||||
|
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
|
||||||
|
|
||||||
|
Delete the compute cluster:
|
||||||
|
```{r delete_compute, eval=FALSE}
|
||||||
|
delete_compute(compute_target)
|
||||||
|
```
|
||||||
@@ -1,497 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"Licensed under the MIT License."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Azure ML Hardware Accelerated Object Detection"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This tutorial will show you how to deploy an object detection service based on the SSD-VGG model in just a few minutes using the Azure Machine Learning Accelerated AI service.\n",
|
|
||||||
"\n",
|
|
||||||
"We will use the SSD-VGG model accelerated on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
|
|
||||||
"\n",
|
|
||||||
"The steps in this notebook are: \n",
|
|
||||||
"1. [Setup Environment](#set-up-environment)\n",
|
|
||||||
"* [Construct Model](#construct-model)\n",
|
|
||||||
" * Image Preprocessing\n",
|
|
||||||
" * Featurizer\n",
|
|
||||||
" * Save Model\n",
|
|
||||||
" * Save input and output tensor names\n",
|
|
||||||
"* [Create Image](#create-image)\n",
|
|
||||||
"* [Deploy Image](#deploy-image)\n",
|
|
||||||
"* [Test the Service](#test-service)\n",
|
|
||||||
" * Create Client\n",
|
|
||||||
" * Serve the model\n",
|
|
||||||
"* [Cleanup](#cleanup)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"set-up-environment\"></a>\n",
|
|
||||||
"## 1. Set up Environment\n",
|
|
||||||
"### 1.a. Imports"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import os\n",
|
|
||||||
"import tensorflow as tf"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 1.b. Retrieve Workspace\n",
|
|
||||||
"If you haven't created a Workspace, please follow [this notebook](\"../../../configuration.ipynb\") to do so. If you have, run the codeblock below to retrieve it. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core import Workspace\n",
|
|
||||||
"\n",
|
|
||||||
"ws = Workspace.from_config()\n",
|
|
||||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"construct-model\"></a>\n",
|
|
||||||
"## 2. Construct model\n",
|
|
||||||
"### 2.a. Image preprocessing\n",
|
|
||||||
"We'd like our service to accept JPEG images as input. However the input to SSD-VGG is a float tensor of shape \\[1, 300, 300, 3\\]. The first dimension is batch, then height, width, and channels (i.e. NHWC). To bridge this gap, we need code that decodes JPEG images and resizes them appropriately for input to SSD-VGG. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as TensorFlow strings) and produces a tensor that is ready to be featurized by SSD-VGG.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
|
|
||||||
"import azureml.accel.models.utils as utils\n",
|
|
||||||
"tf.reset_default_graph()\n",
|
|
||||||
"\n",
|
|
||||||
"in_images = tf.placeholder(tf.string)\n",
|
|
||||||
"image_tensors = utils.preprocess_array(in_images, output_width=300, output_height=300, preserve_aspect_ratio=False)\n",
|
|
||||||
"print(image_tensors.shape)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.b. Featurizer\n",
|
|
||||||
"The SSD-VGG model is different from our other models in that it generates 12 tensor outputs. These corresponds to x,y displacements of the anchor boxes and the detection confidence (for 21 classes). Because these outputs are not convenient to work with, we will later use a pre-defined post-processing utility to transform the outputs into a simplified list of bounding boxes with their respective class and confidence.\n",
|
|
||||||
"\n",
|
|
||||||
"For more information about the output tensors, take this example: the output tensor 'ssd_300_vgg/block4_box/Reshape_1:0' has a shape of [None, 37, 37, 4, 21]. This gives the pre-softmax confidence for 4 anchor boxes situated at each site of a 37 x 37 grid imposed on the image, one confidence score for each of the 21 classes. The first dimension is the batch dimension. Likewise, 'ssd_300_vgg/block4_box/Reshape:0' has shape [None, 37, 37, 4, 4] and encodes the (cx, cy) center shift and rescaling (sw, sh) relative to each anchor box. Refer to the [SSD-VGG paper](https://arxiv.org/abs/1512.02325) to understand how these are computed. The other 10 tensors are defined similarly."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.accel.models import SsdVgg\n",
|
|
||||||
"\n",
|
|
||||||
"saved_model_dir = os.path.join(os.path.expanduser('~'), 'models')\n",
|
|
||||||
"model_graph = SsdVgg(saved_model_dir, is_frozen = True)\n",
|
|
||||||
"\n",
|
|
||||||
"print('SSD-VGG Input Tensors:')\n",
|
|
||||||
"for idx, input_name in enumerate(model_graph.input_tensor_list):\n",
|
|
||||||
" print('{}, {}'.format(input_name, model_graph.get_input_dims(idx)))\n",
|
|
||||||
" \n",
|
|
||||||
"print('SSD-VGG Output Tensors:')\n",
|
|
||||||
"for idx, output_name in enumerate(model_graph.output_tensor_list):\n",
|
|
||||||
" print('{}, {}'.format(output_name, model_graph.get_output_dims(idx)))\n",
|
|
||||||
"\n",
|
|
||||||
"ssd_outputs = model_graph.import_graph_def(image_tensors, is_training=False)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.c. Save Model\n",
|
|
||||||
"Now that we loaded both parts of the tensorflow graph (preprocessor and SSD-VGG featurizer), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model_name = \"ssdvgg\"\n",
|
|
||||||
"model_save_path = os.path.join(saved_model_dir, model_name, \"saved_model\")\n",
|
|
||||||
"print(\"Saving model in {}\".format(model_save_path))\n",
|
|
||||||
"\n",
|
|
||||||
"output_map = {}\n",
|
|
||||||
"for i, output in enumerate(ssd_outputs):\n",
|
|
||||||
" output_map['out_{}'.format(i)] = output\n",
|
|
||||||
"\n",
|
|
||||||
"with tf.Session() as sess:\n",
|
|
||||||
" model_graph.restore_weights(sess)\n",
|
|
||||||
" tf.saved_model.simple_save(sess, \n",
|
|
||||||
" model_save_path, \n",
|
|
||||||
" inputs={'images': in_images}, \n",
|
|
||||||
" outputs=output_map)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.d. Important! Save names of input and output tensors\n",
|
|
||||||
"\n",
|
|
||||||
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information!"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"register model from file"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"input_tensors = in_images.name\n",
|
|
||||||
"# We will use the list of output tensors during inferencing\n",
|
|
||||||
"output_tensors = [output.name for output in ssd_outputs]\n",
|
|
||||||
"# However, for multiple output tensors, our AccelOnnxConverter will \n",
|
|
||||||
"# accept comma-delimited strings (lists will cause error)\n",
|
|
||||||
"output_tensors_str = \",\".join(output_tensors)\n",
|
|
||||||
"\n",
|
|
||||||
"print(input_tensors)\n",
|
|
||||||
"print(output_tensors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"create-image\"></a>\n",
|
|
||||||
"## 3. Create AccelContainerImage\n",
|
|
||||||
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core import Workspace\n",
|
|
||||||
"from azureml.core.model import Model\n",
|
|
||||||
"from azureml.core.image import Image\n",
|
|
||||||
"from azureml.accel import AccelOnnxConverter\n",
|
|
||||||
"from azureml.accel import AccelContainerImage\n",
|
|
||||||
"\n",
|
|
||||||
"# Retrieve workspace\n",
|
|
||||||
"ws = Workspace.from_config()\n",
|
|
||||||
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
|
|
||||||
"\n",
|
|
||||||
"# Register model\n",
|
|
||||||
"registered_model = Model.register(workspace = ws,\n",
|
|
||||||
" model_path = model_save_path,\n",
|
|
||||||
" model_name = model_name)\n",
|
|
||||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
|
|
||||||
"\n",
|
|
||||||
"# Convert model\n",
|
|
||||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors_str)\n",
|
|
||||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
|
||||||
" # If the above call succeeded, get the converted model\n",
|
|
||||||
" converted_model = convert_request.result\n",
|
|
||||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
|
||||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
|
||||||
"else:\n",
|
|
||||||
" print(\"Model conversion failed. Showing output.\")\n",
|
|
||||||
" convert_request.wait_for_completion(show_output = True)\n",
|
|
||||||
"\n",
|
|
||||||
"# Package into AccelContainerImage\n",
|
|
||||||
"image_config = AccelContainerImage.image_configuration()\n",
|
|
||||||
"# Image name must be lowercase\n",
|
|
||||||
"image_name = \"{}-image\".format(model_name)\n",
|
|
||||||
"image = Image.create(name = image_name,\n",
|
|
||||||
" models = [converted_model],\n",
|
|
||||||
" image_config = image_config, \n",
|
|
||||||
" workspace = ws)\n",
|
|
||||||
"image.wait_for_creation()\n",
|
|
||||||
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"deploy-image\"></a>\n",
|
|
||||||
"## 4. Deploy image\n",
|
|
||||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
|
||||||
"\n",
|
|
||||||
"### 4.a. Deploy to Databox Edge Machine using IoT Hub\n",
|
|
||||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
|
||||||
"\n",
|
|
||||||
"### 4.b. Deploy to AKS Cluster\n",
|
|
||||||
"Same as in the [Quickstart section on image deployment](./accelerated-models-quickstart.ipynb#deploy-image), we are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it.\n",
|
|
||||||
"#### Create AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
|
||||||
"\n",
|
|
||||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
|
||||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
|
||||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
|
||||||
" agent_count = 1, \n",
|
|
||||||
" location = \"eastus\")\n",
|
|
||||||
"\n",
|
|
||||||
"aks_name = 'aks-pb6-obj'\n",
|
|
||||||
"# Create the cluster\n",
|
|
||||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
|
||||||
" name = aks_name, \n",
|
|
||||||
" provisioning_configuration = prov_config)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"aks_target.wait_for_completion(show_output = True)\n",
|
|
||||||
"print(aks_target.provisioning_state)\n",
|
|
||||||
"print(aks_target.provisioning_errors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
|
||||||
"\n",
|
|
||||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
|
||||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
|
||||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
|
||||||
" num_replicas=1,\n",
|
|
||||||
" auth_enabled = False)\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service_name ='my-aks-service-3'\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
|
||||||
" name = aks_service_name,\n",
|
|
||||||
" image = image,\n",
|
|
||||||
" deployment_config = aks_config,\n",
|
|
||||||
" deployment_target = aks_target)\n",
|
|
||||||
"aks_service.wait_for_deployment(show_output = True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"test-service\"></a>\n",
|
|
||||||
"## 5. Test the service\n",
|
|
||||||
"<a id=\"create-client\"></a>\n",
|
|
||||||
"### 5.a. Create Client\n",
|
|
||||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
|
||||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
|
||||||
"from azureml.accel import client_from_service\n",
|
|
||||||
"\n",
|
|
||||||
"# Initialize AzureML Accelerated Models client\n",
|
|
||||||
"client = client_from_service(aks_service)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
|
|
||||||
"\n",
|
|
||||||
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"serve-model\"></a>\n",
|
|
||||||
"### 5.b. Serve the model\n",
|
|
||||||
"The SSD-VGG model returns the confidence and bounding boxes for all possible anchor boxes. As mentioned earlier, we will use a post-processing routine to transform this into a list of bounding boxes (y1, x1, y2, x2) where x, y are fractional coordinates measured from left and top respectively. A respective list of classes and scores is also returned to tag each bounding box. Below we make use of this information to draw the bounding boxes on top the original image. Note that in the post-processing routine we select a confidence threshold of 0.5."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import cv2\n",
|
|
||||||
"from matplotlib import pyplot as plt\n",
|
|
||||||
"\n",
|
|
||||||
"colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),\n",
|
|
||||||
" (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),\n",
|
|
||||||
" (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),\n",
|
|
||||||
" (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),\n",
|
|
||||||
" (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"def draw_boxes_on_img(img, classes, scores, bboxes, thickness=2):\n",
|
|
||||||
" shape = img.shape\n",
|
|
||||||
" for i in range(bboxes.shape[0]):\n",
|
|
||||||
" bbox = bboxes[i]\n",
|
|
||||||
" color = colors_tableau[classes[i]]\n",
|
|
||||||
" # Draw bounding box...\n",
|
|
||||||
" p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))\n",
|
|
||||||
" p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))\n",
|
|
||||||
" cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)\n",
|
|
||||||
" # Draw text...\n",
|
|
||||||
" s = '%s/%.3f' % (classes[i], scores[i])\n",
|
|
||||||
" p1 = (p1[0]-5, p1[1])\n",
|
|
||||||
" cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import azureml.accel._external.ssdvgg_utils as ssdvgg_utils\n",
|
|
||||||
"\n",
|
|
||||||
"result = client.score_file(path=\"meeting.jpg\", input_name=input_tensors, outputs=output_tensors)\n",
|
|
||||||
"classes, scores, bboxes = ssdvgg_utils.postprocess(result, select_threshold=0.5)\n",
|
|
||||||
"\n",
|
|
||||||
"img = cv2.imread('meeting.jpg', 1)\n",
|
|
||||||
"img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
|
|
||||||
"draw_boxes_on_img(img, classes, scores, bboxes)\n",
|
|
||||||
"plt.imshow(img)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"cleanup\"></a>\n",
|
|
||||||
"## 6. Cleanup\n",
|
|
||||||
"It's important to clean up your resources, so that you won't incur unnecessary costs. In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"aks_service.delete()\n",
|
|
||||||
"aks_target.delete()\n",
|
|
||||||
"image.delete()\n",
|
|
||||||
"registered_model.delete()\n",
|
|
||||||
"converted_model.delete()"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "coverste"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "paledger"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "sukha"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.5.6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -1,7 +0,0 @@
|
|||||||
name: accelerated-models-object-detection
|
|
||||||
dependencies:
|
|
||||||
- pip:
|
|
||||||
- azureml-sdk
|
|
||||||
- azureml-accel-models[cpu]
|
|
||||||
- opencv-python
|
|
||||||
- matplotlib
|
|
||||||
@@ -1,555 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"Licensed under the MIT License."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Azure ML Hardware Accelerated Models Quickstart"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This tutorial will show you how to deploy an image recognition service based on the ResNet 50 classifier using the Azure Machine Learning Accelerated Models service. Get more information about our service from our [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas), [API reference](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py), or [forum](https://aka.ms/aml-forum).\n",
|
|
||||||
"\n",
|
|
||||||
"We will use an accelerated ResNet50 featurizer running on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
|
|
||||||
"\n",
|
|
||||||
"For more information about using other models besides Resnet50, see the [README](./README.md).\n",
|
|
||||||
"\n",
|
|
||||||
"The steps covered in this notebook are: \n",
|
|
||||||
"1. [Set up environment](#set-up-environment)\n",
|
|
||||||
"* [Construct model](#construct-model)\n",
|
|
||||||
" * Image Preprocessing\n",
|
|
||||||
" * Featurizer (Resnet50)\n",
|
|
||||||
" * Classifier\n",
|
|
||||||
" * Save Model\n",
|
|
||||||
"* [Register Model](#register-model)\n",
|
|
||||||
"* [Convert into Accelerated Model](#convert-model)\n",
|
|
||||||
"* [Create Image](#create-image)\n",
|
|
||||||
"* [Deploy](#deploy-image)\n",
|
|
||||||
"* [Test service](#test-service)\n",
|
|
||||||
"* [Clean-up](#clean-up)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"set-up-environment\"></a>\n",
|
|
||||||
"## 1. Set up environment"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import os\n",
|
|
||||||
"import tensorflow as tf"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Retrieve Workspace\n",
|
|
||||||
"If you haven't created a Workspace, please follow [this notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) to do so. If you have, run the codeblock below to retrieve it. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core import Workspace\n",
|
|
||||||
"\n",
|
|
||||||
"ws = Workspace.from_config()\n",
|
|
||||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"construct-model\"></a>\n",
|
|
||||||
"## 2. Construct model\n",
|
|
||||||
"\n",
|
|
||||||
"There are three parts to the model we are deploying: pre-processing, featurizer with ResNet50, and classifier with ImageNet dataset. Then we will save this complete Tensorflow model graph locally before registering it to your Azure ML Workspace.\n",
|
|
||||||
"\n",
|
|
||||||
"### 2.a. Image preprocessing\n",
|
|
||||||
"We'd like our service to accept JPEG images as input. However the input to ResNet50 is a tensor. So we need code that decodes JPEG images and does the preprocessing required by ResNet50. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as strings) and produces a tensor that is ready to be featurized by ResNet50.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
|
|
||||||
"import azureml.accel.models.utils as utils\n",
|
|
||||||
"tf.reset_default_graph()\n",
|
|
||||||
"\n",
|
|
||||||
"in_images = tf.placeholder(tf.string)\n",
|
|
||||||
"image_tensors = utils.preprocess_array(in_images)\n",
|
|
||||||
"print(image_tensors.shape)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.b. Featurizer\n",
|
|
||||||
"We use ResNet50 as a featurizer. In this step we initialize the model. This downloads a TensorFlow checkpoint of the quantized ResNet50."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.accel.models import QuantizedResnet50\n",
|
|
||||||
"save_path = os.path.expanduser('~/models')\n",
|
|
||||||
"model_graph = QuantizedResnet50(save_path, is_frozen = True)\n",
|
|
||||||
"feature_tensor = model_graph.import_graph_def(image_tensors)\n",
|
|
||||||
"print(model_graph.version)\n",
|
|
||||||
"print(feature_tensor.name)\n",
|
|
||||||
"print(feature_tensor.shape)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.c. Classifier\n",
|
|
||||||
"The model we downloaded includes a classifier which takes the output of the ResNet50 and identifies an image. This classifier is trained on the ImageNet dataset. We are going to use this classifier for our service. The next [notebook](./accelerated-models-training.ipynb) shows how to train a classifier for a different data set. The input to the classifier is a tensor matching the output of our ResNet50 featurizer."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"classifier_output = model_graph.get_default_classifier(feature_tensor)\n",
|
|
||||||
"print(classifier_output)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.d. Save Model\n",
|
|
||||||
"Now that we loaded all three parts of the tensorflow graph (preprocessor, resnet50 featurizer, and the classifier), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# model_name must be lowercase\n",
|
|
||||||
"model_name = \"resnet50\"\n",
|
|
||||||
"model_save_path = os.path.join(save_path, model_name)\n",
|
|
||||||
"print(\"Saving model in {}\".format(model_save_path))\n",
|
|
||||||
"\n",
|
|
||||||
"with tf.Session() as sess:\n",
|
|
||||||
" model_graph.restore_weights(sess)\n",
|
|
||||||
" tf.saved_model.simple_save(sess, model_save_path,\n",
|
|
||||||
" inputs={'images': in_images},\n",
|
|
||||||
" outputs={'output_alias': classifier_output})"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 2.e. Important! Save names of input and output tensors\n",
|
|
||||||
"\n",
|
|
||||||
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information! You can see our defaults for all the models in the [README](./README.md).\n",
|
|
||||||
"\n",
|
|
||||||
"By default for Resnet50, these are the values you should see when running the cell below: \n",
|
|
||||||
"* input_tensors = \"Placeholder:0\"\n",
|
|
||||||
"* output_tensors = \"classifier/resnet_v1_50/predictions/Softmax:0\""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"register model from file"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"input_tensors = in_images.name\n",
|
|
||||||
"output_tensors = classifier_output.name\n",
|
|
||||||
"\n",
|
|
||||||
"print(input_tensors)\n",
|
|
||||||
"print(output_tensors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"register-model\"></a>\n",
|
|
||||||
"## 3. Register Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"You can add tags and descriptions to your models. Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"register model from file"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.model import Model\n",
|
|
||||||
"\n",
|
|
||||||
"registered_model = Model.register(workspace = ws,\n",
|
|
||||||
" model_path = model_save_path,\n",
|
|
||||||
" model_name = model_name)\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, sep = '\\t')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"convert-model\"></a>\n",
|
|
||||||
"## 4. Convert Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"For conversion you need to provide names of input and output tensors. This information can be found from the model_graph you saved in step 2.e. above.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note**: Conversion may take a while and on average for FPGA model it is about 1-3 minutes and it depends on model type."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"register model from file"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.accel import AccelOnnxConverter\n",
|
|
||||||
"\n",
|
|
||||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
|
|
||||||
"\n",
|
|
||||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
|
||||||
" # If the above call succeeded, get the converted model\n",
|
|
||||||
" converted_model = convert_request.result\n",
|
|
||||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
|
||||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
|
||||||
"else:\n",
|
|
||||||
" print(\"Model conversion failed. Showing output.\")\n",
|
|
||||||
" convert_request.wait_for_completion(show_output = True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"create-image\"></a>\n",
|
|
||||||
"## 5. Package the model into an Image"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"You can add tags and descriptions to image. Also, for FPGA model an image can only contain **single** model.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note**: The following command can take few minutes. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.image import Image\n",
|
|
||||||
"from azureml.accel import AccelContainerImage\n",
|
|
||||||
"\n",
|
|
||||||
"image_config = AccelContainerImage.image_configuration()\n",
|
|
||||||
"# Image name must be lowercase\n",
|
|
||||||
"image_name = \"{}-image\".format(model_name)\n",
|
|
||||||
"\n",
|
|
||||||
"image = Image.create(name = image_name,\n",
|
|
||||||
" models = [converted_model],\n",
|
|
||||||
" image_config = image_config, \n",
|
|
||||||
" workspace = ws)\n",
|
|
||||||
"image.wait_for_creation(show_output = False)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"deploy-image\"></a>\n",
|
|
||||||
"## 6. Deploy\n",
|
|
||||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
|
||||||
"\n",
|
|
||||||
"### 6.a. Databox Edge Machine using IoT Hub\n",
|
|
||||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
|
||||||
"\n",
|
|
||||||
"### 6.b. Azure Kubernetes Service (AKS) using Azure ML Service\n",
|
|
||||||
"We are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it. For more information, see [AKS official docs](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#aks).\n",
|
|
||||||
"\n",
|
|
||||||
"#### Create AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"sample-akscompute-provision"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
|
||||||
"\n",
|
|
||||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
|
||||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
|
||||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
|
||||||
" agent_count = 1, \n",
|
|
||||||
" location = \"eastus\")\n",
|
|
||||||
"\n",
|
|
||||||
"aks_name = 'my-aks-pb6'\n",
|
|
||||||
"# Create the cluster\n",
|
|
||||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
|
||||||
" name = aks_name, \n",
|
|
||||||
" provisioning_configuration = prov_config)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can also check the status in your Workspace under Compute."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"aks_target.wait_for_completion(show_output = True)\n",
|
|
||||||
"print(aks_target.provisioning_state)\n",
|
|
||||||
"print(aks_target.provisioning_errors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
|
||||||
"\n",
|
|
||||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
|
||||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
|
||||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
|
||||||
" num_replicas=1,\n",
|
|
||||||
" auth_enabled = False)\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service_name ='my-aks-service-1'\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
|
||||||
" name = aks_service_name,\n",
|
|
||||||
" image = image,\n",
|
|
||||||
" deployment_config = aks_config,\n",
|
|
||||||
" deployment_target = aks_target)\n",
|
|
||||||
"aks_service.wait_for_deployment(show_output = True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"test-service\"></a>\n",
|
|
||||||
"## 7. Test the service"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 7.a. Create Client\n",
|
|
||||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice, see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
|
||||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
|
||||||
"from azureml.accel import client_from_service\n",
|
|
||||||
"\n",
|
|
||||||
"# Initialize AzureML Accelerated Models client\n",
|
|
||||||
"client = client_from_service(aks_service)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
|
|
||||||
"\n",
|
|
||||||
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 7.b. Serve the model\n",
|
|
||||||
"To understand the results we need a mapping to the human readable imagenet classes"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import requests\n",
|
|
||||||
"classes_entries = requests.get(\"https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt\").text.splitlines()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Score image with input and output tensor names\n",
|
|
||||||
"results = client.score_file(path=\"./snowleopardgaze.jpg\", \n",
|
|
||||||
" input_name=input_tensors, \n",
|
|
||||||
" outputs=output_tensors)\n",
|
|
||||||
"\n",
|
|
||||||
"# map results [class_id] => [confidence]\n",
|
|
||||||
"results = enumerate(results)\n",
|
|
||||||
"# sort results by confidence\n",
|
|
||||||
"sorted_results = sorted(results, key=lambda x: x[1], reverse=True)\n",
|
|
||||||
"# print top 5 results\n",
|
|
||||||
"for top in sorted_results[:5]:\n",
|
|
||||||
" print(classes_entries[top[0]], 'confidence:', top[1])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"clean-up\"></a>\n",
|
|
||||||
"## 8. Clean-up\n",
|
|
||||||
"Run the cell below to delete your webservice, image, and model (must be done in that order). In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning and finetune the weights."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"aks_service.delete()\n",
|
|
||||||
"aks_target.delete()\n",
|
|
||||||
"image.delete()\n",
|
|
||||||
"registered_model.delete()\n",
|
|
||||||
"converted_model.delete()"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "coverste"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "paledger"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "aibhalla"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.7.3"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -1,5 +0,0 @@
|
|||||||
name: accelerated-models-quickstart
|
|
||||||
dependencies:
|
|
||||||
- pip:
|
|
||||||
- azureml-sdk
|
|
||||||
- azureml-accel-models[cpu]
|
|
||||||
@@ -1,870 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"Licensed under the MIT License."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Training with the Azure Machine Learning Accelerated Models Service"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This notebook will introduce how to apply common machine learning techniques, like transfer learning, custom weights, and unquantized vs. quantized models, when working with our Azure Machine Learning Accelerated Models Service (Azure ML Accel Models).\n",
|
|
||||||
"\n",
|
|
||||||
"We will use Tensorflow for the preprocessing steps, ResNet50 for the featurizer, and the Keras API (built on Tensorflow backend) to build the classifier layers instead of the default ImageNet classifier used in Quickstart. Then we will train the model, evaluate it, and deploy it to run on an FPGA.\n",
|
|
||||||
"\n",
|
|
||||||
"#### Transfer Learning and Custom weights\n",
|
|
||||||
"We will walk you through two ways to build and train a ResNet50 model on the Kaggle Cats and Dogs dataset: transfer learning only and then transfer learning with custom weights.\n",
|
|
||||||
"\n",
|
|
||||||
"In using transfer learning, our goal is to re-purpose the ResNet50 model already trained on the [ImageNet image dataset](http://www.image-net.org/) as a basis for our training of the Kaggle Cats and Dogs dataset. The ResNet50 featurizer will be imported as frozen, so only the Keras classifier will be trained.\n",
|
|
||||||
"\n",
|
|
||||||
"With the addition of custom weights, we will build the model so that the ResNet50 featurizer weights as not frozen. This will let us retrain starting with custom weights trained with ImageNet on ResNet50 and then use the Kaggle Cats and Dogs dataset to retrain and fine-tune the quantized version of the model.\n",
|
|
||||||
"\n",
|
|
||||||
"#### Unquantized vs. Quantized models\n",
|
|
||||||
"The unquantized version of our models (ie. Resnet50, Resnet152, Densenet121, Vgg16, SsdVgg) uses native float precision (32-bit floats), which will be faster at training. We will use this for our first run through, then fine-tune the weights with the quantized version. The quantized version of our models (i.e. QuantizedResnet50, QuantizedResnet152, QuantizedDensenet121, QuantizedVgg16, QuantizedSsdVgg) will have the same node names as the unquantized version, but use quantized operations and will match the performance of the model when running on an FPGA.\n",
|
|
||||||
"\n",
|
|
||||||
"#### Contents\n",
|
|
||||||
"1. [Setup Environment](#setup)\n",
|
|
||||||
"* [Prepare Data](#prepare-data)\n",
|
|
||||||
"* [Construct Model](#construct-model)\n",
|
|
||||||
" * Preprocessor\n",
|
|
||||||
" * Classifier\n",
|
|
||||||
" * Model construction\n",
|
|
||||||
"* [Train Model](#train-model)\n",
|
|
||||||
"* [Test Model](#test-model)\n",
|
|
||||||
"* [Execution](#execution)\n",
|
|
||||||
" * [Transfer Learning](#transfer-learning)\n",
|
|
||||||
" * [Transfer Learning with Custom Weights](#custom-weights)\n",
|
|
||||||
"* [Create Image](#create-image)\n",
|
|
||||||
"* [Deploy Image](#deploy-image)\n",
|
|
||||||
"* [Test the service](#test-service)\n",
|
|
||||||
"* [Clean-up](#cleanup)\n",
|
|
||||||
"* [Appendix](#appendix)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"setup\"></a>\n",
|
|
||||||
"## 1. Setup Environment\n",
|
|
||||||
"#### 1.a. Please set up your environment as described in the [Quickstart](./accelerated-models-quickstart.ipynb), meaning:\n",
|
|
||||||
"* Make sure your Workspace config.json exists and has the correct info\n",
|
|
||||||
"* Install Tensorflow\n",
|
|
||||||
"\n",
|
|
||||||
"#### 1.b. Download dataset into ~/catsanddogs \n",
|
|
||||||
"The dataset we will be using for training can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory (\"~/catsanddogs\"). \n",
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### 1.c. Import packages"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import os\n",
|
|
||||||
"import sys\n",
|
|
||||||
"import tensorflow as tf\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"from keras import backend as K\n",
|
|
||||||
"import sklearn\n",
|
|
||||||
"import tqdm"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### 1.d. Create directories for later use\n",
|
|
||||||
"After you train your model in float32, you'll write the weights to a place on disk. We also need a location to store the models that get downloaded."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"custom_weights_dir = os.path.expanduser(\"~/custom-weights\")\n",
|
|
||||||
"saved_model_dir = os.path.expanduser(\"~/models\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"prepare-data\"></a>\n",
|
|
||||||
"## 2. Prepare Data\n",
|
|
||||||
"Load the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run relatively quickly."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import glob\n",
|
|
||||||
"import imghdr\n",
|
|
||||||
"datadir = os.path.expanduser(\"~/catsanddogs\")\n",
|
|
||||||
"\n",
|
|
||||||
"cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg'))\n",
|
|
||||||
"dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg'))\n",
|
|
||||||
"\n",
|
|
||||||
"# Limit the data set to make the notebook execute quickly.\n",
|
|
||||||
"cat_files = cat_files[:64]\n",
|
|
||||||
"dog_files = dog_files[:64]\n",
|
|
||||||
"\n",
|
|
||||||
"# The data set has a few images that are not jpeg. Remove them.\n",
|
|
||||||
"cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg']\n",
|
|
||||||
"dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg']\n",
|
|
||||||
"\n",
|
|
||||||
"if(not len(cat_files) or not len(dog_files)):\n",
|
|
||||||
" print(\"Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to \" + datadir) \n",
|
|
||||||
" raise ValueError(\"Data not found\")\n",
|
|
||||||
"else:\n",
|
|
||||||
" print(cat_files[0])\n",
|
|
||||||
" print(dog_files[0])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Construct a numpy array as labels\n",
|
|
||||||
"image_paths = cat_files + dog_files\n",
|
|
||||||
"total_files = len(cat_files) + len(dog_files)\n",
|
|
||||||
"labels = np.zeros(total_files)\n",
|
|
||||||
"labels[len(cat_files):] = 1"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Split images data as training data and test data\n",
|
|
||||||
"from sklearn.model_selection import train_test_split\n",
|
|
||||||
"onehot_labels = np.array([[0,1] if i else [1,0] for i in labels])\n",
|
|
||||||
"img_train, img_test, label_train, label_test = train_test_split(image_paths, onehot_labels, random_state=42, shuffle=True)\n",
|
|
||||||
"\n",
|
|
||||||
"print(len(img_train), len(img_test), label_train.shape, label_test.shape)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"construct-model\"></a>\n",
|
|
||||||
"## 3. Construct Model\n",
|
|
||||||
"We will define the functions to handle creating the preprocessor and the classifier first, and then run them together to actually construct the model with the Resnet50 featurizer in a single Tensorflow session in a separate cell.\n",
|
|
||||||
"\n",
|
|
||||||
"We use ResNet50 for the featurizer and build our own classifier using Keras layers. We train the featurizer and the classifier as one model. We will provide parameters to determine whether we are using the quantized version and whether we are using custom weights in training or not."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 3.a. Define image preprocessing step\n",
|
|
||||||
"Same as in the Quickstart, before passing image dataset to the ResNet50 featurizer, we need to preprocess the input file to get it into the form expected by ResNet50. ResNet50 expects float tensors representing the images in BGR, channel last order. We've provided a default implementation of the preprocessing that you can use.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import azureml.accel.models.utils as utils\n",
|
|
||||||
"\n",
|
|
||||||
"def preprocess_images(scaling_factor=1.0):\n",
|
|
||||||
" # Convert images to 3D tensors [width,height,channel] - channels are in BGR order.\n",
|
|
||||||
" in_images = tf.placeholder(tf.string)\n",
|
|
||||||
" image_tensors = utils.preprocess_array(in_images, 'RGB', scaling_factor)\n",
|
|
||||||
" return in_images, image_tensors"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 3.b. Define classifier\n",
|
|
||||||
"We use Keras layer APIs to construct the classifier. Because we're using the tensorflow backend, we can train this classifier in one session with our Resnet50 model."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def construct_classifier(in_tensor, seed=None):\n",
|
|
||||||
" from keras.layers import Dropout, Dense, Flatten\n",
|
|
||||||
" from keras.initializers import glorot_uniform\n",
|
|
||||||
" K.set_session(tf.get_default_session())\n",
|
|
||||||
"\n",
|
|
||||||
" FC_SIZE = 1024\n",
|
|
||||||
" NUM_CLASSES = 2\n",
|
|
||||||
"\n",
|
|
||||||
" x = Dropout(0.2, input_shape=(1, 1, int(in_tensor.shape[3]),), seed=seed)(in_tensor)\n",
|
|
||||||
" x = Dense(FC_SIZE, activation='relu', input_dim=(1, 1, int(in_tensor.shape[3]),),\n",
|
|
||||||
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
|
|
||||||
" x = Flatten()(x)\n",
|
|
||||||
" preds = Dense(NUM_CLASSES, activation='softmax', input_dim=FC_SIZE, name='classifier_output',\n",
|
|
||||||
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
|
|
||||||
" return preds"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### 3.c. Define model construction\n",
|
|
||||||
"Now that the preprocessor and classifier for the model are defined, we can define how we want to construct the model. \n",
|
|
||||||
"\n",
|
|
||||||
"Constructing the model has these steps: \n",
|
|
||||||
"1. Get preprocessing steps\n",
|
|
||||||
"* Get featurizer using the Azure ML Accel Models SDK:\n",
|
|
||||||
" * import the graph definition\n",
|
|
||||||
" * restore the weights of the model into a Tensorflow session\n",
|
|
||||||
"* Get classifier\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def construct_model(quantized, starting_weights_directory = None):\n",
|
|
||||||
" from azureml.accel.models import Resnet50, QuantizedResnet50\n",
|
|
||||||
" \n",
|
|
||||||
" # Convert images to 3D tensors [width,height,channel]\n",
|
|
||||||
" in_images, image_tensors = preprocess_images(1.0)\n",
|
|
||||||
"\n",
|
|
||||||
" # Construct featurizer using quantized or unquantized ResNet50 model\n",
|
|
||||||
" if not quantized:\n",
|
|
||||||
" featurizer = Resnet50(saved_model_dir)\n",
|
|
||||||
" else:\n",
|
|
||||||
" featurizer = QuantizedResnet50(saved_model_dir, custom_weights_directory = starting_weights_directory)\n",
|
|
||||||
"\n",
|
|
||||||
" features = featurizer.import_graph_def(input_tensor=image_tensors)\n",
|
|
||||||
" \n",
|
|
||||||
" # Construct classifier\n",
|
|
||||||
" preds = construct_classifier(features)\n",
|
|
||||||
" \n",
|
|
||||||
" # Initialize weights\n",
|
|
||||||
" sess = tf.get_default_session()\n",
|
|
||||||
" tf.global_variables_initializer().run()\n",
|
|
||||||
"\n",
|
|
||||||
" featurizer.restore_weights(sess)\n",
|
|
||||||
"\n",
|
|
||||||
" return in_images, image_tensors, features, preds, featurizer"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"train-model\"></a>\n",
|
|
||||||
"## 4. Train Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def read_files(files):\n",
|
|
||||||
" \"\"\" Read files to array\"\"\"\n",
|
|
||||||
" contents = []\n",
|
|
||||||
" for path in files:\n",
|
|
||||||
" with open(path, 'rb') as f:\n",
|
|
||||||
" contents.append(f.read())\n",
|
|
||||||
" return contents"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def train_model(preds, in_images, img_train, label_train, is_retrain = False, train_epoch = 10, learning_rate=None):\n",
|
|
||||||
" \"\"\" training model \"\"\"\n",
|
|
||||||
" from keras.objectives import binary_crossentropy\n",
|
|
||||||
" from tqdm import tqdm\n",
|
|
||||||
" \n",
|
|
||||||
" learning_rate = learning_rate if learning_rate else 0.001 if is_retrain else 0.01\n",
|
|
||||||
" \n",
|
|
||||||
" # Specify the loss function\n",
|
|
||||||
" in_labels = tf.placeholder(tf.float32, shape=(None, 2)) \n",
|
|
||||||
" cross_entropy = tf.reduce_mean(binary_crossentropy(in_labels, preds))\n",
|
|
||||||
" optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)\n",
|
|
||||||
"\n",
|
|
||||||
" def chunks(a, b, n):\n",
|
|
||||||
" \"\"\"Yield successive n-sized chunks from a and b.\"\"\"\n",
|
|
||||||
" if (len(a) != len(b)):\n",
|
|
||||||
" print(\"a and b are not equal in chunks(a,b,n)\")\n",
|
|
||||||
" raise ValueError(\"Parameter error\")\n",
|
|
||||||
"\n",
|
|
||||||
" for i in range(0, len(a), n):\n",
|
|
||||||
" yield a[i:i + n], b[i:i + n]\n",
|
|
||||||
"\n",
|
|
||||||
" chunk_size = 16\n",
|
|
||||||
" chunk_num = len(label_train) / chunk_size\n",
|
|
||||||
"\n",
|
|
||||||
" sess = tf.get_default_session()\n",
|
|
||||||
" for epoch in range(train_epoch):\n",
|
|
||||||
" avg_loss = 0\n",
|
|
||||||
" for img_chunk, label_chunk in tqdm(chunks(img_train, label_train, chunk_size)):\n",
|
|
||||||
" contents = read_files(img_chunk)\n",
|
|
||||||
" _, loss = sess.run([optimizer, cross_entropy],\n",
|
|
||||||
" feed_dict={in_images: contents,\n",
|
|
||||||
" in_labels: label_chunk,\n",
|
|
||||||
" K.learning_phase(): 1})\n",
|
|
||||||
" avg_loss += loss / chunk_num\n",
|
|
||||||
" print(\"Epoch:\", (epoch + 1), \"loss = \", \"{:.3f}\".format(avg_loss))\n",
|
|
||||||
" \n",
|
|
||||||
" # Reach desired performance\n",
|
|
||||||
" if (avg_loss < 0.001):\n",
|
|
||||||
" break"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"test-model\"></a>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"test-model\"></a>\n",
|
|
||||||
"## 5. Test Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def test_model(preds, in_images, img_test, label_test):\n",
|
|
||||||
" \"\"\"Test the model\"\"\"\n",
|
|
||||||
" from keras.metrics import categorical_accuracy\n",
|
|
||||||
"\n",
|
|
||||||
" in_labels = tf.placeholder(tf.float32, shape=(None, 2))\n",
|
|
||||||
" accuracy = tf.reduce_mean(categorical_accuracy(in_labels, preds))\n",
|
|
||||||
" contents = read_files(img_test)\n",
|
|
||||||
"\n",
|
|
||||||
" accuracy = accuracy.eval(feed_dict={in_images: contents,\n",
|
|
||||||
" in_labels: label_test,\n",
|
|
||||||
" K.learning_phase(): 0})\n",
|
|
||||||
" return accuracy"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"execution\"></a>\n",
|
|
||||||
"## 6. Execute steps\n",
|
|
||||||
"You can run through the Transfer Learning section, then skip to Create AccelContainerImage. By default, because the custom weights section takes much longer for training twice, it is not saved as executable cells. You can copy the code or change cell type to 'Code'.\n",
|
|
||||||
"\n",
|
|
||||||
"<a id=\"transfer-learning\"></a>\n",
|
|
||||||
"### 6.a. Training using Transfer Learning"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"# Launch the training\n",
|
|
||||||
"tf.reset_default_graph()\n",
|
|
||||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
|
||||||
"\n",
|
|
||||||
"with sess.as_default():\n",
|
|
||||||
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=True)\n",
|
|
||||||
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10, learning_rate=0.01) \n",
|
|
||||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
|
||||||
" print(\"Accuracy:\", accuracy)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Save Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model_name = 'resnet50-catsanddogs-tl'\n",
|
|
||||||
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
|
|
||||||
"\n",
|
|
||||||
"tf.saved_model.simple_save(sess, model_save_path,\n",
|
|
||||||
" inputs={'images': in_images},\n",
|
|
||||||
" outputs={'output_alias': preds})\n",
|
|
||||||
"\n",
|
|
||||||
"input_tensors = in_images.name\n",
|
|
||||||
"output_tensors = preds.name\n",
|
|
||||||
"\n",
|
|
||||||
"print(input_tensors)\n",
|
|
||||||
"print(output_tensors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"custom-weights\"></a>\n",
|
|
||||||
"### 6.b. Traning using Custom Weights\n",
|
|
||||||
"\n",
|
|
||||||
"Because the quantized graph defintion and the float32 graph defintion share the same node names in the graph definitions, we can initally train the weights in float32, and then reload them with the quantized operations (which take longer) to fine-tune the model.\n",
|
|
||||||
"\n",
|
|
||||||
"First we train the model with custom weights but without quantization. Training is done with native float precision (32-bit floats). We load the training data set and batch the training with 10 epochs. When the performance reaches desired level or starts decredation, we stop the training iteration and save the weights as tensorflow checkpoint files. "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Launch the training\n",
|
|
||||||
"```\n",
|
|
||||||
"tf.reset_default_graph()\n",
|
|
||||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
|
||||||
"\n",
|
|
||||||
"with sess.as_default():\n",
|
|
||||||
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=False)\n",
|
|
||||||
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10) \n",
|
|
||||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
|
||||||
" print(\"Accuracy:\", accuracy)\n",
|
|
||||||
" featurizer.save_weights(custom_weights_dir + \"/rn50\", tf.get_default_session())\n",
|
|
||||||
"```"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Test Model\n",
|
|
||||||
"After training, we evaluate the trained model's accuracy on test dataset with quantization. So that we know the model's performance if it is deployed on the FPGA."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"```\n",
|
|
||||||
"tf.reset_default_graph()\n",
|
|
||||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
|
||||||
"\n",
|
|
||||||
"with sess.as_default():\n",
|
|
||||||
" print(\"Testing trained model with quantization\")\n",
|
|
||||||
" in_images, image_tensors, features, preds, quantized_featurizer = construct_model(quantized=True, starting_weights_directory=custom_weights_dir)\n",
|
|
||||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
|
||||||
" print(\"Accuracy:\", accuracy)\n",
|
|
||||||
"```"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Fine-Tune Model\n",
|
|
||||||
"Sometimes, the model's accuracy can drop significantly after quantization. In those cases, we need to retrain the model enabled with quantization to get better model accuracy."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"```\n",
|
|
||||||
"if (accuracy < 0.93):\n",
|
|
||||||
" with sess.as_default():\n",
|
|
||||||
" print(\"Fine-tuning model with quantization\")\n",
|
|
||||||
" train_model(preds, in_images, img_train, label_train, is_retrain=True, train_epoch=10)\n",
|
|
||||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
|
||||||
" print(\"Accuracy:\", accuracy)\n",
|
|
||||||
"```"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Save Model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"```\n",
|
|
||||||
"model_name = 'resnet50-catsanddogs-cw'\n",
|
|
||||||
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
|
|
||||||
"\n",
|
|
||||||
"tf.saved_model.simple_save(sess, model_save_path,\n",
|
|
||||||
" inputs={'images': in_images},\n",
|
|
||||||
" outputs={'output_alias': preds})\n",
|
|
||||||
"\n",
|
|
||||||
"input_tensors = in_images.name\n",
|
|
||||||
"output_tensors = preds.name\n",
|
|
||||||
"```"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"create-image\"></a>\n",
|
|
||||||
"## 7. Create AccelContainerImage\n",
|
|
||||||
"\n",
|
|
||||||
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core import Workspace\n",
|
|
||||||
"from azureml.core.model import Model\n",
|
|
||||||
"from azureml.core.image import Image\n",
|
|
||||||
"from azureml.accel import AccelOnnxConverter\n",
|
|
||||||
"from azureml.accel import AccelContainerImage\n",
|
|
||||||
"\n",
|
|
||||||
"# Retrieve workspace\n",
|
|
||||||
"ws = Workspace.from_config()\n",
|
|
||||||
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
|
|
||||||
"\n",
|
|
||||||
"# Register model\n",
|
|
||||||
"registered_model = Model.register(workspace = ws,\n",
|
|
||||||
" model_path = model_save_path,\n",
|
|
||||||
" model_name = model_name)\n",
|
|
||||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
|
|
||||||
"\n",
|
|
||||||
"# Convert model\n",
|
|
||||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
|
|
||||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
|
||||||
" # If the above call succeeded, get the converted model\n",
|
|
||||||
" converted_model = convert_request.result\n",
|
|
||||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
|
||||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
|
||||||
"else:\n",
|
|
||||||
" print(\"Model conversion failed. Showing output.\")\n",
|
|
||||||
" convert_request.wait_for_completion(show_output = True)\n",
|
|
||||||
"\n",
|
|
||||||
"# Package into AccelContainerImage\n",
|
|
||||||
"image_config = AccelContainerImage.image_configuration()\n",
|
|
||||||
"# Image name must be lowercase\n",
|
|
||||||
"image_name = \"{}-image\".format(model_name)\n",
|
|
||||||
"image = Image.create(name = image_name,\n",
|
|
||||||
" models = [converted_model],\n",
|
|
||||||
" image_config = image_config, \n",
|
|
||||||
" workspace = ws)\n",
|
|
||||||
"image.wait_for_creation()\n",
|
|
||||||
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"deploy-image\"></a>\n",
|
|
||||||
"## 8. Deploy image\n",
|
|
||||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
|
||||||
"\n",
|
|
||||||
"### 8.a. Deploy to Databox Edge Machine using IoT Hub\n",
|
|
||||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
|
||||||
"\n",
|
|
||||||
"### 8.b. Deploy to AKS Cluster"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Create AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
|
||||||
"\n",
|
|
||||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
|
||||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
|
||||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
|
||||||
" agent_count = 1,\n",
|
|
||||||
" location = \"eastus\")\n",
|
|
||||||
"\n",
|
|
||||||
"aks_name = 'aks-pb6-tl'\n",
|
|
||||||
"# Create the cluster\n",
|
|
||||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
|
||||||
" name = aks_name, \n",
|
|
||||||
" provisioning_configuration = prov_config)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"aks_target.wait_for_completion(show_output = True)\n",
|
|
||||||
"print(aks_target.provisioning_state)\n",
|
|
||||||
"print(aks_target.provisioning_errors)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"tags": [
|
|
||||||
"sample-akswebservice-deploy-from-image"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"%%time\n",
|
|
||||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
|
||||||
"\n",
|
|
||||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
|
||||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
|
||||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
|
||||||
" num_replicas=1,\n",
|
|
||||||
" auth_enabled = False)\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service_name ='my-aks-service-2'\n",
|
|
||||||
"\n",
|
|
||||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
|
||||||
" name = aks_service_name,\n",
|
|
||||||
" image = image,\n",
|
|
||||||
" deployment_config = aks_config,\n",
|
|
||||||
" deployment_target = aks_target)\n",
|
|
||||||
"aks_service.wait_for_deployment(show_output = True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"test-service\"></a>\n",
|
|
||||||
"## 9. Test the service\n",
|
|
||||||
"\n",
|
|
||||||
"<a id=\"create-client\"></a>\n",
|
|
||||||
"### 9.a. Create Client\n",
|
|
||||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
|
||||||
"\n",
|
|
||||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
|
||||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
|
||||||
"from azureml.accel import client_from_service\n",
|
|
||||||
"\n",
|
|
||||||
"# Initialize AzureML Accelerated Models client\n",
|
|
||||||
"client = client_from_service(aks_service)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"serve-model\"></a>\n",
|
|
||||||
"### 9.b. Serve the model\n",
|
|
||||||
"Let's see how our service does on a few images. It may get a few wrong."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Specify an image to classify\n",
|
|
||||||
"print('CATS')\n",
|
|
||||||
"for image_file in cat_files[:8]:\n",
|
|
||||||
" results = client.score_file(path=image_file, \n",
|
|
||||||
" input_name=input_tensors, \n",
|
|
||||||
" outputs=output_tensors)\n",
|
|
||||||
" result = 'CORRECT ' if results[0] > results[1] else 'WRONG '\n",
|
|
||||||
" print(result + str(results))\n",
|
|
||||||
"print('DOGS')\n",
|
|
||||||
"for image_file in dog_files[:8]:\n",
|
|
||||||
" results = client.score_file(path=image_file, \n",
|
|
||||||
" input_name=input_tensors, \n",
|
|
||||||
" outputs=output_tensors)\n",
|
|
||||||
" result = 'CORRECT ' if results[1] > results[0] else 'WRONG '\n",
|
|
||||||
" print(result + str(results))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"cleanup\"></a>\n",
|
|
||||||
"## 10. Cleanup\n",
|
|
||||||
"It's important to clean up your resources, so that you won't incur unnecessary costs."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"aks_service.delete()\n",
|
|
||||||
"aks_target.delete()\n",
|
|
||||||
"image.delete()\n",
|
|
||||||
"registered_model.delete()\n",
|
|
||||||
"converted_model.delete()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<a id=\"appendix\"></a>\n",
|
|
||||||
"## 11. Appendix"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"License for plot_confusion_matrix:\n",
|
|
||||||
"\n",
|
|
||||||
"New BSD License\n",
|
|
||||||
"\n",
|
|
||||||
"Copyright (c) 2007-2018 The scikit-learn developers.\n",
|
|
||||||
"All rights reserved.\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"Redistribution and use in source and binary forms, with or without\n",
|
|
||||||
"modification, are permitted provided that the following conditions are met:\n",
|
|
||||||
"\n",
|
|
||||||
" a. Redistributions of source code must retain the above copyright notice,\n",
|
|
||||||
" this list of conditions and the following disclaimer.\n",
|
|
||||||
" b. Redistributions in binary form must reproduce the above copyright\n",
|
|
||||||
" notice, this list of conditions and the following disclaimer in the\n",
|
|
||||||
" documentation and/or other materials provided with the distribution.\n",
|
|
||||||
" c. Neither the name of the Scikit-learn Developers nor the names of\n",
|
|
||||||
" its contributors may be used to endorse or promote products\n",
|
|
||||||
" derived from this software without specific prior written\n",
|
|
||||||
" permission. \n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n",
|
|
||||||
"AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n",
|
|
||||||
"IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n",
|
|
||||||
"ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR\n",
|
|
||||||
"ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n",
|
|
||||||
"DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n",
|
|
||||||
"SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n",
|
|
||||||
"CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT\n",
|
|
||||||
"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY\n",
|
|
||||||
"OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH\n",
|
|
||||||
"DAMAGE.\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"authors": [
|
|
||||||
{
|
|
||||||
"name": "coverste"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "paledger"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.6",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python36"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.5.6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -1,8 +0,0 @@
|
|||||||
name: accelerated-models-training
|
|
||||||
dependencies:
|
|
||||||
- pip:
|
|
||||||
- azureml-sdk
|
|
||||||
- azureml-accel-models[cpu]
|
|
||||||
- keras
|
|
||||||
- tqdm
|
|
||||||
- sklearn
|
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user