Compare commits

...

3 Commits

Author SHA1 Message Date
Bruce Leng
df2be5b5b0 fix drift-on-aks failure, will be ready by next release 2019-12-10 16:22:28 -08:00
Shané Winner
8f4efe15eb Update index.md 2019-12-10 09:05:23 -08:00
vizhur
d179080467 Merge pull request #690 from Azure/release_update/Release-163
update samples from Release-163 as a part of 1.0.79 SDK release
2019-12-09 15:41:03 -05:00
4 changed files with 865 additions and 626 deletions

View File

@@ -0,0 +1,346 @@
latitude,longitude,temperature,windAngle,windSpeed,elevation
26.536,-81.755,17.8,10.0,2.1,9.0
26.536,-81.755,16.7,360.0,1.5,9.0
26.536,-81.755,16.1,350.0,1.5,9.0
26.536,-81.755,15.0,0.0,0.0,9.0
26.536,-81.755,14.4,350.0,1.5,9.0
26.536,-81.755,0.0,0.0,0.0,9.0
26.536,-81.755,13.9,360.0,2.1,9.0
26.536,-81.755,13.3,350.0,1.5,9.0
26.536,-81.755,13.3,10.0,2.1,9.0
26.536,-81.755,13.3,360.0,1.5,9.0
26.536,-81.755,13.3,0.0,0.0,9.0
26.536,-81.755,12.2,0.0,0.0,9.0
26.536,-81.755,11.7,0.0,0.0,9.0
26.536,-81.755,14.4,0.0,0.0,9.0
26.536,-81.755,17.2,10.0,2.6,9.0
26.536,-81.755,20.0,20.0,2.6,9.0
26.536,-81.755,22.2,10.0,3.6,9.0
26.536,-81.755,23.3,30.0,4.6,9.0
26.536,-81.755,23.3,330.0,2.6,9.0
26.536,-81.755,24.4,0.0,0.0,9.0
26.536,-81.755,25.0,360.0,3.1,9.0
26.536,-81.755,24.4,20.0,4.1,9.0
26.536,-81.755,23.3,10.0,2.6,9.0
26.536,-81.755,21.1,30.0,2.1,9.0
26.536,-81.755,18.3,0.0,0.0,9.0
26.536,-81.755,17.2,30.0,2.1,9.0
26.536,-81.755,15.6,60.0,2.6,9.0
26.536,-81.755,15.6,0.0,0.0,9.0
26.536,-81.755,13.9,60.0,2.6,9.0
26.536,-81.755,12.8,70.0,2.6,9.0
26.536,-81.755,0.0,0.0,0.0,9.0
26.536,-81.755,11.7,70.0,2.1,9.0
26.536,-81.755,12.2,20.0,2.1,9.0
26.536,-81.755,11.7,30.0,1.5,9.0
26.536,-81.755,11.1,40.0,2.1,9.0
26.536,-81.755,12.2,40.0,2.6,9.0
26.536,-81.755,12.2,30.0,2.6,9.0
26.536,-81.755,12.2,0.0,0.0,9.0
26.536,-81.755,15.0,30.0,6.2,9.0
26.536,-81.755,17.2,50.0,3.6,9.0
26.536,-81.755,20.6,60.0,5.1,9.0
26.536,-81.755,22.8,50.0,4.6,9.0
26.536,-81.755,24.4,80.0,6.2,9.0
26.536,-81.755,25.0,100.0,5.7,9.0
26.536,-81.755,25.6,60.0,3.1,9.0
26.536,-81.755,25.6,80.0,4.6,9.0
26.536,-81.755,25.0,90.0,5.1,9.0
26.536,-81.755,24.4,80.0,5.1,9.0
26.536,-81.755,21.1,60.0,2.6,9.0
26.536,-81.755,19.4,70.0,3.6,9.0
26.536,-81.755,18.3,70.0,2.6,9.0
26.536,-81.755,18.3,80.0,2.6,9.0
26.536,-81.755,17.2,60.0,1.5,9.0
26.536,-81.755,16.1,70.0,2.6,9.0
26.536,-81.755,15.6,70.0,2.6,9.0
26.536,-81.755,0.0,0.0,0.0,9.0
26.536,-81.755,16.1,50.0,2.6,9.0
26.536,-81.755,15.6,50.0,2.1,9.0
26.536,-81.755,15.0,50.0,1.5,9.0
26.536,-81.755,15.0,0.0,0.0,9.0
26.536,-81.755,15.0,0.0,0.0,9.0
26.536,-81.755,14.4,0.0,0.0,9.0
26.536,-81.755,14.4,30.0,4.1,9.0
26.536,-81.755,16.1,40.0,1.5,9.0
26.536,-81.755,19.4,0.0,1.5,9.0
26.536,-81.755,22.8,90.0,2.6,9.0
26.536,-81.755,24.4,130.0,3.6,9.0
26.536,-81.755,25.6,100.0,4.6,9.0
26.536,-81.755,26.1,120.0,3.1,9.0
26.536,-81.755,26.7,0.0,2.6,9.0
26.536,-81.755,27.2,0.0,0.0,9.0
26.536,-81.755,27.2,40.0,3.1,9.0
26.536,-81.755,26.1,30.0,1.5,9.0
26.536,-81.755,22.8,310.0,2.1,9.0
26.536,-81.755,23.3,330.0,2.1,9.0
-34.067,-56.238,17.5,30.0,3.1,68.0
-34.067,-56.238,21.2,30.0,5.7,68.0
-34.067,-56.238,24.5,30.0,3.1,68.0
-34.067,-56.238,27.5,330.0,3.6,68.0
-34.067,-56.238,29.2,30.0,4.1,68.0
-34.067,-56.238,31.0,20.0,4.6,68.0
-34.067,-56.238,33.0,360.0,2.6,68.0
-34.067,-56.238,33.6,60.0,3.1,68.0
-34.067,-56.238,33.6,30.0,3.6,68.0
-34.067,-56.238,18.6,40.0,3.1,68.0
-34.067,-56.238,22.0,120.0,1.5,68.0
-34.067,-56.238,25.0,120.0,2.6,68.0
-34.067,-56.238,28.6,50.0,3.1,68.0
-34.067,-56.238,30.6,50.0,4.1,68.0
-34.067,-56.238,31.5,30.0,6.7,68.0
-34.067,-56.238,32.0,40.0,7.2,68.0
-34.067,-56.238,33.0,30.0,5.7,68.0
-34.067,-56.238,33.2,360.0,3.6,68.0
-34.067,-56.238,20.6,30.0,3.1,68.0
-34.067,-56.238,21.2,0.0,0.0,68.0
-34.067,-56.238,22.0,210.0,3.1,68.0
-34.067,-56.238,23.0,210.0,3.6,68.0
-34.067,-56.238,24.0,180.0,6.7,68.0
-34.067,-56.238,24.5,210.0,7.2,68.0
-34.067,-56.238,21.0,180.0,8.2,68.0
-34.067,-56.238,20.0,180.0,6.7,68.0
-34.083,-56.233,20.2,180.0,7.2,68.0
-29.917,-71.2,16.6,290.0,4.1,146.0
-29.916,-71.2,17.0,290.0,4.1,147.0
-29.916,-71.2,16.0,310.0,3.1,147.0
-29.916,-71.2,16.0,300.0,2.1,147.0
-29.917,-71.2,15.1,0.0,0.0,146.0
-29.916,-71.2,15.0,0.0,1.0,147.0
-29.916,-71.2,15.0,160.0,1.0,147.0
-29.916,-71.2,15.0,120.0,1.0,147.0
-29.917,-71.2,14.3,190.0,1.0,146.0
-29.916,-71.2,14.0,190.0,1.0,147.0
-29.916,-71.2,14.0,0.0,0.0,147.0
-29.916,-71.2,14.0,100.0,3.1,147.0
-29.917,-71.2,12.9,0.0,0.0,146.0
-29.916,-71.2,13.0,0.0,1.0,147.0
-29.916,-71.2,14.0,0.0,0.5,147.0
-29.916,-71.2,15.0,0.0,0.5,147.0
-29.917,-71.2,15.9,0.0,0.0,146.0
-29.916,-71.2,16.0,0.0,0.0,147.0
-29.916,-71.2,17.0,270.0,4.6,147.0
-29.916,-71.2,19.0,260.0,4.1,147.0
-29.917,-71.2,18.1,270.0,6.2,146.0
-29.916,-71.2,18.0,270.0,6.2,147.0
-29.916,-71.2,19.0,270.0,6.2,147.0
-29.916,-71.2,20.0,260.0,5.1,147.0
-29.917,-71.2,19.6,280.0,6.2,146.0
-29.916,-71.2,20.0,280.0,6.2,147.0
-29.916,-71.2,20.0,270.0,6.2,147.0
-29.916,-71.2,19.0,280.0,6.7,147.0
-29.917,-71.2,18.3,270.0,5.7,146.0
-29.916,-71.2,18.0,270.0,5.7,147.0
-29.916,-71.2,18.0,0.0,0.0,147.0
-29.916,-71.2,17.0,280.0,4.6,147.0
-29.917,-71.2,15.9,280.0,4.1,146.0
-29.916,-71.2,16.0,280.0,4.1,147.0
-29.916,-71.2,15.0,280.0,3.6,147.0
-29.916,-71.2,15.0,280.0,3.6,147.0
-29.917,-71.2,15.4,280.0,4.1,146.0
-29.916,-71.2,15.0,280.0,4.1,147.0
-29.916,-71.2,16.0,240.0,2.1,147.0
-29.916,-71.2,15.0,0.0,0.5,147.0
-29.917,-71.2,15.8,80.0,3.6,146.0
-29.916,-71.2,16.0,80.0,3.6,147.0
-29.916,-71.2,16.0,10.0,1.5,147.0
-29.916,-71.2,16.0,100.0,1.5,147.0
-29.917,-71.2,15.3,130.0,1.5,146.0
-29.916,-71.2,15.0,130.0,1.5,147.0
-29.916,-71.2,15.0,110.0,1.0,147.0
-29.916,-71.2,16.0,280.0,6.2,147.0
-29.917,-71.2,15.9,240.0,3.6,146.0
-29.916,-71.2,16.0,240.0,3.6,147.0
-29.916,-71.2,16.0,240.0,3.1,147.0
-29.916,-71.2,16.0,220.0,3.1,147.0
-29.917,-71.2,16.4,260.0,3.1,146.0
-29.916,-71.2,16.0,260.0,3.1,147.0
-29.916,-71.2,17.0,230.0,2.6,147.0
-29.916,-71.2,18.0,0.0,1.5,147.0
-29.917,-71.2,20.3,340.0,2.6,146.0
-29.916,-71.2,20.0,340.0,2.6,147.0
-29.916,-71.2,21.0,270.0,5.1,147.0
-29.916,-71.2,20.0,270.0,6.7,147.0
-29.917,-71.2,19.2,280.0,6.7,146.0
-29.916,-71.2,19.0,280.0,6.7,147.0
-29.916,-71.2,19.0,310.0,2.6,147.0
-29.916,-71.2,18.0,270.0,5.1,147.0
-29.917,-71.2,17.0,300.0,4.6,146.0
-29.916,-71.2,17.0,300.0,4.6,147.0
-29.916,-71.2,17.0,300.0,3.6,147.0
-29.916,-71.2,17.0,290.0,3.1,147.0
-29.917,-71.2,16.3,290.0,2.1,146.0
-29.916,-71.2,16.0,290.0,2.1,147.0
-29.916,-71.2,17.0,270.0,1.0,147.0
-29.916,-71.2,17.0,0.0,0.5,147.0
-29.917,-71.2,16.5,160.0,2.1,146.0
-29.916,-71.2,17.0,160.0,2.1,147.0
-29.916,-71.2,15.0,120.0,3.1,147.0
-29.916,-71.2,16.0,180.0,1.5,147.0
-29.917,-71.2,14.7,0.0,0.0,146.0
-29.916,-71.2,15.0,0.0,1.0,147.0
-29.916,-71.2,15.0,300.0,1.0,147.0
-29.916,-71.2,16.0,0.0,0.0,147.0
-29.917,-71.2,18.5,110.0,1.0,146.0
-29.916,-71.2,19.0,110.0,1.0,147.0
-29.916,-71.2,20.0,270.0,3.6,147.0
-29.916,-71.2,20.0,270.0,5.7,147.0
-29.917,-71.2,20.0,280.0,6.2,146.0
-29.916,-71.2,20.0,280.0,6.2,147.0
-29.916,-71.2,21.0,290.0,6.7,147.0
-29.916,-71.2,20.0,270.0,6.2,147.0
-29.917,-71.2,21.0,260.0,6.7,146.0
-29.916,-71.2,21.0,260.0,6.7,147.0
-29.916,-71.2,20.0,270.0,6.2,147.0
-29.916,-71.2,19.0,260.0,5.1,147.0
-29.916,-71.2,18.0,280.0,4.6,147.0
-29.917,-71.2,17.5,280.0,3.1,146.0
-29.916,-71.2,18.0,280.0,3.1,147.0
30.349,-85.788,11.1,0.0,0.0,21.0
30.349,-85.788,11.1,0.0,0.0,21.0
30.349,-85.788,9.4,0.0,0.0,21.0
30.349,-85.788,9.4,0.0,0.0,21.0
30.349,-85.788,8.3,300.0,2.1,21.0
30.349,-85.788,11.1,280.0,1.5,21.0
30.349,-85.788,0.0,0.0,0.0,21.0
30.349,-85.788,10.6,320.0,3.1,21.0
30.349,-85.788,9.4,310.0,3.1,21.0
30.349,-85.788,7.8,320.0,2.6,21.0
30.349,-85.788,6.1,340.0,2.1,21.0
30.349,-85.788,6.7,330.0,2.6,21.0
30.349,-85.788,6.1,310.0,1.5,21.0
30.349,-85.788,7.2,310.0,2.1,21.0
30.349,-85.788,12.8,360.0,3.1,21.0
30.349,-85.788,15.0,0.0,3.1,21.0
30.349,-85.788,16.7,20.0,4.6,21.0
30.349,-85.788,18.9,30.0,5.1,21.0
30.349,-85.788,19.4,10.0,4.1,21.0
30.349,-85.788,21.1,330.0,2.6,21.0
30.349,-85.788,21.1,10.0,4.6,21.0
30.349,-85.788,21.7,360.0,4.1,21.0
30.349,-85.788,21.7,30.0,2.1,21.0
30.349,-85.788,21.7,330.0,2.6,21.0
30.349,-85.788,16.1,350.0,2.1,21.0
30.349,-85.788,11.7,0.0,0.0,21.0
30.349,-85.788,8.9,0.0,0.0,21.0
30.349,-85.788,9.4,0.0,0.0,21.0
30.349,-85.788,7.8,0.0,0.0,21.0
30.349,-85.788,11.1,30.0,3.1,21.0
30.349,-85.788,7.2,0.0,0.0,21.0
30.349,-85.788,7.2,0.0,0.0,21.0
30.349,-85.788,0.0,0.0,0.0,21.0
30.349,-85.788,7.8,30.0,2.1,21.0
30.349,-85.788,8.3,40.0,2.6,21.0
30.349,-85.788,7.2,50.0,1.5,21.0
30.349,-85.788,8.3,60.0,1.5,21.0
30.349,-85.788,5.6,40.0,2.1,21.0
30.349,-85.788,6.7,40.0,2.1,21.0
30.349,-85.788,7.8,50.0,3.1,21.0
30.349,-85.788,11.7,70.0,2.6,21.0
30.349,-85.788,15.6,70.0,3.1,21.0
30.349,-85.788,18.9,100.0,3.6,21.0
30.349,-85.788,20.0,130.0,3.6,21.0
30.349,-85.788,21.1,140.0,4.1,21.0
30.349,-85.788,21.7,150.0,4.1,21.0
30.349,-85.788,21.7,170.0,3.1,21.0
30.349,-85.788,22.2,170.0,3.1,21.0
30.349,-85.788,20.6,0.0,0.0,21.0
30.349,-85.788,17.2,0.0,0.0,21.0
30.349,-85.788,14.4,0.0,0.0,21.0
30.349,-85.788,12.8,100.0,1.5,21.0
30.349,-85.788,13.3,100.0,1.5,21.0
30.349,-85.788,10.6,0.0,0.0,21.0
30.349,-85.788,9.4,0.0,0.0,21.0
30.349,-85.788,7.8,0.0,0.0,21.0
30.358,-85.799,8.3,0.0,0.0,21.0
30.349,-85.788,0.0,0.0,0.0,21.0
30.358,-85.799,6.7,0.0,0.0,21.0
30.358,-85.799,7.2,0.0,0.0,21.0
30.358,-85.799,7.2,0.0,0.0,21.0
30.358,-85.799,8.3,50.0,1.5,21.0
30.358,-85.799,9.4,0.0,0.0,21.0
30.358,-85.799,8.9,0.0,0.0,21.0
30.358,-85.799,10.0,340.0,1.5,21.0
30.358,-85.799,12.8,40.0,1.5,21.0
30.358,-85.799,16.7,100.0,2.1,21.0
30.358,-85.799,21.1,100.0,1.5,21.0
30.358,-85.799,23.3,0.0,0.0,21.0
30.358,-85.799,25.0,180.0,4.6,21.0
30.358,-85.799,24.4,230.0,3.6,21.0
30.358,-85.799,25.0,210.0,4.1,21.0
30.358,-85.799,23.9,170.0,4.1,21.0
30.358,-85.799,22.8,0.0,0.0,21.0
30.358,-85.799,19.4,0.0,0.0,21.0
30.358,-85.799,17.8,140.0,2.1,21.0
60.383,5.333,-0.7,0.0,0.0,36.0
60.383,5.333,0.6,270.0,2.0,36.0
60.383,5.333,-0.9,120.0,1.0,36.0
60.383,5.333,-1.6,130.0,2.0,36.0
60.383,5.333,-1.4,150.0,1.0,36.0
60.383,5.333,-1.7,0.0,0.0,36.0
60.383,5.333,-1.7,140.0,1.0,36.0
60.383,5.333,-1.4,0.0,0.0,36.0
60.383,5.333,-1.0,0.0,0.0,36.0
60.383,5.333,-1.0,150.0,1.0,36.0
60.383,5.333,-0.7,140.0,1.0,36.0
60.383,5.333,0.5,150.0,1.0,36.0
60.383,5.333,1.9,0.0,0.0,36.0
60.383,5.333,1.7,0.0,0.0,36.0
60.383,5.333,2.1,310.0,2.0,36.0
60.383,5.333,1.5,90.0,1.0,36.0
60.383,5.333,1.9,290.0,1.0,36.0
60.383,5.333,2.0,320.0,1.0,36.0
60.383,5.333,1.9,330.0,1.0,36.0
60.383,5.333,1.3,350.0,1.0,36.0
60.383,5.333,1.5,120.0,1.0,36.0
60.383,5.333,1.3,150.0,2.0,36.0
60.383,5.333,0.8,140.0,1.0,36.0
60.383,5.333,0.3,300.0,1.0,36.0
60.383,5.333,0.2,140.0,1.0,36.0
60.383,5.333,0.4,140.0,1.0,36.0
60.383,5.333,0.5,320.0,1.0,36.0
60.383,5.333,1.5,330.0,1.0,36.0
60.383,5.333,1.8,40.0,1.0,36.0
60.383,5.333,2.3,170.0,1.0,36.0
60.383,5.333,2.7,140.0,1.0,36.0
60.383,5.333,3.1,330.0,1.0,36.0
60.383,5.333,3.8,350.0,1.0,36.0
60.383,5.333,3.8,140.0,1.0,36.0
60.383,5.333,4.1,150.0,1.0,36.0
60.383,5.333,4.4,180.0,1.0,36.0
60.383,5.333,4.9,300.0,1.0,36.0
60.383,5.333,5.2,320.0,1.0,36.0
60.383,5.333,6.7,340.0,1.0,36.0
60.383,5.333,6.9,250.0,1.0,36.0
60.383,5.333,7.9,300.0,2.0,36.0
60.383,5.333,5.5,140.0,1.0,36.0
60.383,5.333,7.1,140.0,2.0,36.0
60.383,5.333,7.0,280.0,2.0,36.0
60.383,5.333,4.6,170.0,1.0,36.0
60.383,5.333,4.8,330.0,1.0,36.0
60.383,5.333,6.4,260.0,2.0,36.0
60.383,5.333,6.2,340.0,1.0,36.0
60.383,5.333,5.7,320.0,2.0,36.0
60.383,5.333,5.2,100.0,1.0,36.0
60.383,5.333,5.1,310.0,1.0,36.0
60.383,5.333,4.9,290.0,2.0,36.0
60.383,5.333,4.9,310.0,2.0,36.0
60.383,5.333,6.1,320.0,2.0,36.0
60.383,5.333,7.0,250.0,1.0,36.0
60.383,5.333,5.3,140.0,1.0,36.0
60.383,5.333,6.9,350.0,1.0,36.0
60.383,5.333,9.7,110.0,3.0,36.0
60.383,5.333,10.3,300.0,3.0,36.0
60.383,5.333,8.7,310.0,1.0,36.0
60.383,5.333,9.0,270.0,3.0,36.0
60.383,5.333,11.6,80.0,3.0,36.0
60.383,5.333,11.4,80.0,4.0,36.0
60.383,5.333,9.7,70.0,5.0,36.0
60.383,5.333,9.5,80.0,6.0,36.0
60.383,5.333,8.7,80.0,5.0,36.0
60.383,5.333,7.7,80.0,5.0,36.0
60.383,5.333,8.2,80.0,4.0,36.0
60.383,5.333,7.7,30.0,1.0,36.0
60.383,5.333,7.2,310.0,1.0,36.0
60.383,5.333,6.8,300.0,2.0,36.0
60.383,5.333,6.7,140.0,1.0,36.0
1 latitude longitude temperature windAngle windSpeed elevation
2 26.536 -81.755 17.8 10.0 2.1 9.0
3 26.536 -81.755 16.7 360.0 1.5 9.0
4 26.536 -81.755 16.1 350.0 1.5 9.0
5 26.536 -81.755 15.0 0.0 0.0 9.0
6 26.536 -81.755 14.4 350.0 1.5 9.0
7 26.536 -81.755 0.0 0.0 0.0 9.0
8 26.536 -81.755 13.9 360.0 2.1 9.0
9 26.536 -81.755 13.3 350.0 1.5 9.0
10 26.536 -81.755 13.3 10.0 2.1 9.0
11 26.536 -81.755 13.3 360.0 1.5 9.0
12 26.536 -81.755 13.3 0.0 0.0 9.0
13 26.536 -81.755 12.2 0.0 0.0 9.0
14 26.536 -81.755 11.7 0.0 0.0 9.0
15 26.536 -81.755 14.4 0.0 0.0 9.0
16 26.536 -81.755 17.2 10.0 2.6 9.0
17 26.536 -81.755 20.0 20.0 2.6 9.0
18 26.536 -81.755 22.2 10.0 3.6 9.0
19 26.536 -81.755 23.3 30.0 4.6 9.0
20 26.536 -81.755 23.3 330.0 2.6 9.0
21 26.536 -81.755 24.4 0.0 0.0 9.0
22 26.536 -81.755 25.0 360.0 3.1 9.0
23 26.536 -81.755 24.4 20.0 4.1 9.0
24 26.536 -81.755 23.3 10.0 2.6 9.0
25 26.536 -81.755 21.1 30.0 2.1 9.0
26 26.536 -81.755 18.3 0.0 0.0 9.0
27 26.536 -81.755 17.2 30.0 2.1 9.0
28 26.536 -81.755 15.6 60.0 2.6 9.0
29 26.536 -81.755 15.6 0.0 0.0 9.0
30 26.536 -81.755 13.9 60.0 2.6 9.0
31 26.536 -81.755 12.8 70.0 2.6 9.0
32 26.536 -81.755 0.0 0.0 0.0 9.0
33 26.536 -81.755 11.7 70.0 2.1 9.0
34 26.536 -81.755 12.2 20.0 2.1 9.0
35 26.536 -81.755 11.7 30.0 1.5 9.0
36 26.536 -81.755 11.1 40.0 2.1 9.0
37 26.536 -81.755 12.2 40.0 2.6 9.0
38 26.536 -81.755 12.2 30.0 2.6 9.0
39 26.536 -81.755 12.2 0.0 0.0 9.0
40 26.536 -81.755 15.0 30.0 6.2 9.0
41 26.536 -81.755 17.2 50.0 3.6 9.0
42 26.536 -81.755 20.6 60.0 5.1 9.0
43 26.536 -81.755 22.8 50.0 4.6 9.0
44 26.536 -81.755 24.4 80.0 6.2 9.0
45 26.536 -81.755 25.0 100.0 5.7 9.0
46 26.536 -81.755 25.6 60.0 3.1 9.0
47 26.536 -81.755 25.6 80.0 4.6 9.0
48 26.536 -81.755 25.0 90.0 5.1 9.0
49 26.536 -81.755 24.4 80.0 5.1 9.0
50 26.536 -81.755 21.1 60.0 2.6 9.0
51 26.536 -81.755 19.4 70.0 3.6 9.0
52 26.536 -81.755 18.3 70.0 2.6 9.0
53 26.536 -81.755 18.3 80.0 2.6 9.0
54 26.536 -81.755 17.2 60.0 1.5 9.0
55 26.536 -81.755 16.1 70.0 2.6 9.0
56 26.536 -81.755 15.6 70.0 2.6 9.0
57 26.536 -81.755 0.0 0.0 0.0 9.0
58 26.536 -81.755 16.1 50.0 2.6 9.0
59 26.536 -81.755 15.6 50.0 2.1 9.0
60 26.536 -81.755 15.0 50.0 1.5 9.0
61 26.536 -81.755 15.0 0.0 0.0 9.0
62 26.536 -81.755 15.0 0.0 0.0 9.0
63 26.536 -81.755 14.4 0.0 0.0 9.0
64 26.536 -81.755 14.4 30.0 4.1 9.0
65 26.536 -81.755 16.1 40.0 1.5 9.0
66 26.536 -81.755 19.4 0.0 1.5 9.0
67 26.536 -81.755 22.8 90.0 2.6 9.0
68 26.536 -81.755 24.4 130.0 3.6 9.0
69 26.536 -81.755 25.6 100.0 4.6 9.0
70 26.536 -81.755 26.1 120.0 3.1 9.0
71 26.536 -81.755 26.7 0.0 2.6 9.0
72 26.536 -81.755 27.2 0.0 0.0 9.0
73 26.536 -81.755 27.2 40.0 3.1 9.0
74 26.536 -81.755 26.1 30.0 1.5 9.0
75 26.536 -81.755 22.8 310.0 2.1 9.0
76 26.536 -81.755 23.3 330.0 2.1 9.0
77 -34.067 -56.238 17.5 30.0 3.1 68.0
78 -34.067 -56.238 21.2 30.0 5.7 68.0
79 -34.067 -56.238 24.5 30.0 3.1 68.0
80 -34.067 -56.238 27.5 330.0 3.6 68.0
81 -34.067 -56.238 29.2 30.0 4.1 68.0
82 -34.067 -56.238 31.0 20.0 4.6 68.0
83 -34.067 -56.238 33.0 360.0 2.6 68.0
84 -34.067 -56.238 33.6 60.0 3.1 68.0
85 -34.067 -56.238 33.6 30.0 3.6 68.0
86 -34.067 -56.238 18.6 40.0 3.1 68.0
87 -34.067 -56.238 22.0 120.0 1.5 68.0
88 -34.067 -56.238 25.0 120.0 2.6 68.0
89 -34.067 -56.238 28.6 50.0 3.1 68.0
90 -34.067 -56.238 30.6 50.0 4.1 68.0
91 -34.067 -56.238 31.5 30.0 6.7 68.0
92 -34.067 -56.238 32.0 40.0 7.2 68.0
93 -34.067 -56.238 33.0 30.0 5.7 68.0
94 -34.067 -56.238 33.2 360.0 3.6 68.0
95 -34.067 -56.238 20.6 30.0 3.1 68.0
96 -34.067 -56.238 21.2 0.0 0.0 68.0
97 -34.067 -56.238 22.0 210.0 3.1 68.0
98 -34.067 -56.238 23.0 210.0 3.6 68.0
99 -34.067 -56.238 24.0 180.0 6.7 68.0
100 -34.067 -56.238 24.5 210.0 7.2 68.0
101 -34.067 -56.238 21.0 180.0 8.2 68.0
102 -34.067 -56.238 20.0 180.0 6.7 68.0
103 -34.083 -56.233 20.2 180.0 7.2 68.0
104 -29.917 -71.2 16.6 290.0 4.1 146.0
105 -29.916 -71.2 17.0 290.0 4.1 147.0
106 -29.916 -71.2 16.0 310.0 3.1 147.0
107 -29.916 -71.2 16.0 300.0 2.1 147.0
108 -29.917 -71.2 15.1 0.0 0.0 146.0
109 -29.916 -71.2 15.0 0.0 1.0 147.0
110 -29.916 -71.2 15.0 160.0 1.0 147.0
111 -29.916 -71.2 15.0 120.0 1.0 147.0
112 -29.917 -71.2 14.3 190.0 1.0 146.0
113 -29.916 -71.2 14.0 190.0 1.0 147.0
114 -29.916 -71.2 14.0 0.0 0.0 147.0
115 -29.916 -71.2 14.0 100.0 3.1 147.0
116 -29.917 -71.2 12.9 0.0 0.0 146.0
117 -29.916 -71.2 13.0 0.0 1.0 147.0
118 -29.916 -71.2 14.0 0.0 0.5 147.0
119 -29.916 -71.2 15.0 0.0 0.5 147.0
120 -29.917 -71.2 15.9 0.0 0.0 146.0
121 -29.916 -71.2 16.0 0.0 0.0 147.0
122 -29.916 -71.2 17.0 270.0 4.6 147.0
123 -29.916 -71.2 19.0 260.0 4.1 147.0
124 -29.917 -71.2 18.1 270.0 6.2 146.0
125 -29.916 -71.2 18.0 270.0 6.2 147.0
126 -29.916 -71.2 19.0 270.0 6.2 147.0
127 -29.916 -71.2 20.0 260.0 5.1 147.0
128 -29.917 -71.2 19.6 280.0 6.2 146.0
129 -29.916 -71.2 20.0 280.0 6.2 147.0
130 -29.916 -71.2 20.0 270.0 6.2 147.0
131 -29.916 -71.2 19.0 280.0 6.7 147.0
132 -29.917 -71.2 18.3 270.0 5.7 146.0
133 -29.916 -71.2 18.0 270.0 5.7 147.0
134 -29.916 -71.2 18.0 0.0 0.0 147.0
135 -29.916 -71.2 17.0 280.0 4.6 147.0
136 -29.917 -71.2 15.9 280.0 4.1 146.0
137 -29.916 -71.2 16.0 280.0 4.1 147.0
138 -29.916 -71.2 15.0 280.0 3.6 147.0
139 -29.916 -71.2 15.0 280.0 3.6 147.0
140 -29.917 -71.2 15.4 280.0 4.1 146.0
141 -29.916 -71.2 15.0 280.0 4.1 147.0
142 -29.916 -71.2 16.0 240.0 2.1 147.0
143 -29.916 -71.2 15.0 0.0 0.5 147.0
144 -29.917 -71.2 15.8 80.0 3.6 146.0
145 -29.916 -71.2 16.0 80.0 3.6 147.0
146 -29.916 -71.2 16.0 10.0 1.5 147.0
147 -29.916 -71.2 16.0 100.0 1.5 147.0
148 -29.917 -71.2 15.3 130.0 1.5 146.0
149 -29.916 -71.2 15.0 130.0 1.5 147.0
150 -29.916 -71.2 15.0 110.0 1.0 147.0
151 -29.916 -71.2 16.0 280.0 6.2 147.0
152 -29.917 -71.2 15.9 240.0 3.6 146.0
153 -29.916 -71.2 16.0 240.0 3.6 147.0
154 -29.916 -71.2 16.0 240.0 3.1 147.0
155 -29.916 -71.2 16.0 220.0 3.1 147.0
156 -29.917 -71.2 16.4 260.0 3.1 146.0
157 -29.916 -71.2 16.0 260.0 3.1 147.0
158 -29.916 -71.2 17.0 230.0 2.6 147.0
159 -29.916 -71.2 18.0 0.0 1.5 147.0
160 -29.917 -71.2 20.3 340.0 2.6 146.0
161 -29.916 -71.2 20.0 340.0 2.6 147.0
162 -29.916 -71.2 21.0 270.0 5.1 147.0
163 -29.916 -71.2 20.0 270.0 6.7 147.0
164 -29.917 -71.2 19.2 280.0 6.7 146.0
165 -29.916 -71.2 19.0 280.0 6.7 147.0
166 -29.916 -71.2 19.0 310.0 2.6 147.0
167 -29.916 -71.2 18.0 270.0 5.1 147.0
168 -29.917 -71.2 17.0 300.0 4.6 146.0
169 -29.916 -71.2 17.0 300.0 4.6 147.0
170 -29.916 -71.2 17.0 300.0 3.6 147.0
171 -29.916 -71.2 17.0 290.0 3.1 147.0
172 -29.917 -71.2 16.3 290.0 2.1 146.0
173 -29.916 -71.2 16.0 290.0 2.1 147.0
174 -29.916 -71.2 17.0 270.0 1.0 147.0
175 -29.916 -71.2 17.0 0.0 0.5 147.0
176 -29.917 -71.2 16.5 160.0 2.1 146.0
177 -29.916 -71.2 17.0 160.0 2.1 147.0
178 -29.916 -71.2 15.0 120.0 3.1 147.0
179 -29.916 -71.2 16.0 180.0 1.5 147.0
180 -29.917 -71.2 14.7 0.0 0.0 146.0
181 -29.916 -71.2 15.0 0.0 1.0 147.0
182 -29.916 -71.2 15.0 300.0 1.0 147.0
183 -29.916 -71.2 16.0 0.0 0.0 147.0
184 -29.917 -71.2 18.5 110.0 1.0 146.0
185 -29.916 -71.2 19.0 110.0 1.0 147.0
186 -29.916 -71.2 20.0 270.0 3.6 147.0
187 -29.916 -71.2 20.0 270.0 5.7 147.0
188 -29.917 -71.2 20.0 280.0 6.2 146.0
189 -29.916 -71.2 20.0 280.0 6.2 147.0
190 -29.916 -71.2 21.0 290.0 6.7 147.0
191 -29.916 -71.2 20.0 270.0 6.2 147.0
192 -29.917 -71.2 21.0 260.0 6.7 146.0
193 -29.916 -71.2 21.0 260.0 6.7 147.0
194 -29.916 -71.2 20.0 270.0 6.2 147.0
195 -29.916 -71.2 19.0 260.0 5.1 147.0
196 -29.916 -71.2 18.0 280.0 4.6 147.0
197 -29.917 -71.2 17.5 280.0 3.1 146.0
198 -29.916 -71.2 18.0 280.0 3.1 147.0
199 30.349 -85.788 11.1 0.0 0.0 21.0
200 30.349 -85.788 11.1 0.0 0.0 21.0
201 30.349 -85.788 9.4 0.0 0.0 21.0
202 30.349 -85.788 9.4 0.0 0.0 21.0
203 30.349 -85.788 8.3 300.0 2.1 21.0
204 30.349 -85.788 11.1 280.0 1.5 21.0
205 30.349 -85.788 0.0 0.0 0.0 21.0
206 30.349 -85.788 10.6 320.0 3.1 21.0
207 30.349 -85.788 9.4 310.0 3.1 21.0
208 30.349 -85.788 7.8 320.0 2.6 21.0
209 30.349 -85.788 6.1 340.0 2.1 21.0
210 30.349 -85.788 6.7 330.0 2.6 21.0
211 30.349 -85.788 6.1 310.0 1.5 21.0
212 30.349 -85.788 7.2 310.0 2.1 21.0
213 30.349 -85.788 12.8 360.0 3.1 21.0
214 30.349 -85.788 15.0 0.0 3.1 21.0
215 30.349 -85.788 16.7 20.0 4.6 21.0
216 30.349 -85.788 18.9 30.0 5.1 21.0
217 30.349 -85.788 19.4 10.0 4.1 21.0
218 30.349 -85.788 21.1 330.0 2.6 21.0
219 30.349 -85.788 21.1 10.0 4.6 21.0
220 30.349 -85.788 21.7 360.0 4.1 21.0
221 30.349 -85.788 21.7 30.0 2.1 21.0
222 30.349 -85.788 21.7 330.0 2.6 21.0
223 30.349 -85.788 16.1 350.0 2.1 21.0
224 30.349 -85.788 11.7 0.0 0.0 21.0
225 30.349 -85.788 8.9 0.0 0.0 21.0
226 30.349 -85.788 9.4 0.0 0.0 21.0
227 30.349 -85.788 7.8 0.0 0.0 21.0
228 30.349 -85.788 11.1 30.0 3.1 21.0
229 30.349 -85.788 7.2 0.0 0.0 21.0
230 30.349 -85.788 7.2 0.0 0.0 21.0
231 30.349 -85.788 0.0 0.0 0.0 21.0
232 30.349 -85.788 7.8 30.0 2.1 21.0
233 30.349 -85.788 8.3 40.0 2.6 21.0
234 30.349 -85.788 7.2 50.0 1.5 21.0
235 30.349 -85.788 8.3 60.0 1.5 21.0
236 30.349 -85.788 5.6 40.0 2.1 21.0
237 30.349 -85.788 6.7 40.0 2.1 21.0
238 30.349 -85.788 7.8 50.0 3.1 21.0
239 30.349 -85.788 11.7 70.0 2.6 21.0
240 30.349 -85.788 15.6 70.0 3.1 21.0
241 30.349 -85.788 18.9 100.0 3.6 21.0
242 30.349 -85.788 20.0 130.0 3.6 21.0
243 30.349 -85.788 21.1 140.0 4.1 21.0
244 30.349 -85.788 21.7 150.0 4.1 21.0
245 30.349 -85.788 21.7 170.0 3.1 21.0
246 30.349 -85.788 22.2 170.0 3.1 21.0
247 30.349 -85.788 20.6 0.0 0.0 21.0
248 30.349 -85.788 17.2 0.0 0.0 21.0
249 30.349 -85.788 14.4 0.0 0.0 21.0
250 30.349 -85.788 12.8 100.0 1.5 21.0
251 30.349 -85.788 13.3 100.0 1.5 21.0
252 30.349 -85.788 10.6 0.0 0.0 21.0
253 30.349 -85.788 9.4 0.0 0.0 21.0
254 30.349 -85.788 7.8 0.0 0.0 21.0
255 30.358 -85.799 8.3 0.0 0.0 21.0
256 30.349 -85.788 0.0 0.0 0.0 21.0
257 30.358 -85.799 6.7 0.0 0.0 21.0
258 30.358 -85.799 7.2 0.0 0.0 21.0
259 30.358 -85.799 7.2 0.0 0.0 21.0
260 30.358 -85.799 8.3 50.0 1.5 21.0
261 30.358 -85.799 9.4 0.0 0.0 21.0
262 30.358 -85.799 8.9 0.0 0.0 21.0
263 30.358 -85.799 10.0 340.0 1.5 21.0
264 30.358 -85.799 12.8 40.0 1.5 21.0
265 30.358 -85.799 16.7 100.0 2.1 21.0
266 30.358 -85.799 21.1 100.0 1.5 21.0
267 30.358 -85.799 23.3 0.0 0.0 21.0
268 30.358 -85.799 25.0 180.0 4.6 21.0
269 30.358 -85.799 24.4 230.0 3.6 21.0
270 30.358 -85.799 25.0 210.0 4.1 21.0
271 30.358 -85.799 23.9 170.0 4.1 21.0
272 30.358 -85.799 22.8 0.0 0.0 21.0
273 30.358 -85.799 19.4 0.0 0.0 21.0
274 30.358 -85.799 17.8 140.0 2.1 21.0
275 60.383 5.333 -0.7 0.0 0.0 36.0
276 60.383 5.333 0.6 270.0 2.0 36.0
277 60.383 5.333 -0.9 120.0 1.0 36.0
278 60.383 5.333 -1.6 130.0 2.0 36.0
279 60.383 5.333 -1.4 150.0 1.0 36.0
280 60.383 5.333 -1.7 0.0 0.0 36.0
281 60.383 5.333 -1.7 140.0 1.0 36.0
282 60.383 5.333 -1.4 0.0 0.0 36.0
283 60.383 5.333 -1.0 0.0 0.0 36.0
284 60.383 5.333 -1.0 150.0 1.0 36.0
285 60.383 5.333 -0.7 140.0 1.0 36.0
286 60.383 5.333 0.5 150.0 1.0 36.0
287 60.383 5.333 1.9 0.0 0.0 36.0
288 60.383 5.333 1.7 0.0 0.0 36.0
289 60.383 5.333 2.1 310.0 2.0 36.0
290 60.383 5.333 1.5 90.0 1.0 36.0
291 60.383 5.333 1.9 290.0 1.0 36.0
292 60.383 5.333 2.0 320.0 1.0 36.0
293 60.383 5.333 1.9 330.0 1.0 36.0
294 60.383 5.333 1.3 350.0 1.0 36.0
295 60.383 5.333 1.5 120.0 1.0 36.0
296 60.383 5.333 1.3 150.0 2.0 36.0
297 60.383 5.333 0.8 140.0 1.0 36.0
298 60.383 5.333 0.3 300.0 1.0 36.0
299 60.383 5.333 0.2 140.0 1.0 36.0
300 60.383 5.333 0.4 140.0 1.0 36.0
301 60.383 5.333 0.5 320.0 1.0 36.0
302 60.383 5.333 1.5 330.0 1.0 36.0
303 60.383 5.333 1.8 40.0 1.0 36.0
304 60.383 5.333 2.3 170.0 1.0 36.0
305 60.383 5.333 2.7 140.0 1.0 36.0
306 60.383 5.333 3.1 330.0 1.0 36.0
307 60.383 5.333 3.8 350.0 1.0 36.0
308 60.383 5.333 3.8 140.0 1.0 36.0
309 60.383 5.333 4.1 150.0 1.0 36.0
310 60.383 5.333 4.4 180.0 1.0 36.0
311 60.383 5.333 4.9 300.0 1.0 36.0
312 60.383 5.333 5.2 320.0 1.0 36.0
313 60.383 5.333 6.7 340.0 1.0 36.0
314 60.383 5.333 6.9 250.0 1.0 36.0
315 60.383 5.333 7.9 300.0 2.0 36.0
316 60.383 5.333 5.5 140.0 1.0 36.0
317 60.383 5.333 7.1 140.0 2.0 36.0
318 60.383 5.333 7.0 280.0 2.0 36.0
319 60.383 5.333 4.6 170.0 1.0 36.0
320 60.383 5.333 4.8 330.0 1.0 36.0
321 60.383 5.333 6.4 260.0 2.0 36.0
322 60.383 5.333 6.2 340.0 1.0 36.0
323 60.383 5.333 5.7 320.0 2.0 36.0
324 60.383 5.333 5.2 100.0 1.0 36.0
325 60.383 5.333 5.1 310.0 1.0 36.0
326 60.383 5.333 4.9 290.0 2.0 36.0
327 60.383 5.333 4.9 310.0 2.0 36.0
328 60.383 5.333 6.1 320.0 2.0 36.0
329 60.383 5.333 7.0 250.0 1.0 36.0
330 60.383 5.333 5.3 140.0 1.0 36.0
331 60.383 5.333 6.9 350.0 1.0 36.0
332 60.383 5.333 9.7 110.0 3.0 36.0
333 60.383 5.333 10.3 300.0 3.0 36.0
334 60.383 5.333 8.7 310.0 1.0 36.0
335 60.383 5.333 9.0 270.0 3.0 36.0
336 60.383 5.333 11.6 80.0 3.0 36.0
337 60.383 5.333 11.4 80.0 4.0 36.0
338 60.383 5.333 9.7 70.0 5.0 36.0
339 60.383 5.333 9.5 80.0 6.0 36.0
340 60.383 5.333 8.7 80.0 5.0 36.0
341 60.383 5.333 7.7 80.0 5.0 36.0
342 60.383 5.333 8.2 80.0 4.0 36.0
343 60.383 5.333 7.7 30.0 1.0 36.0
344 60.383 5.333 7.2 310.0 1.0 36.0
345 60.383 5.333 6.8 300.0 2.0 36.0
346 60.383 5.333 6.7 140.0 1.0 36.0

File diff suppressed because it is too large Load Diff

102
index.md
View File

@@ -10,7 +10,6 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags | |Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:| |:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [Using Azure ML environments](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/using-environments/using-environments.ipynb) | Creating and registering environments | None | Local | None | None | None | | [Using Azure ML environments](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/using-environments/using-environments.ipynb) | Creating and registering environments | None | Local | None | None | None |
| [Estimators in AML with hyperparameter tuning](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb) | Use the Estimator pattern in Azure Machine Learning SDK | None | AML Compute | None | None | None | | [Estimators in AML with hyperparameter tuning](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb) | Use the Estimator pattern in Azure Machine Learning SDK | None | AML Compute | None | None | None |
@@ -19,67 +18,36 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags | |Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:| |:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [Forecasting BikeShare Demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb) | Forecasting | BikeShare | Remote | None | Azure ML AutoML | Forecasting | | [Forecasting BikeShare Demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb) | Forecasting | BikeShare | Remote | None | Azure ML AutoML | Forecasting |
| [Forecasting orange juice sales with deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb) | Forecasting | Orange Juice Sales | Remote | Azure Container Instance | Azure ML AutoML | None | | [Forecasting orange juice sales with deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb) | Forecasting | Orange Juice Sales | Remote | Azure Container Instance | Azure ML AutoML | None |
| [Forecasting with automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.ipynb) | Forecasting | NYC Energy | Local | None | Azure ML AutoML | | | [Forecasting with automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.ipynb) | Forecasting | NYC Energy | Local | None | Azure ML AutoML | |
| [Setup automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.ipynb) | None | None | None | None | Azure ML AutoML | | | [Setup automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.ipynb) | None | None | None | None | Azure ML AutoML | |
| [Register a model and deploy locally](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.ipynb) | Deployment | None | Local | Local | None | None | | [Register a model and deploy locally](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.ipynb) | Deployment | None | Local | Local | None | None |
| :star:[Data drift on aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/monitor-models/data-drift/drift-on-aks.ipynb) | Filtering | NOAA | Remote | AKS | Azure ML | Dataset, Timeseries, Drift | | :star:[Data drift on aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/monitor-models/data-drift/drift-on-aks.ipynb) | Filtering | NOAA | Remote | AKS | Azure ML | Dataset, Timeseries, Drift |
| [Train and deploy a model using Python SDK](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb) | Training and deploying a model from a notebook | Diabetes | Local | Azure Container Instance | None | None | | [Train and deploy a model using Python SDK](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb) | Training and deploying a model from a notebook | Diabetes | Local | Azure Container Instance | None | None |
| :star:[Data drift quickdemo](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datadrift-tutorial/datadrift-tutorial.ipynb) | Filtering | NOAA | Remote | None | Azure ML | Dataset, Timeseries, Drift | | :star:[Data drift quickdemo](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datadrift-tutorial/datadrift-tutorial.ipynb) | Filtering | NOAA | Remote | None | Azure ML | Dataset, Timeseries, Drift |
| :star:[Filtering data using Tabular Timeseiries Dataset related API](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/tabular-timeseries-dataset-filtering.ipynb) | Filtering | NOAA | Local | None | Azure ML | Dataset, Tabular Timeseries | | :star:[Filtering data using Tabular Timeseiries Dataset related API](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/tabular-timeseries-dataset-filtering.ipynb) | Filtering | NOAA | Local | None | Azure ML | Dataset, Tabular Timeseries |
| :star:[Introduction to labeled datasets](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/labeled-datasets/labeled-datasets.ipynb) | Train | | Remote | None | Azure ML | Dataset, label, Estimator | | :star:[Introduction to labeled datasets](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/labeled-datasets/labeled-datasets.ipynb) | Train | | Remote | None | Azure ML | Dataset, label, Estimator |
| :star:[Datasets with ML Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb) | Train | Fashion MNIST | Remote | None | Azure ML | Dataset, Pipeline, Estimator, ScriptRun | | :star:[Datasets with ML Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb) | Train | Fashion MNIST | Remote | None | Azure ML | Dataset, Pipeline, Estimator, ScriptRun |
| :star:[Train with Datasets (Tabular and File)](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb) | Train | Iris, Diabetes | Remote | None | Azure ML | Dataset, Estimator, ScriptRun | | :star:[Train with Datasets (Tabular and File)](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb) | Train | Iris, Diabetes | Remote | None | Azure ML | Dataset, Estimator, ScriptRun |
| [Forecasting away from training data](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/automl-forecasting-function.ipynb) | Forecasting | None | Remote | None | Azure ML AutoML | Forecasting, Confidence Intervals | | [Forecasting away from training data](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/automl-forecasting-function.ipynb) | Forecasting | None | Remote | None | Azure ML AutoML | Forecasting, Confidence Intervals |
| [Automated ML run with basic edition features.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb) | Classification | Bankmarketing | AML | ACI | None | featurization, explainability, remote_run, AutomatedML | | [Automated ML run with basic edition features.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb) | Classification | Bankmarketing | AML | ACI | None | featurization, explainability, remote_run, AutomatedML |
| [Classification of credit card fraudulent transactions using Automated ML](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb) | Classification | Creditcard | AML Compute | None | None | remote_run, AutomatedML | | [Classification of credit card fraudulent transactions using Automated ML](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb) | Classification | Creditcard | AML Compute | None | None | remote_run, AutomatedML |
| [Automated ML run with featurization and model explainability.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb) | Regression | MachineData | AML | ACI | None | featurization, explainability, remote_run, AutomatedML | | [Automated ML run with featurization and model explainability.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb) | Regression | MachineData | AML | ACI | None | featurization, explainability, remote_run, AutomatedML |
| [Use MLflow with Azure Machine Learning for training and deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-deploy-pytorch/train-and-deploy-pytorch.ipynb) | Use MLflow with Azure Machine Learning to train and deploy Pa yTorch image classifier model | MNIST | AML Compute | Azure Container Instance | PyTorch | None | | [Use MLflow with Azure Machine Learning for training and deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-deploy-pytorch/train-and-deploy-pytorch.ipynb) | Use MLflow with Azure Machine Learning to train and deploy Pa yTorch image classifier model | MNIST | AML Compute | Azure Container Instance | PyTorch | None |
| :star:[Azure Machine Learning Pipeline with DataTranferStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb) | Demonstrates the use of DataTranferStep | Custom | ADF | None | Azure ML | None | | :star:[Azure Machine Learning Pipeline with DataTranferStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb) | Demonstrates the use of DataTranferStep | Custom | ADF | None | Azure ML | None |
| [Getting Started with Azure Machine Learning Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-getting-started.ipynb) | Getting Started notebook for ANML Pipelines | Custom | AML Compute | None | Azure ML | None | | [Getting Started with Azure Machine Learning Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-getting-started.ipynb) | Getting Started notebook for ANML Pipelines | Custom | AML Compute | None | Azure ML | None |
| [Azure Machine Learning Pipeline with AzureBatchStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb) | Demonstrates the use of AzureBatchStep | Custom | Azure Batch | None | Azure ML | None | | [Azure Machine Learning Pipeline with AzureBatchStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb) | Demonstrates the use of AzureBatchStep | Custom | Azure Batch | None | Azure ML | None |
| [Azure Machine Learning Pipeline with EstimatorStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-estimatorstep.ipynb) | Demonstrates the use of EstimatorStep | Custom | AML Compute | None | Azure ML | None | | [Azure Machine Learning Pipeline with EstimatorStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-estimatorstep.ipynb) | Demonstrates the use of EstimatorStep | Custom | AML Compute | None | Azure ML | None |
| :star:[How to use ModuleStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-modulestep.ipynb) | Demonstrates the use of ModuleStep | Custom | AML Compute | None | Azure ML | None | | :star:[How to use ModuleStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-modulestep.ipynb) | Demonstrates the use of ModuleStep | Custom | AML Compute | None | Azure ML | None |
| :star:[How to use Pipeline Drafts to create a Published Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-pipeline-drafts.ipynb) | Demonstrates the use of Pipeline Drafts | Custom | AML Compute | None | Azure ML | None | | :star:[How to use Pipeline Drafts to create a Published Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-pipeline-drafts.ipynb) | Demonstrates the use of Pipeline Drafts | Custom | AML Compute | None | Azure ML | None |
| :star:[Azure Machine Learning Pipeline with HyperDriveStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.ipynb) | Demonstrates the use of HyperDriveStep | Custom | AML Compute | None | Azure ML | None | | :star:[Azure Machine Learning Pipeline with HyperDriveStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.ipynb) | Demonstrates the use of HyperDriveStep | Custom | AML Compute | None | Azure ML | None |
| :star:[How to Publish a Pipeline and Invoke the REST endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-publish-and-run-using-rest-endpoint.ipynb) | Demonstrates the use of Published Pipelines | Custom | AML Compute | None | Azure ML | None | | :star:[How to Publish a Pipeline and Invoke the REST endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-publish-and-run-using-rest-endpoint.ipynb) | Demonstrates the use of Published Pipelines | Custom | AML Compute | None | Azure ML | None |
| :star:[How to Setup a Schedule for a Published Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb) | Demonstrates the use of Schedules for Published Pipelines | Custom | AML Compute | None | Azure ML | None | | :star:[How to Setup a Schedule for a Published Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb) | Demonstrates the use of Schedules for Published Pipelines | Custom | AML Compute | None | Azure ML | None |
| [How to setup a versioned Pipeline Endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-versioned-pipeline-endpoints.ipynb) | Demonstrates the use of PipelineEndpoint to run a specific version of the Published Pipeline | Custom | AML Compute | None | Azure ML | None | | [How to setup a versioned Pipeline Endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-versioned-pipeline-endpoints.ipynb) | Demonstrates the use of PipelineEndpoint to run a specific version of the Published Pipeline | Custom | AML Compute | None | Azure ML | None |
| :star:[How to use DataPath as a PipelineParameter](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-showcasing-datapath-and-pipelineparameter.ipynb) | Demonstrates the use of DataPath as a PipelineParameter | Custom | AML Compute | None | Azure ML | None | | :star:[How to use DataPath as a PipelineParameter](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-showcasing-datapath-and-pipelineparameter.ipynb) | Demonstrates the use of DataPath as a PipelineParameter | Custom | AML Compute | None | Azure ML | None |
| [How to use AdlaStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-adla-as-compute-target.ipynb) | Demonstrates the use of AdlaStep | Custom | Azure Data Lake Analytics | None | Azure ML | None | | [How to use AdlaStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-adla-as-compute-target.ipynb) | Demonstrates the use of AdlaStep | Custom | Azure Data Lake Analytics | None | Azure ML | None |
| :star:[How to use DatabricksStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-databricks-as-compute-target.ipynb) | Demonstrates the use of DatabricksStep | Custom | Azure Databricks | None | Azure ML, Azure Databricks | None | | :star:[How to use DatabricksStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-databricks-as-compute-target.ipynb) | Demonstrates the use of DatabricksStep | Custom | Azure Databricks | None | Azure ML, Azure Databricks | None |
| :star:[How to use AutoMLStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-automated-machine-learning-step.ipynb) | Demonstrates the use of AutoMLStep | Custom | AML Compute | None | Automated Machine Learning | None | | :star:[How to use AutoMLStep with AML Pipelines](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-automated-machine-learning-step.ipynb) | Demonstrates the use of AutoMLStep | Custom | AML Compute | None | Automated Machine Learning | None |
| :star:[Azure Machine Learning Pipelines with Data Dependency](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb) | Demonstrates how to construct a Pipeline with data dependency between steps | Custom | AML Compute | None | Azure ML | None | | :star:[Azure Machine Learning Pipelines with Data Dependency](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb) | Demonstrates how to construct a Pipeline with data dependency between steps | Custom | AML Compute | None | Azure ML | None |
@@ -88,45 +56,25 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags | |Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:| |:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [Train a model with hyperparameter tuning](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/deployment/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb) | Train a Convolutional Neural Network (CNN) | MNIST | AML Compute | Azure Container Instance | Chainer | None | | [Train a model with hyperparameter tuning](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/deployment/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb) | Train a Convolutional Neural Network (CNN) | MNIST | AML Compute | Azure Container Instance | Chainer | None |
| [Distributed Training with Chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/training/distributed-chainer/distributed-chainer.ipynb) | Use the Chainer estimator to perform distributed training | MNIST | AML Compute | None | Chainer | None | | [Distributed Training with Chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/training/distributed-chainer/distributed-chainer.ipynb) | Use the Chainer estimator to perform distributed training | MNIST | AML Compute | None | Chainer | None |
| [Training with hyperparameter tuning using PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | Train an image classification model using transfer learning with the PyTorch estimator | ImageNet | AML Compute | Azure Container Instance | PyTorch | None | | [Training with hyperparameter tuning using PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | Train an image classification model using transfer learning with the PyTorch estimator | ImageNet | AML Compute | Azure Container Instance | PyTorch | None |
| [Distributed PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb) | Train a model using the distributed training via Horovod | MNIST | AML Compute | None | PyTorch | None | | [Distributed PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb) | Train a model using the distributed training via Horovod | MNIST | AML Compute | None | PyTorch | None |
| [Distributed training with PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-nccl-gloo/distributed-pytorch-with-nccl-gloo.ipynb) | Train a model using distributed training via Nccl/Gloo | MNIST | AML Compute | None | PyTorch | None | | [Distributed training with PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-nccl-gloo/distributed-pytorch-with-nccl-gloo.ipynb) | Train a model using distributed training via Nccl/Gloo | MNIST | AML Compute | None | PyTorch | None |
| [Training and hyperparameter tuning with Scikit-learn](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | Train a support vector machine (SVM) to perform classification | Iris | AML Compute | None | Scikit-learn | None | | [Training and hyperparameter tuning with Scikit-learn](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | Train a support vector machine (SVM) to perform classification | Iris | AML Compute | None | Scikit-learn | None |
| [Training and hyperparameter tuning using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None | | [Training and hyperparameter tuning using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None |
| [Distributed training using TensorFlow with Horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-horovod/distributed-tensorflow-with-horovod.ipynb) | Use the TensorFlow estimator to train a word2vec model | None | AML Compute | None | TensorFlow | None | | [Distributed training using TensorFlow with Horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-horovod/distributed-tensorflow-with-horovod.ipynb) | Use the TensorFlow estimator to train a word2vec model | None | AML Compute | None | TensorFlow | None |
| [Distributed TensorFlow with parameter server](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.ipynb) | Use the TensorFlow estimator to train a model using distributed training | MNIST | AML Compute | None | TensorFlow | None | | [Distributed TensorFlow with parameter server](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.ipynb) | Use the TensorFlow estimator to train a model using distributed training | MNIST | AML Compute | None | TensorFlow | None |
| [Hyperparameter tuning and warm start using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/hyperparameter-tune-and-warm-start-with-tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None | | [Hyperparameter tuning and warm start using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/hyperparameter-tune-and-warm-start-with-tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None |
| [Resuming a model](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | Resume a model in TensorFlow from a previously submitted run | MNIST | AML Compute | None | TensorFlow | None | | [Resuming a model](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | Resume a model in TensorFlow from a previously submitted run | MNIST | AML Compute | None | TensorFlow | None |
| [Training in Spark](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-in-spark/train-in-spark.ipynb) | Submiting a run on a spark cluster | None | HDI cluster | None | PySpark | None | | [Training in Spark](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-in-spark/train-in-spark.ipynb) | Submiting a run on a spark cluster | None | HDI cluster | None | PySpark | None |
| [Train on Azure Machine Learning Compute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb) | Submit a run on Azure Machine Learning Compute. | Diabetes | AML Compute | None | None | None | | [Train on Azure Machine Learning Compute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb) | Submit a run on Azure Machine Learning Compute. | Diabetes | AML Compute | None | None | None |
| [Train on local compute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-local/train-on-local.ipynb) | Train a model locally | Diabetes | Local | None | None | None | | [Train on local compute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-local/train-on-local.ipynb) | Train a model locally | Diabetes | Local | None | None | None |
| [Train in a remote Linux virtual machine](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) | Configure and execute a run | Diabetes | Data Science Virtual Machine | None | None | None | | [Train in a remote Linux virtual machine](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) | Configure and execute a run | Diabetes | Data Science Virtual Machine | None | None | None |
| [Using Tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb) | Export the run history as Tensorboard logs | None | None | None | TensorFlow | None | | [Using Tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb) | Export the run history as Tensorboard logs | None | None | None | TensorFlow | None |
| [Train a DNN using hyperparameter tuning and deploying with Keras](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) | Create a multi-class classifier | MNIST | AML Compute | Azure Container Instance | TensorFlow | None | | [Train a DNN using hyperparameter tuning and deploying with Keras](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) | Create a multi-class classifier | MNIST | AML Compute | Azure Container Instance | TensorFlow | None |
| [Managing your training runs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/manage-runs/manage-runs.ipynb) | Monitor and complete runs | None | Local | None | None | None | | [Managing your training runs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/manage-runs/manage-runs.ipynb) | Monitor and complete runs | None | Local | None | None | None |
| [Tensorboard integration with run history](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/tensorboard/tensorboard.ipynb) | Run a TensorFlow job and view its Tensorboard output live | None | Local, DSVM, AML Compute | None | TensorFlow | None | | [Tensorboard integration with run history](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/tensorboard/tensorboard.ipynb) | Run a TensorFlow job and view its Tensorboard output live | None | Local, DSVM, AML Compute | None | TensorFlow | None |
| [Use MLflow with AML for a local training run](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-local/train-local.ipynb) | Use MLflow tracking APIs together with Azure Machine Learning for storing your metrics and artifacts | Diabetes | Local | None | None | None | | [Use MLflow with AML for a local training run](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-local/train-local.ipynb) | Use MLflow tracking APIs together with Azure Machine Learning for storing your metrics and artifacts | Diabetes | Local | None | None | None |
| [Use MLflow with AML for a remote training run](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-remote/train-remote.ipynb) | Use MLflow tracking APIs together with AML for storing your metrics and artifacts | Diabetes | AML Compute | None | None | None | | [Use MLflow with AML for a remote training run](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-remote/train-remote.ipynb) | Use MLflow tracking APIs together with AML for storing your metrics and artifacts | Diabetes | AML Compute | None | None | None |
@@ -137,19 +85,12 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags | |Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:| |:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [Deploy MNIST digit recognition with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb) | Image Classification | MNIST | Local | Azure Container Instance | ONNX | ONNX Model Zoo | | [Deploy MNIST digit recognition with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb) | Image Classification | MNIST | Local | Azure Container Instance | ONNX | ONNX Model Zoo |
| [Deploy Facial Expression Recognition (FER+) with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb) | Facial Expression Recognition | Emotion FER | Local | Azure Container Instance | ONNX | ONNX Model Zoo | | [Deploy Facial Expression Recognition (FER+) with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb) | Facial Expression Recognition | Emotion FER | Local | Azure Container Instance | ONNX | ONNX Model Zoo |
| :star:[Register model and deploy as webservice](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.ipynb) | Deploy a model with Azure Machine Learning | Diabetes | None | Azure Container Instance | Scikit-learn | None | | :star:[Register model and deploy as webservice](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.ipynb) | Deploy a model with Azure Machine Learning | Diabetes | None | Azure Container Instance | Scikit-learn | None |
| :star:[Deploy models to AKS using controlled roll out](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-with-controlled-rollout/deploy-aks-with-controlled-rollout.ipynb) | Deploy a model with Azure Machine Learning | Diabetes | None | Azure Kubernetes Service | Scikit-learn | None | | :star:[Deploy models to AKS using controlled roll out](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-with-controlled-rollout/deploy-aks-with-controlled-rollout.ipynb) | Deploy a model with Azure Machine Learning | Diabetes | None | Azure Kubernetes Service | Scikit-learn | None |
| [Train MNIST in PyTorch, convert, and deploy with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-train-pytorch-aml-deploy-mnist.ipynb) | Image Classification | MNIST | AML Compute | Azure Container Instance | ONNX | ONNX Converter | | [Train MNIST in PyTorch, convert, and deploy with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-train-pytorch-aml-deploy-mnist.ipynb) | Image Classification | MNIST | AML Compute | Azure Container Instance | ONNX | ONNX Converter |
| [Deploy ResNet50 with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb) | Image Classification | ImageNet | Local | Azure Container Instance | ONNX | ONNX Model Zoo | | [Deploy ResNet50 with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb) | Image Classification | ImageNet | Local | Azure Container Instance | ONNX | ONNX Model Zoo |
| [Deploy a model as a web service using MLflow](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/deploy-model/deploy-model.ipynb) | Use MLflow with AML | Diabetes | None | Azure Container Instance | Scikit-learn | None | | [Deploy a model as a web service using MLflow](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/deploy-model/deploy-model.ipynb) | Use MLflow with AML | Diabetes | None | Azure Container Instance | Scikit-learn | None |
| :star:[Convert and deploy TinyYolo with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb) | Object Detection | PASCAL VOC | local | Azure Container Instance | ONNX | ONNX Converter | | :star:[Convert and deploy TinyYolo with ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb) | Object Detection | PASCAL VOC | local | Azure Container Instance | ONNX | ONNX Converter |
@@ -158,90 +99,47 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags | |Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:| |:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [DNN Text Featurization](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.ipynb) | Text featurization using DNNs for classification | None | AML Compute | None | None | None | | [DNN Text Featurization](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.ipynb) | Text featurization using DNNs for classification | None | AML Compute | None | None | None |
| [Automated ML Grouping with Pipeline.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-grouping/auto-ml-forecasting-grouping.ipynb) | Use AzureML Pipeline to trigger multiple Automated ML runs. | Orange Juice Sales | AML Compute | Azure Container Instance | Scikit-learn, Pytorch | AutomatedML | | [Automated ML Grouping with Pipeline.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-grouping/auto-ml-forecasting-grouping.ipynb) | Use AzureML Pipeline to trigger multiple Automated ML runs. | Orange Juice Sales | AML Compute | Azure Container Instance | Scikit-learn, Pytorch | AutomatedML |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) | | | | | | | | [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) | | | | | | |
| [lightgbm-example](https://github.com/Azure/MachineLearningNotebooks/blob/master//contrib/gbdt/lightgbm/lightgbm-example.ipynb) | | | | | | | | [lightgbm-example](https://github.com/Azure/MachineLearningNotebooks/blob/master//contrib/gbdt/lightgbm/lightgbm-example.ipynb) | | | | | | |
| [azure-ml-with-nvidia-rapids](https://github.com/Azure/MachineLearningNotebooks/blob/master//contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb) | | | | | | | | [azure-ml-with-nvidia-rapids](https://github.com/Azure/MachineLearningNotebooks/blob/master//contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb) | | | | | | |
| [auto-ml-continuous-retraining](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/continuous-retraining/auto-ml-continuous-retraining.ipynb) | | | | | | | | [auto-ml-continuous-retraining](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/continuous-retraining/auto-ml-continuous-retraining.ipynb) | | | | | | |
| [auto-ml-forecasting-beer-remote](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb) | | | | | | | | [auto-ml-forecasting-beer-remote](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb) | | | | | | |
| [auto-ml-forecasting-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb) | | | | | | | | [auto-ml-forecasting-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb) | | | | | | |
| [auto-ml-regression](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb) | | | | | | | | [auto-ml-regression](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb) | | | | | | |
| [build-model-run-history-03](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.ipynb) | | | | | | | | [build-model-run-history-03](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.ipynb) | | | | | | |
| [deploy-to-aci-04](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.ipynb) | | | | | | | | [deploy-to-aci-04](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.ipynb) | | | | | | |
| [deploy-to-aks-05](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-05.ipynb) | | | | | | | | [deploy-to-aks-05](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-05.ipynb) | | | | | | |
| [ingest-data-02](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb) | | | | | | | | [ingest-data-02](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb) | | | | | | |
| [installation-and-configuration-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.ipynb) | | | | | | | | [installation-and-configuration-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.ipynb) | | | | | | |
| [automl-databricks-local-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.ipynb) | | | | | | | | [automl-databricks-local-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.ipynb) | | | | | | |
| [automl-databricks-local-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.ipynb) | | | | | | | | [automl-databricks-local-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.ipynb) | | | | | | |
| [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | | | [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | |
| [accelerated-models-object-detection](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb) | | | | | | | | [accelerated-models-object-detection](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb) | | | | | | |
| [accelerated-models-quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb) | | | | | | | | [accelerated-models-quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb) | | | | | | |
| [accelerated-models-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb) | | | | | | | | [accelerated-models-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb) | | | | | | |
| [multi-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-multi-model/multi-model-register-and-deploy.ipynb) | | | | | | | | [multi-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-multi-model/multi-model-register-and-deploy.ipynb) | | | | | | |
| [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | | | [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | |
| [enable-app-insights-in-production-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) | | | | | | | | [enable-app-insights-in-production-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) | | | | | | |
| [onnx-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-model-register-and-deploy.ipynb) | | | | | | | | [onnx-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-model-register-and-deploy.ipynb) | | | | | | |
| [production-deploy-to-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb) | | | | | | | | [production-deploy-to-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb) | | | | | | |
| [register-model-create-image-deploy-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb) | | | | | | | | [register-model-create-image-deploy-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb) | | | | | | |
| [tensorflow-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/tensorflow/tensorflow-model-register-and-deploy.ipynb) | | | | | | | | [tensorflow-model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/tensorflow/tensorflow-model-register-and-deploy.ipynb) | | | | | | |
| [explain-model-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/remote-explanation/explain-model-on-amlcompute.ipynb) | | | | | | | | [explain-model-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/remote-explanation/explain-model-on-amlcompute.ipynb) | | | | | | |
| [save-retrieve-explanations-run-history](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/run-history/save-retrieve-explanations-run-history.ipynb) | | | | | | | | [save-retrieve-explanations-run-history](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/run-history/save-retrieve-explanations-run-history.ipynb) | | | | | | |
| [train-explain-model-locally-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-locally-and-deploy.ipynb) | | | | | | | | [train-explain-model-locally-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-locally-and-deploy.ipynb) | | | | | | |
| [train-explain-model-on-amlcompute-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb) | | | | | | | | [train-explain-model-on-amlcompute-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb) | | | | | | |
| [nyc-taxi-data-regression-model-building](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb) | | | | | | | | [nyc-taxi-data-regression-model-building](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb) | | | | | | |
| [pipeline-batch-scoring](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-batch-scoring/pipeline-batch-scoring.ipynb) | | | | | | | | [pipeline-batch-scoring](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-batch-scoring/pipeline-batch-scoring.ipynb) | | | | | | |
| [pipeline-style-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-style-transfer/pipeline-style-transfer.ipynb) | | | | | | | | [pipeline-style-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-style-transfer/pipeline-style-transfer.ipynb) | | | | | | |
| [authentication-in-azureml](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/manage-azureml-service/authentication-in-azureml/authentication-in-azureml.ipynb) | | | | | | | | [authentication-in-azureml](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/manage-azureml-service/authentication-in-azureml/authentication-in-azureml.ipynb) | | | | | | |
| [Logging APIs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb) | Logging APIs and analyzing results | None | None | None | None | None | | [Logging APIs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb) | Logging APIs and analyzing results | None | None | None | None | None |
| [distributed-cntk-with-custom-docker](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-cntk-with-custom-docker/distributed-cntk-with-custom-docker.ipynb) | | | | | | | | [distributed-cntk-with-custom-docker](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-cntk-with-custom-docker/distributed-cntk-with-custom-docker.ipynb) | | | | | | |
| [notebook_example](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/notebook_example.ipynb) | | | | | | | | [notebook_example](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/notebook_example.ipynb) | | | | | | |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master//setup-environment/configuration.ipynb) | | | | | | | | [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master//setup-environment/configuration.ipynb) | | | | | | |
| [img-classification-part1-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part1-training.ipynb) | | | | | | | | [img-classification-part1-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part1-training.ipynb) | | | | | | |
| [img-classification-part2-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part2-deploy.ipynb) | | | | | | | | [img-classification-part2-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part2-deploy.ipynb) | | | | | | |
| [regression-automated-ml](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/regression-automated-ml.ipynb) | | | | | | | | [regression-automated-ml](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/regression-automated-ml.ipynb) | | | | | | |
| [tutorial-1st-experiment-sdk-train](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-1st-experiment-sdk-train.ipynb) | | | | | | | | [tutorial-1st-experiment-sdk-train](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-1st-experiment-sdk-train.ipynb) | | | | | | |
| [tutorial-pipeline-batch-scoring-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-pipeline-batch-scoring-classification.ipynb) | | | | | | | | [tutorial-pipeline-batch-scoring-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-pipeline-batch-scoring-classification.ipynb) | | | | | | |