Compare commits
19 Commits
azureml-sd
...
azureml-sd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a7c3a0fdb8 | ||
|
|
6d11cdfa0a | ||
|
|
11e8ed2bab | ||
|
|
12c06a4168 | ||
|
|
1f75dc9725 | ||
|
|
1a1a42d525 | ||
|
|
879a272a8d | ||
|
|
bc65bde097 | ||
|
|
690bdfbdbe | ||
|
|
3c02bd8782 | ||
|
|
5c14610a1c | ||
|
|
4e3afae6fb | ||
|
|
a2144aa083 | ||
|
|
0e6334178f | ||
|
|
4ec9178d22 | ||
|
|
2aa7c53b0c | ||
|
|
553fa43e17 | ||
|
|
e98131729e | ||
|
|
fd2b09e2c2 |
@@ -40,6 +40,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
|
||||
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
|
||||
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
|
||||
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
|
||||
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
|
||||
|
||||
---
|
||||
## Documentation
|
||||
|
||||
@@ -103,7 +103,7 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
# Table of Contents
|
||||
1. [Automated ML Introduction](#introduction)
|
||||
1. [Setup using Azure Notebooks](#jupyter)
|
||||
1. [Setup using Azure Databricks](#databricks)
|
||||
1. [Setup using Compute Instances](#jupyter)
|
||||
1. [Setup using a Local Conda environment](#localconda)
|
||||
1. [Setup using Azure Databricks](#databricks)
|
||||
1. [Automated ML SDK Sample Notebooks](#samples)
|
||||
1. [Documentation](#documentation)
|
||||
1. [Running using python command](#pythoncommand)
|
||||
@@ -21,13 +21,13 @@ Below are the three execution environments supported by automated ML.
|
||||
|
||||
|
||||
<a name="jupyter"></a>
|
||||
## Setup using Notebook VMs - Jupyter based notebooks from a Azure VM
|
||||
## Setup using Compute Instances - Jupyter based notebooks from a Azure Virtual Machine
|
||||
|
||||
1. Open the [ML Azure portal](https://ml.azure.com)
|
||||
1. Select Compute
|
||||
1. Select Notebook VMs
|
||||
1. Select Compute Instances
|
||||
1. Click New
|
||||
1. Type a name for the Vm and select a VM type
|
||||
1. Type a Compute Name, select a Virtual Machine type and select a Virtual Machine size
|
||||
1. Click Create
|
||||
|
||||
<a name="localconda"></a>
|
||||
@@ -144,7 +144,7 @@ jupyter notebook
|
||||
- Dataset: forecasting for a bike-sharing
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
|
||||
- [auto-ml-forecasting-function.ipynb](forecasting-high-frequency/auto-ml-forecasting-function.ipynb)
|
||||
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
|
||||
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
|
||||
|
||||
@@ -4,34 +4,28 @@ dependencies:
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- pip<=19.3.1
|
||||
- python>=3.5.2,<3.6.8
|
||||
- wheel==0.30.0
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.16.0,<=1.16.2
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scipy==1.4.1
|
||||
- scikit-learn>=0.19.0,<=0.20.3
|
||||
- pandas>=0.22.0,<=0.23.4
|
||||
- py-xgboost<=0.90
|
||||
- fbprophet==0.5
|
||||
- pytorch=1.1.0
|
||||
- cudatoolkit=9.0
|
||||
- conda-forge::fbprophet==0.5
|
||||
- pytorch::pytorch=1.4.0
|
||||
- cudatoolkit=10.1.243
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-defaults
|
||||
- azureml-dataprep[pandas]
|
||||
- azureml-train-automl
|
||||
- azureml-train
|
||||
- azureml-widgets
|
||||
- azureml-pipeline
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- onnxruntime==1.0.0
|
||||
- pyarrow==0.17.0
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
|
||||
channels:
|
||||
- anaconda
|
||||
- conda-forge
|
||||
- pytorch
|
||||
|
||||
@@ -5,34 +5,27 @@ dependencies:
|
||||
- pip<=19.3.1
|
||||
- nomkl
|
||||
- python>=3.5.2,<3.6.8
|
||||
- wheel==0.30.0
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.16.0,<=1.16.2
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scipy==1.4.1
|
||||
- scikit-learn>=0.19.0,<=0.20.3
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- py-xgboost<=0.80
|
||||
- fbprophet==0.5
|
||||
- pytorch=1.1.0
|
||||
- pandas>=0.22.0,<=0.23.4
|
||||
- py-xgboost<=0.90
|
||||
- conda-forge::fbprophet==0.5
|
||||
- pytorch::pytorch=1.4.0
|
||||
- cudatoolkit=9.0
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-defaults
|
||||
- azureml-dataprep[pandas]
|
||||
- azureml-train-automl
|
||||
- azureml-train
|
||||
- azureml-widgets
|
||||
- azureml-pipeline
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- onnxruntime==1.0.0
|
||||
- pyarrow==0.17.0
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
|
||||
channels:
|
||||
- anaconda
|
||||
- conda-forge
|
||||
- pytorch
|
||||
|
||||
@@ -41,7 +41,7 @@
|
||||
"\n",
|
||||
"In this example we use the UCI Bank Marketing dataset to showcase how you can use AutoML for a classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if the client will subscribe to a term deposit with the bank.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
|
||||
"\n",
|
||||
@@ -105,7 +105,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -643,7 +643,7 @@
|
||||
"\n",
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -42,7 +42,7 @@
|
||||
"\n",
|
||||
"This notebook is using remote compute to train the model.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an experiment using an existing workspace.\n",
|
||||
@@ -93,7 +93,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -322,7 +322,7 @@
|
||||
"\n",
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -97,7 +97,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -194,8 +194,8 @@
|
||||
" '''\n",
|
||||
" remove = ('headers', 'footers', 'quotes')\n",
|
||||
" categories = [\n",
|
||||
" 'alt.atheism',\n",
|
||||
" 'talk.religion.misc',\n",
|
||||
" 'rec.sport.baseball',\n",
|
||||
" 'rec.sport.hockey',\n",
|
||||
" 'comp.graphics',\n",
|
||||
" 'sci.space',\n",
|
||||
" ]\n",
|
||||
@@ -345,7 +345,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can test the model locally to get a feel of the input/output. This step may require additional package installations such as pytorch."
|
||||
"You can test the model locally to get a feel of the input/output. When the model contains BERT, this step will require pytorch and pytorch-transformers installed in your local environment. The exact versions of these packages can be found in the **automl_env.yml** file located in the local copy of your MachineLearningNotebooks folder here:\n",
|
||||
"MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/automl_env.yml"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -481,7 +482,7 @@
|
||||
"source": [
|
||||
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||
"shutil.copy2('infer.py', script_folder)"
|
||||
"shutil.copy('infer.py', script_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -5,7 +5,6 @@ dependencies:
|
||||
- azureml-train-automl
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- azurmel-train
|
||||
- https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl
|
||||
- sentencepiece==0.1.82
|
||||
- pytorch-transformers==1.0
|
||||
|
||||
@@ -2,8 +2,7 @@ import numpy as np
|
||||
import argparse
|
||||
from azureml.core import Run
|
||||
from sklearn.externals import joblib
|
||||
from azureml.automl.core._vendor.automl.client.core.common import metrics
|
||||
from automl.client.core.common import constants
|
||||
from azureml.automl.core.shared import constants, metrics
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
|
||||
@@ -88,7 +88,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -114,7 +114,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -572,7 +572,7 @@
|
||||
"\n",
|
||||
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||
"shutil.copy2('infer.py', script_folder)"
|
||||
"shutil.copy('infer.py', script_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -4,8 +4,7 @@ import argparse
|
||||
from azureml.core import Run
|
||||
from sklearn.externals import joblib
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
from azureml.automl.core._vendor.automl.client.core.common import metrics
|
||||
from automl.client.core.common import constants
|
||||
from azureml.automl.core.shared import constants, metrics
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
|
||||
@@ -87,7 +87,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -453,8 +453,8 @@
|
||||
"\n",
|
||||
"script_folder = os.path.join(os.getcwd(), 'forecast')\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||
"shutil.copy2('forecasting_script.py', script_folder)\n",
|
||||
"shutil.copy2('forecasting_helper.py', script_folder)"
|
||||
"shutil.copy('forecasting_script.py', script_folder)\n",
|
||||
"shutil.copy('forecasting_helper.py', script_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -510,17 +510,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from automl.client.core.common import constants\n",
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = metrics.compute_metrics_regression(\n",
|
||||
" df_all['predicted'],\n",
|
||||
" df_all[target_column_name],\n",
|
||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
||||
" None, None, None)\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
"for key, value in scores.items(): \n",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
import azureml.train.automl
|
||||
from azureml.automl.runtime._vendor.automl.client.core.runtime import forecasting_models
|
||||
from azureml.automl.runtime.shared import forecasting_models
|
||||
from azureml.core import Run
|
||||
from sklearn.externals import joblib
|
||||
import forecasting_helper
|
||||
|
||||
@@ -42,7 +42,7 @@
|
||||
"\n",
|
||||
"In this example we use the associated New York City energy demand dataset to showcase how you can use AutoML for a simple forecasting problem and explore the results. The goal is predict the energy demand for the next 48 hours based on historic time-series data.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first, if you haven't already, to establish your connection to the AzureML Workspace.\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first, if you haven't already, to establish your connection to the AzureML Workspace.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Creating an Experiment using an existing Workspace\n",
|
||||
@@ -97,7 +97,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -465,7 +465,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Forecast Function\n",
|
||||
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see notebook on [high frequency forecasting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/auto-ml-forecasting-function.ipynb)."
|
||||
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see the [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -507,16 +507,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from automl.client.core.common import constants\n",
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = metrics.compute_metrics_regression(\n",
|
||||
" df_all['predicted'],\n",
|
||||
" df_all[target_column_name],\n",
|
||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
||||
" None, None, None)\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
"for key, value in scores.items(): \n",
|
||||
@@ -668,16 +667,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from automl.client.core.common import constants\n",
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = metrics.compute_metrics_regression(\n",
|
||||
" df_all['predicted'],\n",
|
||||
" df_all[target_column_name],\n",
|
||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
||||
" None, None, None)\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
"for key, value in scores.items(): \n",
|
||||
|
||||
@@ -35,7 +35,6 @@
|
||||
"Terminology:\n",
|
||||
"* forecast origin: the last period when the target value is known\n",
|
||||
"* forecast periods(s): the period(s) for which the value of the target is desired.\n",
|
||||
"* forecast horizon: the number of forecast periods\n",
|
||||
"* lookback: how many past periods (before forecast origin) the model function depends on. The larger of number of lags and length of rolling window.\n",
|
||||
"* prediction context: `lookback` periods immediately preceding the forecast origin\n",
|
||||
"\n",
|
||||
@@ -95,7 +94,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -355,9 +354,24 @@
|
||||
" label_column_name=target_label,\n",
|
||||
" **time_series_settings)\n",
|
||||
"\n",
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run.wait_for_completion()\n",
|
||||
"\n",
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Retrieve the best model to use it further.\n",
|
||||
"_, fitted_model = remote_run.get_output()"
|
||||
]
|
||||
@@ -705,6 +719,90 @@
|
||||
"X_show[['date', 'grain', 'ext_predictor', '_automl_target_col']]\n",
|
||||
"# prediction is in _automl_target_col"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Forecasting farther than the maximum horizon <a id=\"recursive forecasting\"></a>\n",
|
||||
"When the forecast destination, or the latest date in the prediction data frame, is farther into the future than the specified maximum horizon, the `forecast()` function will still make point predictions out to the later date using a recursive operation mode. Internally, the method recursively applies the regular forecaster to generate context so that we can forecast further into the future. \n",
|
||||
"\n",
|
||||
"To illustrate the use-case and operation of recursive forecasting, we'll consider an example with a single time-series where the forecasting period directly follows the training period and is twice as long as the maximum horizon given at training time.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Internally, we apply the forecaster in an iterative manner and finish the forecast task in two interations. In the first iteration, we apply the forecaster and get the prediction for the first max-horizon periods (y_pred1). In the second iteraction, y_pred1 is used as the context to produce the prediction for the next max-horizon periods (y_pred2). The combination of (y_pred1 and y_pred2) gives the results for the total forecast periods. \n",
|
||||
"\n",
|
||||
"A caveat: forecast accuracy will likely be worse the farther we predict into the future since errors are compounded with recursive application of the forecaster.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate the same kind of test data we trained on, but with a single grain/time-series and test period twice as long as the max_horizon\n",
|
||||
"_, _, X_test_long, y_test_long = get_timeseries(train_len=n_train_periods,\n",
|
||||
" test_len=max_horizon*2,\n",
|
||||
" time_column_name=TIME_COLUMN_NAME,\n",
|
||||
" target_column_name=TARGET_COLUMN_NAME,\n",
|
||||
" grain_column_name=GRAIN_COLUMN_NAME,\n",
|
||||
" grains=1)\n",
|
||||
"\n",
|
||||
"print(X_test_long.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].min())\n",
|
||||
"print(X_test_long.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].max())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# forecast() function will invoke the recursive forecast method internally.\n",
|
||||
"y_pred_long, X_trans_long = fitted_model.forecast(X_test_long)\n",
|
||||
"y_pred_long"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# What forecast() function does in this case is equivalent to iterating it twice over the test set as the following. \n",
|
||||
"y_pred1, _ = fitted_model.forecast(X_test_long[:max_horizon])\n",
|
||||
"y_pred_all, _ = fitted_model.forecast(X_test_long, np.concatenate((y_pred1, np.full(max_horizon, np.nan))))\n",
|
||||
"np.array_equal(y_pred_all, y_pred_long)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Confidence interval and distributional forecasts\n",
|
||||
"AutoML cannot currently estimate forecast errors beyond the maximum horizon set during training, so the `forecast_quantiles()` function will return missing values for quantiles not equal to 0.5 beyond the maximum horizon. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fitted_model.forecast_quantiles(X_test_long)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Similarly with the simple senarios illustrated above, forecasting farther than the max horizon in other senarios like 'multiple grain', 'Destination-date forecast', and 'forecast away from the training data' are also automatically handled by the `forecast()` function. "
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
|
After Width: | Height: | Size: 26 KiB |
|
After Width: | Height: | Size: 30 KiB |
|
After Width: | Height: | Size: 21 KiB |
@@ -65,7 +65,8 @@
|
||||
"\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.automl.core.featurization import FeaturizationConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -81,7 +82,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -318,17 +319,54 @@
|
||||
"target_column_name = 'Quantity'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Customization\n",
|
||||
"\n",
|
||||
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include,\n",
|
||||
"1. Column purposes update: Override feature type for the specified column. Currently supports DateTime, Categorical and Numeric. This customization can be used in the scenario that the type of the column cannot correctly reflect its purpose. Some numerical columns, for instance, can be treated as Categorical columns which need to be converted to categorical while some can be treated as epoch timestamp which need to be converted to datetime. To tell our SDK to correctly preprocess these columns, a configuration need to be add with the columns and their desired types.\n",
|
||||
"2. Transformer parameters update: Currently supports parameter change for Imputer only. User can customize imputation methods, the supported methods are constant for target data and mean, median, most frequent and constant for training data. This customization can be used for the scenario that our customers know which imputation methods fit best to the input data. For instance, some datasets use NaN to represent 0 which the correct behavior should impute all the missing value with 0. To achieve this behavior, these columns need to be configured as constant imputation with `fill_value` 0.\n",
|
||||
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data.\n",
|
||||
"\n",
|
||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"featurization_config = FeaturizationConfig()\n",
|
||||
"featurization_config.drop_columns = ['logQuantity'] # 'logQuantity' is a leaky feature, so we remove it.\n",
|
||||
"# Force the CPWVOL5 feature to be numeric type.\n",
|
||||
"featurization_config.add_column_purpose('CPWVOL5', 'Numeric')\n",
|
||||
"# Fill missing values in the target column, Quantity, with zeros.\n",
|
||||
"featurization_config.add_transformer_params('Imputer', ['Quantity'], {\"strategy\": \"constant\", \"fill_value\": 0})\n",
|
||||
"# Fill missing values in the INCOME column with median value.\n",
|
||||
"featurization_config.add_transformer_params('Imputer', ['INCOME'], {\"strategy\": \"median\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters. \n",
|
||||
"The [AutoMLConfig](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py) object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters.\n",
|
||||
"\n",
|
||||
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
|
||||
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If grain columns are not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
|
||||
"\n",
|
||||
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
|
||||
"\n",
|
||||
"We note here that AutoML can sweep over two types of time-series models:\n",
|
||||
"* Models that are trained for each series such as ARIMA and Facebook's Prophet. Note that these models are only available for [Enterprise Edition Workspaces](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace#upgrade).\n",
|
||||
"* Models trained across multiple time-series using a regression approach.\n",
|
||||
"\n",
|
||||
"In the first case, AutoML loops over all time-series in your dataset and trains one model (e.g. AutoArima or Prophet, as the case may be) for each series. This can result in long runtimes to train these models if there are a lot of series in the data. One way to mitigate this problem is to fit models for different series in parallel if you have multiple compute cores available. To enable this behavior, set the `max_cores_per_iteration` parameter in your AutoMLConfig as shown in the example in the next cell. \n",
|
||||
"\n",
|
||||
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
|
||||
"\n",
|
||||
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *validation_data* parameter of AutoMLConfig.\n",
|
||||
"\n",
|
||||
@@ -349,8 +387,9 @@
|
||||
"|**debug_log**|Log file path for writing debugging information|\n",
|
||||
"|**time_column_name**|Name of the datetime column in the input data|\n",
|
||||
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
|
||||
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
|
||||
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|"
|
||||
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|\n",
|
||||
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Setting this enables AutoML to perform featurization on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
|
||||
"|**max_cores_per_iteration**|Maximum number of cores to utilize per iteration. A value of -1 indicates all available cores should be used.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -362,7 +401,6 @@
|
||||
"time_series_settings = {\n",
|
||||
" 'time_column_name': time_column_name,\n",
|
||||
" 'grain_column_names': grain_column_names,\n",
|
||||
" 'drop_column_names': ['logQuantity'], # 'logQuantity' is a leaky feature, so we remove it.\n",
|
||||
" 'max_horizon': n_test_periods\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
@@ -374,8 +412,10 @@
|
||||
" label_column_name=target_column_name,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" enable_early_stopping=True,\n",
|
||||
" featurization=featurization_config,\n",
|
||||
" n_cross_validations=3,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" max_cores_per_iteration=-1,\n",
|
||||
" **time_series_settings)"
|
||||
]
|
||||
},
|
||||
@@ -425,6 +465,33 @@
|
||||
"model_name = best_run.properties['model_name']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Transparency\n",
|
||||
"\n",
|
||||
"View updated featurization summary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"custom_featurizer = fitted_model.named_steps['timeseriestransformer']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"custom_featurizer.get_featurization_summary()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -478,7 +545,7 @@
|
||||
"source": [
|
||||
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
|
||||
"\n",
|
||||
"The [energy demand forecasting notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) demonstrates the use of the forecast function in more detail in the context of using lags and rolling window features. "
|
||||
"The [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -509,16 +576,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"from azureml.automl.runtime.shared.score import scoring\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from automl.client.core.common import constants\n",
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = metrics.compute_metrics_regression(\n",
|
||||
" df_all['predicted'],\n",
|
||||
" df_all[target_column_name],\n",
|
||||
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
|
||||
" None, None, None)\n",
|
||||
"# use automl scoring module\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
"for key, value in scores.items(): \n",
|
||||
|
||||
@@ -42,7 +42,7 @@
|
||||
"\n",
|
||||
"This notebook is using the local machine compute to train the model.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an experiment using an existing workspace.\n",
|
||||
@@ -95,7 +95,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -370,7 +370,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Initialize the Mimic Explainer for feature importance\n",
|
||||
"For explaining the AutoML models, use the MimicWrapper from azureml.explain.model package. The MimicWrapper can be initialized with fields in automl_explainer_setup_obj, your workspace and a LightGBM model which acts as a surrogate model to explain the AutoML model (fitted_model here). The MimicWrapper also takes the automl_run object where engineered explanations will be uploaded."
|
||||
"For explaining the AutoML models, use the MimicWrapper from azureml.explain.model package. The MimicWrapper can be initialized with fields in automl_explainer_setup_obj, your workspace and a surrogate model to explain the AutoML model (fitted_model here). The MimicWrapper also takes the automl_run object where engineered explanations will be uploaded."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -379,13 +379,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
|
||||
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, \n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
|
||||
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
|
||||
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
|
||||
" classes=automl_explainer_setup_obj.classes)"
|
||||
" classes=automl_explainer_setup_obj.classes,\n",
|
||||
" explainer_kwargs=automl_explainer_setup_obj.surrogate_model_params)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -40,7 +40,7 @@
|
||||
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
||||
"After training AutoML models for this regression data set, we show how you can compute model explanations on your remote compute using a sample explainer script.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
|
||||
"\n",
|
||||
@@ -98,7 +98,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -7,7 +7,7 @@ import azureml.train.automl
|
||||
import azureml.explain.model
|
||||
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
||||
automl_setup_model_explanations
|
||||
from sklearn.externals import joblib
|
||||
import joblib
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
|
||||
@@ -4,16 +4,14 @@ import os
|
||||
|
||||
from azureml.core.run import Run
|
||||
from azureml.core.experiment import Experiment
|
||||
from sklearn.externals import joblib
|
||||
from azureml.core.dataset import Dataset
|
||||
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
|
||||
automl_setup_model_explanations, automl_check_model_if_explainable
|
||||
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
|
||||
from azureml.explain.model.mimic_wrapper import MimicWrapper
|
||||
from automl.client.core.common.constants import MODEL_PATH
|
||||
from azureml.automl.core.shared.constants import MODEL_EXPLANATION_TAG
|
||||
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save
|
||||
|
||||
from azureml.automl.core.shared.constants import MODEL_PATH
|
||||
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer
|
||||
import joblib
|
||||
|
||||
OUTPUT_DIR = './outputs/'
|
||||
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
||||
@@ -69,16 +67,14 @@ raw_explanations = explainer.explain(['local', 'global'], get_raw=True, tag='raw
|
||||
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
|
||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||
|
||||
# Set tag that explanations completed
|
||||
automl_run.tag(MODEL_EXPLANATION_TAG, 'True')
|
||||
|
||||
print("Engineered and raw explanations computed successfully")
|
||||
|
||||
# Initialize the ScoringExplainer
|
||||
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
|
||||
|
||||
# Pickle scoring explainer locally
|
||||
save(scoring_explainer, exist_ok=True)
|
||||
with open('scoring_explainer.pkl', 'wb') as stream:
|
||||
joblib.dump(scoring_explainer, stream)
|
||||
|
||||
# Upload the scoring explainer to the automl run
|
||||
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')
|
||||
|
||||
@@ -40,7 +40,7 @@
|
||||
"## Introduction\n",
|
||||
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
@@ -92,7 +92,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.3.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
-- This shows using the AutoMLForecast stored procedure to predict using a forecasting model for the nyc_energy dataset.
|
||||
|
||||
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
|
||||
WHERE ExperimentName = 'automl-sql-forecast'
|
||||
ORDER BY CreatedDate DESC)
|
||||
|
||||
DECLARE @max_horizon INT = 48
|
||||
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
|
||||
|
||||
DECLARE @TestDataQuery NVARCHAR(MAX) = '
|
||||
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
|
||||
demand,
|
||||
precip,
|
||||
temp
|
||||
FROM nyc_energy
|
||||
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
|
||||
AND timeStamp > ''' + @split_time + ''''
|
||||
|
||||
EXEC dbo.AutoMLForecast @input_query=@TestDataQuery,
|
||||
@label_column='demand',
|
||||
@time_column_name='timeStamp',
|
||||
@model=@model
|
||||
WITH RESULT SETS ((timeStamp DATETIME, grain NVARCHAR(255), predicted_demand FLOAT, precip FLOAT, temp FLOAT, actual_demand FLOAT))
|
||||
@@ -1,10 +0,0 @@
|
||||
-- This lists all the metrics for all iterations for the most recent run.
|
||||
|
||||
DECLARE @RunId NVARCHAR(43)
|
||||
DECLARE @ExperimentName NVARCHAR(255)
|
||||
|
||||
SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)
|
||||
FROM aml_model
|
||||
ORDER BY CreatedDate DESC
|
||||
|
||||
EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName
|
||||
@@ -1,25 +0,0 @@
|
||||
-- This shows using the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset.
|
||||
|
||||
DECLARE @max_horizon INT = 48
|
||||
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
|
||||
|
||||
DECLARE @TrainDataQuery NVARCHAR(MAX) = '
|
||||
SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,
|
||||
demand,
|
||||
precip,
|
||||
temp
|
||||
FROM nyc_energy
|
||||
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
|
||||
and timeStamp < ''' + @split_time + ''''
|
||||
|
||||
INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
||||
EXEC dbo.AutoMLTrain @input_query= @TrainDataQuery,
|
||||
@label_column='demand',
|
||||
@task='forecasting',
|
||||
@iterations=10,
|
||||
@iteration_timeout_minutes=5,
|
||||
@time_column_name='timeStamp',
|
||||
@max_horizon=@max_horizon,
|
||||
@experiment_name='automl-sql-forecast',
|
||||
@primary_metric='normalized_root_mean_squared_error'
|
||||
|
||||
@@ -1,161 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Train a model and use it for prediction\r\n",
|
||||
"\r\n",
|
||||
"Before running this notebook, run the auto-ml-sql-setup.ipynb notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set the default database"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"USE [automl]\r\n",
|
||||
"GO"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
||||
"EXEC dbo.AutoMLTrain @input_query='\r\n",
|
||||
"SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,\r\n",
|
||||
" demand,\r\n",
|
||||
"\t precip,\r\n",
|
||||
"\t temp,\r\n",
|
||||
"\t CASE WHEN timeStamp < ''2017-01-01'' THEN 0 ELSE 1 END AS is_validate_column\r\n",
|
||||
"FROM nyc_energy\r\n",
|
||||
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
||||
"and timeStamp < ''2017-02-01''',\r\n",
|
||||
"@label_column='demand',\r\n",
|
||||
"@task='forecasting',\r\n",
|
||||
"@iterations=10,\r\n",
|
||||
"@iteration_timeout_minutes=5,\r\n",
|
||||
"@time_column_name='timeStamp',\r\n",
|
||||
"@is_validate_column='is_validate_column',\r\n",
|
||||
"@experiment_name='automl-sql-forecast',\r\n",
|
||||
"@primary_metric='normalized_root_mean_squared_error'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use the AutoMLPredict stored procedure to predict using the forecasting model for the nyc_energy dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model\r\n",
|
||||
" WHERE ExperimentName = 'automl-sql-forecast'\r\n",
|
||||
"\t\t\t\t\t\t\t\tORDER BY CreatedDate DESC)\r\n",
|
||||
"\r\n",
|
||||
"EXEC dbo.AutoMLPredict @input_query='\r\n",
|
||||
"SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,\r\n",
|
||||
" demand,\r\n",
|
||||
"\t precip,\r\n",
|
||||
"\t temp\r\n",
|
||||
"FROM nyc_energy\r\n",
|
||||
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
||||
"AND timeStamp >= ''2017-02-01''',\r\n",
|
||||
"@label_column='demand',\r\n",
|
||||
"@model=@model\r\n",
|
||||
"WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## List all the metrics for all iterations for the most recent training run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"DECLARE @RunId NVARCHAR(43)\r\n",
|
||||
"DECLARE @ExperimentName NVARCHAR(255)\r\n",
|
||||
"\r\n",
|
||||
"SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)\r\n",
|
||||
"FROM aml_model\r\n",
|
||||
"ORDER BY CreatedDate DESC\r\n",
|
||||
"\r\n",
|
||||
"EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "jeffshep"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"Local"
|
||||
],
|
||||
"datasets": [
|
||||
"NYC Energy"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"Azure ML AutoML"
|
||||
],
|
||||
"tags": [
|
||||
""
|
||||
],
|
||||
"friendly_name": "Forecasting with automated ML SQL integration",
|
||||
"index_order": 1,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "sql",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "sql",
|
||||
"version": ""
|
||||
},
|
||||
"task": "Forecasting"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,92 +0,0 @@
|
||||
-- This procedure forecast values based on a forecasting model returned by AutoMLTrain.
|
||||
-- It returns a dataset with the forecasted values.
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLForecast]
|
||||
(
|
||||
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
|
||||
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
|
||||
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
|
||||
@label_column NVARCHAR(255)='', -- Optional name of the column from input_query, which should be ignored when predicting
|
||||
@y_query_column NVARCHAR(255)='', -- Optional value column that can be used for predicting.
|
||||
-- If specified, this can contain values for past times (after the model was trained)
|
||||
-- and contain Nan for future times.
|
||||
@forecast_column_name NVARCHAR(255) = 'predicted'
|
||||
-- The name of the output column containing the forecast value.
|
||||
) AS
|
||||
BEGIN
|
||||
|
||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
||||
import azureml.core
|
||||
import numpy as np
|
||||
from azureml.train.automl import AutoMLConfig
|
||||
import pickle
|
||||
import codecs
|
||||
|
||||
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
|
||||
|
||||
test_data = input_data.copy()
|
||||
|
||||
if label_column != "" and label_column is not None:
|
||||
y_test = test_data.pop(label_column).values
|
||||
else:
|
||||
y_test = None
|
||||
|
||||
if y_query_column != "" and y_query_column is not None:
|
||||
y_query = test_data.pop(y_query_column).values
|
||||
else:
|
||||
y_query = np.repeat(np.nan, len(test_data))
|
||||
|
||||
X_test = test_data
|
||||
|
||||
if time_column_name != "" and time_column_name is not None:
|
||||
X_test[time_column_name] = pd.to_datetime(X_test[time_column_name])
|
||||
|
||||
y_fcst, X_trans = model_obj.forecast(X_test, y_query)
|
||||
|
||||
def align_outputs(y_forecast, X_trans, X_test, y_test, forecast_column_name):
|
||||
# Demonstrates how to get the output aligned to the inputs
|
||||
# using pandas indexes. Helps understand what happened if
|
||||
# the output shape differs from the input shape, or if
|
||||
# the data got re-sorted by time and grain during forecasting.
|
||||
|
||||
# Typical causes of misalignment are:
|
||||
# * we predicted some periods that were missing in actuals -> drop from eval
|
||||
# * model was asked to predict past max_horizon -> increase max horizon
|
||||
# * data at start of X_test was needed for lags -> provide previous periods
|
||||
|
||||
df_fcst = pd.DataFrame({forecast_column_name : y_forecast})
|
||||
# y and X outputs are aligned by forecast() function contract
|
||||
df_fcst.index = X_trans.index
|
||||
|
||||
# align original X_test to y_test
|
||||
X_test_full = X_test.copy()
|
||||
if y_test is not None:
|
||||
X_test_full[label_column] = y_test
|
||||
|
||||
# X_test_full does not include origin, so reset for merge
|
||||
df_fcst.reset_index(inplace=True)
|
||||
X_test_full = X_test_full.reset_index().drop(columns=''index'')
|
||||
together = df_fcst.merge(X_test_full, how=''right'')
|
||||
|
||||
# drop rows where prediction or actuals are nan
|
||||
# happens because of missing actuals
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = together[together[[label_column, forecast_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
|
||||
combined_output = align_outputs(y_fcst, X_trans, X_test, y_test, forecast_column_name)
|
||||
|
||||
'
|
||||
, @input_data_1 = @input_query
|
||||
, @input_data_1_name = N'input_data'
|
||||
, @output_data_1_name = N'combined_output'
|
||||
, @params = N'@model NVARCHAR(MAX), @time_column_name NVARCHAR(255), @label_column NVARCHAR(255), @y_query_column NVARCHAR(255), @forecast_column_name NVARCHAR(255)'
|
||||
, @model = @model
|
||||
, @time_column_name = @time_column_name
|
||||
, @label_column = @label_column
|
||||
, @y_query_column = @y_query_column
|
||||
, @forecast_column_name = @forecast_column_name
|
||||
END
|
||||
@@ -1,70 +0,0 @@
|
||||
-- This procedure returns a list of metrics for each iteration of a run.
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]
|
||||
(
|
||||
@run_id NVARCHAR(250), -- The RunId
|
||||
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
|
||||
@connection_name NVARCHAR(255)='default' -- The AML connection to use.
|
||||
) AS
|
||||
BEGIN
|
||||
DECLARE @tenantid NVARCHAR(255)
|
||||
DECLARE @appid NVARCHAR(255)
|
||||
DECLARE @password NVARCHAR(255)
|
||||
DECLARE @config_file NVARCHAR(255)
|
||||
|
||||
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
|
||||
FROM aml_connection
|
||||
WHERE ConnectionName = @connection_name;
|
||||
|
||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
||||
import logging
|
||||
import azureml.core
|
||||
import numpy as np
|
||||
from azureml.core.experiment import Experiment
|
||||
from azureml.train.automl.run import AutoMLRun
|
||||
from azureml.core.authentication import ServicePrincipalAuthentication
|
||||
from azureml.core.workspace import Workspace
|
||||
|
||||
auth = ServicePrincipalAuthentication(tenantid, appid, password)
|
||||
|
||||
ws = Workspace.from_config(path=config_file, auth=auth)
|
||||
|
||||
experiment = Experiment(ws, experiment_name)
|
||||
|
||||
ml_run = AutoMLRun(experiment = experiment, run_id = run_id)
|
||||
|
||||
children = list(ml_run.get_children())
|
||||
iterationlist = []
|
||||
metricnamelist = []
|
||||
metricvaluelist = []
|
||||
|
||||
for run in children:
|
||||
properties = run.get_properties()
|
||||
if "iteration" in properties:
|
||||
iteration = int(properties["iteration"])
|
||||
for metric_name, metric_value in run.get_metrics().items():
|
||||
if isinstance(metric_value, float):
|
||||
iterationlist.append(iteration)
|
||||
metricnamelist.append(metric_name)
|
||||
metricvaluelist.append(metric_value)
|
||||
|
||||
metrics = pd.DataFrame({"iteration": iterationlist, "metric_name": metricnamelist, "metric_value": metricvaluelist})
|
||||
'
|
||||
, @output_data_1_name = N'metrics'
|
||||
, @params = N'@run_id NVARCHAR(250),
|
||||
@experiment_name NVARCHAR(32),
|
||||
@tenantid NVARCHAR(255),
|
||||
@appid NVARCHAR(255),
|
||||
@password NVARCHAR(255),
|
||||
@config_file NVARCHAR(255)'
|
||||
, @run_id = @run_id
|
||||
, @experiment_name = @experiment_name
|
||||
, @tenantid = @tenantid
|
||||
, @appid = @appid
|
||||
, @password = @password
|
||||
, @config_file = @config_file
|
||||
WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))
|
||||
END
|
||||
@@ -1,41 +0,0 @@
|
||||
-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.
|
||||
-- It returns the dataset with a new column added, which is the predicted value.
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]
|
||||
(
|
||||
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
|
||||
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
|
||||
@label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting
|
||||
) AS
|
||||
BEGIN
|
||||
|
||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
||||
import azureml.core
|
||||
import numpy as np
|
||||
from azureml.train.automl import AutoMLConfig
|
||||
import pickle
|
||||
import codecs
|
||||
|
||||
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
|
||||
|
||||
test_data = input_data.copy()
|
||||
|
||||
if label_column != "" and label_column is not None:
|
||||
y_test = test_data.pop(label_column).values
|
||||
X_test = test_data
|
||||
|
||||
predicted = model_obj.predict(X_test)
|
||||
|
||||
combined_output = input_data.assign(predicted=predicted)
|
||||
|
||||
'
|
||||
, @input_data_1 = @input_query
|
||||
, @input_data_1_name = N'input_data'
|
||||
, @output_data_1_name = N'combined_output'
|
||||
, @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)'
|
||||
, @model = @model
|
||||
, @label_column = @label_column
|
||||
END
|
||||
@@ -1,240 +0,0 @@
|
||||
-- This stored procedure uses automated machine learning to train several models
|
||||
-- and returns the best model.
|
||||
--
|
||||
-- The result set has several columns:
|
||||
-- best_run - iteration ID for the best model
|
||||
-- experiment_name - experiment name pass in with the @experiment_name parameter
|
||||
-- fitted_model - best model found
|
||||
-- log_file_text - AutoML debug_log contents
|
||||
-- workspace - name of the Azure ML workspace where run history is stored
|
||||
--
|
||||
-- An example call for a classification problem is:
|
||||
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
||||
-- exec dbo.AutoMLTrain @input_query='
|
||||
-- SELECT top 100000
|
||||
-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime
|
||||
-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime
|
||||
-- ,[passenger_count]
|
||||
-- ,[trip_time_in_secs]
|
||||
-- ,[trip_distance]
|
||||
-- ,[payment_type]
|
||||
-- ,[tip_class]
|
||||
-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',
|
||||
-- @label_column = 'tip_class',
|
||||
-- @iterations=10
|
||||
--
|
||||
-- An example call for forecasting is:
|
||||
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
|
||||
-- exec dbo.AutoMLTrain @input_query='
|
||||
-- select cast(timeStamp as nvarchar(30)) as timeStamp,
|
||||
-- demand,
|
||||
-- precip,
|
||||
-- temp,
|
||||
-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column
|
||||
-- from nyc_energy
|
||||
-- where demand is not null and precip is not null and temp is not null
|
||||
-- and timeStamp < ''2017-02-01''',
|
||||
-- @label_column='demand',
|
||||
-- @task='forecasting',
|
||||
-- @iterations=10,
|
||||
-- @iteration_timeout_minutes=5,
|
||||
-- @time_column_name='timeStamp',
|
||||
-- @is_validate_column='is_validate_column',
|
||||
-- @experiment_name='automl-sql-forecast',
|
||||
-- @primary_metric='normalized_root_mean_squared_error'
|
||||
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]
|
||||
(
|
||||
@input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.
|
||||
@label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.
|
||||
@primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.
|
||||
@iterations INT=100, -- The maximum number of pipelines to train.
|
||||
@task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.
|
||||
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
|
||||
@iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline.
|
||||
@experiment_timeout_hours FLOAT = 1, -- The maximum time in hours for training all pipelines.
|
||||
@n_cross_validations INT = 3, -- The number of cross validations.
|
||||
@blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.
|
||||
-- The list of possible models can be found at:
|
||||
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
|
||||
@whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.
|
||||
-- The list of possible models can be found at:
|
||||
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
|
||||
@experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.
|
||||
@sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.
|
||||
@is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.
|
||||
-- In the values of the column, 0 means for training and 1 means for validation.
|
||||
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
|
||||
@connection_name NVARCHAR(255)='default', -- The AML connection to use.
|
||||
@max_horizon INT = 0 -- A forecast horizon is a time span into the future (or just beyond the latest date in the training data)
|
||||
-- where forecasts of the target quantity are needed.
|
||||
-- For example, if data is recorded daily and max_horizon is 5, we will predict 5 days ahead.
|
||||
) AS
|
||||
BEGIN
|
||||
|
||||
DECLARE @tenantid NVARCHAR(255)
|
||||
DECLARE @appid NVARCHAR(255)
|
||||
DECLARE @password NVARCHAR(255)
|
||||
DECLARE @config_file NVARCHAR(255)
|
||||
|
||||
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
|
||||
FROM aml_connection
|
||||
WHERE ConnectionName = @connection_name;
|
||||
|
||||
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
|
||||
import logging
|
||||
import azureml.core
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from azureml.core.experiment import Experiment
|
||||
from azureml.train.automl import AutoMLConfig
|
||||
from sklearn import datasets
|
||||
import pickle
|
||||
import codecs
|
||||
from azureml.core.authentication import ServicePrincipalAuthentication
|
||||
from azureml.core.workspace import Workspace
|
||||
|
||||
if __name__.startswith("sqlindb"):
|
||||
auth = ServicePrincipalAuthentication(tenantid, appid, password)
|
||||
|
||||
ws = Workspace.from_config(path=config_file, auth=auth)
|
||||
|
||||
project_folder = "./sample_projects/" + experiment_name
|
||||
|
||||
experiment = Experiment(ws, experiment_name)
|
||||
|
||||
data_train = input_data
|
||||
X_valid = None
|
||||
y_valid = None
|
||||
sample_weight_valid = None
|
||||
|
||||
if is_validate_column != "" and is_validate_column is not None:
|
||||
data_train = input_data[input_data[is_validate_column] <= 0]
|
||||
data_valid = input_data[input_data[is_validate_column] > 0]
|
||||
data_train.pop(is_validate_column)
|
||||
data_valid.pop(is_validate_column)
|
||||
y_valid = data_valid.pop(label_column).values
|
||||
if sample_weight_column != "" and sample_weight_column is not None:
|
||||
sample_weight_valid = data_valid.pop(sample_weight_column).values
|
||||
X_valid = data_valid
|
||||
n_cross_validations = None
|
||||
|
||||
y_train = data_train.pop(label_column).values
|
||||
|
||||
sample_weight = None
|
||||
if sample_weight_column != "" and sample_weight_column is not None:
|
||||
sample_weight = data_train.pop(sample_weight_column).values
|
||||
|
||||
X_train = data_train
|
||||
|
||||
if experiment_timeout_hours == 0:
|
||||
experiment_timeout_hours = None
|
||||
|
||||
if experiment_exit_score == 0:
|
||||
experiment_exit_score = None
|
||||
|
||||
if blacklist_models == "":
|
||||
blacklist_models = None
|
||||
|
||||
if blacklist_models is not None:
|
||||
blacklist_models = blacklist_models.replace(" ", "").split(",")
|
||||
|
||||
if whitelist_models == "":
|
||||
whitelist_models = None
|
||||
|
||||
if whitelist_models is not None:
|
||||
whitelist_models = whitelist_models.replace(" ", "").split(",")
|
||||
|
||||
automl_settings = {}
|
||||
preprocess = True
|
||||
if time_column_name != "" and time_column_name is not None:
|
||||
automl_settings = { "time_column_name": time_column_name }
|
||||
preprocess = False
|
||||
if max_horizon > 0:
|
||||
automl_settings["max_horizon"] = max_horizon
|
||||
|
||||
log_file_name = "automl_sqlindb_errors.log"
|
||||
|
||||
automl_config = AutoMLConfig(task = task,
|
||||
debug_log = log_file_name,
|
||||
primary_metric = primary_metric,
|
||||
iteration_timeout_minutes = iteration_timeout_minutes,
|
||||
experiment_timeout_hours = experiment_timeout_hours,
|
||||
iterations = iterations,
|
||||
n_cross_validations = n_cross_validations,
|
||||
preprocess = preprocess,
|
||||
verbosity = logging.INFO,
|
||||
X = X_train,
|
||||
y = y_train,
|
||||
path = project_folder,
|
||||
blacklist_models = blacklist_models,
|
||||
whitelist_models = whitelist_models,
|
||||
experiment_exit_score = experiment_exit_score,
|
||||
sample_weight = sample_weight,
|
||||
X_valid = X_valid,
|
||||
y_valid = y_valid,
|
||||
sample_weight_valid = sample_weight_valid,
|
||||
**automl_settings)
|
||||
|
||||
local_run = experiment.submit(automl_config, show_output = True)
|
||||
|
||||
best_run, fitted_model = local_run.get_output()
|
||||
|
||||
pickled_model = codecs.encode(pickle.dumps(fitted_model), "base64").decode()
|
||||
|
||||
log_file_text = ""
|
||||
|
||||
try:
|
||||
with open(log_file_name, "r") as log_file:
|
||||
log_file_text = log_file.read()
|
||||
except:
|
||||
log_file_text = "Log file not found"
|
||||
|
||||
returned_model = pd.DataFrame({"best_run": [best_run.id], "experiment_name": [experiment_name], "fitted_model": [pickled_model], "log_file_text": [log_file_text], "workspace": [ws.name]}, dtype=np.dtype(np.str))
|
||||
'
|
||||
, @input_data_1 = @input_query
|
||||
, @input_data_1_name = N'input_data'
|
||||
, @output_data_1_name = N'returned_model'
|
||||
, @params = N'@label_column NVARCHAR(255),
|
||||
@primary_metric NVARCHAR(40),
|
||||
@iterations INT, @task NVARCHAR(40),
|
||||
@experiment_name NVARCHAR(32),
|
||||
@iteration_timeout_minutes INT,
|
||||
@experiment_timeout_hours FLOAT,
|
||||
@n_cross_validations INT,
|
||||
@blacklist_models NVARCHAR(MAX),
|
||||
@whitelist_models NVARCHAR(MAX),
|
||||
@experiment_exit_score FLOAT,
|
||||
@sample_weight_column NVARCHAR(255),
|
||||
@is_validate_column NVARCHAR(255),
|
||||
@time_column_name NVARCHAR(255),
|
||||
@tenantid NVARCHAR(255),
|
||||
@appid NVARCHAR(255),
|
||||
@password NVARCHAR(255),
|
||||
@config_file NVARCHAR(255),
|
||||
@max_horizon INT'
|
||||
, @label_column = @label_column
|
||||
, @primary_metric = @primary_metric
|
||||
, @iterations = @iterations
|
||||
, @task = @task
|
||||
, @experiment_name = @experiment_name
|
||||
, @iteration_timeout_minutes = @iteration_timeout_minutes
|
||||
, @experiment_timeout_hours = @experiment_timeout_hours
|
||||
, @n_cross_validations = @n_cross_validations
|
||||
, @blacklist_models = @blacklist_models
|
||||
, @whitelist_models = @whitelist_models
|
||||
, @experiment_exit_score = @experiment_exit_score
|
||||
, @sample_weight_column = @sample_weight_column
|
||||
, @is_validate_column = @is_validate_column
|
||||
, @time_column_name = @time_column_name
|
||||
, @tenantid = @tenantid
|
||||
, @appid = @appid
|
||||
, @password = @password
|
||||
, @config_file = @config_file
|
||||
, @max_horizon = @max_horizon
|
||||
WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))
|
||||
END
|
||||
@@ -1,18 +0,0 @@
|
||||
-- This is a table to store the Azure ML connection information.
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
|
||||
CREATE TABLE [dbo].[aml_connection](
|
||||
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
|
||||
[ConnectionName] [nvarchar](255) NULL,
|
||||
[TenantId] [nvarchar](255) NULL,
|
||||
[AppId] [nvarchar](255) NULL,
|
||||
[Password] [nvarchar](255) NULL,
|
||||
[ConfigFile] [nvarchar](255) NULL
|
||||
) ON [PRIMARY]
|
||||
GO
|
||||
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
-- This is a table to hold the results from the AutoMLTrain procedure.
|
||||
SET ANSI_NULLS ON
|
||||
GO
|
||||
|
||||
SET QUOTED_IDENTIFIER ON
|
||||
GO
|
||||
|
||||
CREATE TABLE [dbo].[aml_model](
|
||||
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
|
||||
[Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.
|
||||
[RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.
|
||||
[CreatedDate] [datetime] NULL,
|
||||
[ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name
|
||||
[WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name
|
||||
[LogFileText] [nvarchar](max) NULL
|
||||
)
|
||||
GO
|
||||
|
||||
ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]
|
||||
GO
|
||||
|
||||
|
||||
@@ -1,581 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Set up Azure ML Automated Machine Learning on SQL Server 2019 CTP 2.4 big data cluster\r\n",
|
||||
"\r\n",
|
||||
"\\# Prerequisites: \r\n",
|
||||
"\\# - An Azure subscription and resource group \r\n",
|
||||
"\\# - An Azure Machine Learning workspace \r\n",
|
||||
"\\# - A SQL Server 2019 CTP 2.4 big data cluster with Internet access and a database named 'automl' \r\n",
|
||||
"\\# - Azure CLI \r\n",
|
||||
"\\# - kubectl command \r\n",
|
||||
"\\# - The https://github.com/Azure/MachineLearningNotebooks repository downloaded (cloned) to your local machine\r\n",
|
||||
"\r\n",
|
||||
"\\# In the 'automl' database, create a table named 'dbo.nyc_energy' as follows: \r\n",
|
||||
"\\# - In SQL Server Management Studio, right-click the 'automl' database, select Tasks, then Import Flat File. \r\n",
|
||||
"\\# - Select the file AzureMlCli\\notebooks\\how-to-use-azureml\\automated-machine-learning\\forecasting-energy-demand\\nyc_energy.csv. \r\n",
|
||||
"\\# - Using the \"Modify Columns\" page, allow nulls for all columns. \r\n",
|
||||
"\r\n",
|
||||
"\\# Create an Azure Machine Learning Workspace using the instructions at https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace \r\n",
|
||||
"\r\n",
|
||||
"\\# Create an Azure service principal. You can do this with the following commands: \r\n",
|
||||
"\r\n",
|
||||
"az login \r\n",
|
||||
"az account set --subscription *subscriptionid* \r\n",
|
||||
"\r\n",
|
||||
"\\# The following command prints out the **appId** and **tenant**, \r\n",
|
||||
"\\# which you insert into the indicated cell later in this notebook \r\n",
|
||||
"\\# to allow AutoML to authenticate with Azure: \r\n",
|
||||
"\r\n",
|
||||
"az ad sp create-for-rbac --name *principlename* --password *password*\r\n",
|
||||
"\r\n",
|
||||
"\\# Log into the master instance of SQL Server 2019 CTP 2.4: \r\n",
|
||||
"kubectl exec -it mssql-master-pool-0 -n *clustername* -c mssql-server -- /bin/bash\r\n",
|
||||
"\r\n",
|
||||
"mkdir /tmp/aml\r\n",
|
||||
"\r\n",
|
||||
"cd /tmp/aml\r\n",
|
||||
"\r\n",
|
||||
"\\# **Modify** the following with your subscription_id, resource_group, and workspace_name: \r\n",
|
||||
"cat > config.json << EOF \r\n",
|
||||
"{ \r\n",
|
||||
" \"subscription_id\": \"123456ab-78cd-0123-45ef-abcd12345678\", \r\n",
|
||||
" \"resource_group\": \"myrg1\", \r\n",
|
||||
" \"workspace_name\": \"myws1\" \r\n",
|
||||
"} \r\n",
|
||||
"EOF\r\n",
|
||||
"\r\n",
|
||||
"\\# The directory referenced below is appropriate for the master instance of SQL Server 2019 CTP 2.4.\r\n",
|
||||
"\r\n",
|
||||
"cd /opt/mssql/mlservices/runtime/python/bin\r\n",
|
||||
"\r\n",
|
||||
"./python -m pip install azureml-sdk[automl]\r\n",
|
||||
"\r\n",
|
||||
"./python -m pip install --upgrade numpy \r\n",
|
||||
"\r\n",
|
||||
"./python -m pip install --upgrade sklearn\r\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- Enable external scripts to allow invoking Python\r\n",
|
||||
"sp_configure 'external scripts enabled',1 \r\n",
|
||||
"reconfigure with override \r\n",
|
||||
"GO\r\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- Use database 'automl'\r\n",
|
||||
"USE [automl]\r\n",
|
||||
"GO"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- This is a table to hold the Azure ML connection information.\r\n",
|
||||
"SET ANSI_NULLS ON\r\n",
|
||||
"GO\r\n",
|
||||
"\r\n",
|
||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
||||
"GO\r\n",
|
||||
"\r\n",
|
||||
"CREATE TABLE [dbo].[aml_connection](\r\n",
|
||||
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
|
||||
"\t[ConnectionName] [nvarchar](255) NULL,\r\n",
|
||||
"\t[TenantId] [nvarchar](255) NULL,\r\n",
|
||||
"\t[AppId] [nvarchar](255) NULL,\r\n",
|
||||
"\t[Password] [nvarchar](255) NULL,\r\n",
|
||||
"\t[ConfigFile] [nvarchar](255) NULL\r\n",
|
||||
") ON [PRIMARY]\r\n",
|
||||
"GO"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Copy the values from create-for-rbac above into the cell below"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- Use the following values:\r\n",
|
||||
"-- Leave the name as 'Default'\r\n",
|
||||
"-- Insert <tenant> returned by create-for-rbac above\r\n",
|
||||
"-- Insert <AppId> returned by create-for-rbac above\r\n",
|
||||
"-- Insert <password> used in create-for-rbac above\r\n",
|
||||
"-- Leave <path> as '/tmp/aml/config.json'\r\n",
|
||||
"INSERT INTO [dbo].[aml_connection] \r\n",
|
||||
"VALUES (\r\n",
|
||||
" N'Default', -- Name\r\n",
|
||||
" N'11111111-2222-3333-4444-555555555555', -- Tenant\r\n",
|
||||
" N'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', -- AppId\r\n",
|
||||
" N'insertpasswordhere', -- Password\r\n",
|
||||
" N'/tmp/aml/config.json' -- Path\r\n",
|
||||
" );\r\n",
|
||||
"GO"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- This is a table to hold the results from the AutoMLTrain procedure.\r\n",
|
||||
"SET ANSI_NULLS ON\r\n",
|
||||
"GO\r\n",
|
||||
"\r\n",
|
||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
||||
"GO\r\n",
|
||||
"\r\n",
|
||||
"CREATE TABLE [dbo].[aml_model](\r\n",
|
||||
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
|
||||
" [Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.\r\n",
|
||||
" [RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.\r\n",
|
||||
" [CreatedDate] [datetime] NULL,\r\n",
|
||||
" [ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name\r\n",
|
||||
" [WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name\r\n",
|
||||
"\t[LogFileText] [nvarchar](max) NULL\r\n",
|
||||
") \r\n",
|
||||
"GO\r\n",
|
||||
"\r\n",
|
||||
"ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]\r\n",
|
||||
"GO\r\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- This stored procedure uses automated machine learning to train several models\r\n",
|
||||
"-- and return the best model.\r\n",
|
||||
"--\r\n",
|
||||
"-- The result set has several columns:\r\n",
|
||||
"-- best_run - ID of the best model found\r\n",
|
||||
"-- experiment_name - training run name\r\n",
|
||||
"-- fitted_model - best model found\r\n",
|
||||
"-- log_file_text - console output\r\n",
|
||||
"-- workspace - name of the Azure ML workspace where run history is stored\r\n",
|
||||
"--\r\n",
|
||||
"-- An example call for a classification problem is:\r\n",
|
||||
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
||||
"-- exec dbo.AutoMLTrain @input_query='\r\n",
|
||||
"-- SELECT top 100000 \r\n",
|
||||
"-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime\r\n",
|
||||
"-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime\r\n",
|
||||
"-- ,[passenger_count]\r\n",
|
||||
"-- ,[trip_time_in_secs]\r\n",
|
||||
"-- ,[trip_distance]\r\n",
|
||||
"-- ,[payment_type]\r\n",
|
||||
"-- ,[tip_class]\r\n",
|
||||
"-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',\r\n",
|
||||
"-- @label_column = 'tip_class',\r\n",
|
||||
"-- @iterations=10\r\n",
|
||||
"-- \r\n",
|
||||
"-- An example call for forecasting is:\r\n",
|
||||
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
||||
"-- exec dbo.AutoMLTrain @input_query='\r\n",
|
||||
"-- select cast(timeStamp as nvarchar(30)) as timeStamp,\r\n",
|
||||
"-- demand,\r\n",
|
||||
"-- \t precip,\r\n",
|
||||
"-- \t temp,\r\n",
|
||||
"-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column\r\n",
|
||||
"-- from nyc_energy\r\n",
|
||||
"-- where demand is not null and precip is not null and temp is not null\r\n",
|
||||
"-- and timeStamp < ''2017-02-01''',\r\n",
|
||||
"-- @label_column='demand',\r\n",
|
||||
"-- @task='forecasting',\r\n",
|
||||
"-- @iterations=10,\r\n",
|
||||
"-- @iteration_timeout_minutes=5,\r\n",
|
||||
"-- @time_column_name='timeStamp',\r\n",
|
||||
"-- @is_validate_column='is_validate_column',\r\n",
|
||||
"-- @experiment_name='automl-sql-forecast',\r\n",
|
||||
"-- @primary_metric='normalized_root_mean_squared_error'\r\n",
|
||||
"\r\n",
|
||||
"SET ANSI_NULLS ON\r\n",
|
||||
"GO\r\n",
|
||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
||||
"GO\r\n",
|
||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]\r\n",
|
||||
" (\r\n",
|
||||
" @input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.\r\n",
|
||||
" @label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.\r\n",
|
||||
" @primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.\r\n",
|
||||
" @iterations INT=100, -- The maximum number of pipelines to train.\r\n",
|
||||
" @task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.\r\n",
|
||||
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
|
||||
" @iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline. \r\n",
|
||||
" @experiment_timeout_hours FLOAT = 1, -- The maximum time in hours for training all pipelines.\r\n",
|
||||
" @n_cross_validations INT = 3, -- The number of cross validations.\r\n",
|
||||
" @blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.\r\n",
|
||||
" -- The list of possible models can be found at:\r\n",
|
||||
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
|
||||
" @whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.\r\n",
|
||||
" -- The list of possible models can be found at:\r\n",
|
||||
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
|
||||
" @experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.\r\n",
|
||||
" @sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.\r\n",
|
||||
" @is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.\r\n",
|
||||
"\t -- In the values of the column, 0 means for training and 1 means for validation.\r\n",
|
||||
" @time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.\r\n",
|
||||
"\t@connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
|
||||
" ) AS\r\n",
|
||||
"BEGIN\r\n",
|
||||
"\r\n",
|
||||
" DECLARE @tenantid NVARCHAR(255)\r\n",
|
||||
" DECLARE @appid NVARCHAR(255)\r\n",
|
||||
" DECLARE @password NVARCHAR(255)\r\n",
|
||||
" DECLARE @config_file NVARCHAR(255)\r\n",
|
||||
"\r\n",
|
||||
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
|
||||
"\tFROM aml_connection\r\n",
|
||||
"\tWHERE ConnectionName = @connection_name;\r\n",
|
||||
"\r\n",
|
||||
"\tEXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
|
||||
"import logging \r\n",
|
||||
"import azureml.core \r\n",
|
||||
"import pandas as pd\r\n",
|
||||
"import numpy as np\r\n",
|
||||
"from azureml.core.experiment import Experiment \r\n",
|
||||
"from azureml.train.automl import AutoMLConfig \r\n",
|
||||
"from sklearn import datasets \r\n",
|
||||
"import pickle\r\n",
|
||||
"import codecs\r\n",
|
||||
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
|
||||
"from azureml.core.workspace import Workspace \r\n",
|
||||
"\r\n",
|
||||
"if __name__.startswith(\"sqlindb\"):\r\n",
|
||||
" auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
|
||||
" \r\n",
|
||||
" ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
|
||||
" \r\n",
|
||||
" project_folder = \"./sample_projects/\" + experiment_name\r\n",
|
||||
" \r\n",
|
||||
" experiment = Experiment(ws, experiment_name) \r\n",
|
||||
"\r\n",
|
||||
" data_train = input_data\r\n",
|
||||
" X_valid = None\r\n",
|
||||
" y_valid = None\r\n",
|
||||
" sample_weight_valid = None\r\n",
|
||||
"\r\n",
|
||||
" if is_validate_column != \"\" and is_validate_column is not None:\r\n",
|
||||
" data_train = input_data[input_data[is_validate_column] <= 0]\r\n",
|
||||
" data_valid = input_data[input_data[is_validate_column] > 0]\r\n",
|
||||
" data_train.pop(is_validate_column)\r\n",
|
||||
" data_valid.pop(is_validate_column)\r\n",
|
||||
" y_valid = data_valid.pop(label_column).values\r\n",
|
||||
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
|
||||
" sample_weight_valid = data_valid.pop(sample_weight_column).values\r\n",
|
||||
" X_valid = data_valid\r\n",
|
||||
" n_cross_validations = None\r\n",
|
||||
"\r\n",
|
||||
" y_train = data_train.pop(label_column).values\r\n",
|
||||
"\r\n",
|
||||
" sample_weight = None\r\n",
|
||||
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
|
||||
" sample_weight = data_train.pop(sample_weight_column).values\r\n",
|
||||
"\r\n",
|
||||
" X_train = data_train\r\n",
|
||||
"\r\n",
|
||||
" if experiment_timeout_hours == 0:\r\n",
|
||||
" experiment_timeout_hours = None\r\n",
|
||||
"\r\n",
|
||||
" if experiment_exit_score == 0:\r\n",
|
||||
" experiment_exit_score = None\r\n",
|
||||
"\r\n",
|
||||
" if blacklist_models == \"\":\r\n",
|
||||
" blacklist_models = None\r\n",
|
||||
"\r\n",
|
||||
" if blacklist_models is not None:\r\n",
|
||||
" blacklist_models = blacklist_models.replace(\" \", \"\").split(\",\")\r\n",
|
||||
"\r\n",
|
||||
" if whitelist_models == \"\":\r\n",
|
||||
" whitelist_models = None\r\n",
|
||||
"\r\n",
|
||||
" if whitelist_models is not None:\r\n",
|
||||
" whitelist_models = whitelist_models.replace(\" \", \"\").split(\",\")\r\n",
|
||||
"\r\n",
|
||||
" automl_settings = {}\r\n",
|
||||
" preprocess = True\r\n",
|
||||
" if time_column_name != \"\" and time_column_name is not None:\r\n",
|
||||
" automl_settings = { \"time_column_name\": time_column_name }\r\n",
|
||||
" preprocess = False\r\n",
|
||||
"\r\n",
|
||||
" log_file_name = \"automl_errors.log\"\r\n",
|
||||
"\t \r\n",
|
||||
" automl_config = AutoMLConfig(task = task, \r\n",
|
||||
" debug_log = log_file_name, \r\n",
|
||||
" primary_metric = primary_metric, \r\n",
|
||||
" iteration_timeout_minutes = iteration_timeout_minutes, \r\n",
|
||||
" experiment_timeout_hours = experiment_timeout_hours,\r\n",
|
||||
" iterations = iterations, \r\n",
|
||||
" n_cross_validations = n_cross_validations, \r\n",
|
||||
" preprocess = preprocess,\r\n",
|
||||
" verbosity = logging.INFO, \r\n",
|
||||
" X = X_train, \r\n",
|
||||
" y = y_train, \r\n",
|
||||
" path = project_folder,\r\n",
|
||||
" blacklist_models = blacklist_models,\r\n",
|
||||
" whitelist_models = whitelist_models,\r\n",
|
||||
" experiment_exit_score = experiment_exit_score,\r\n",
|
||||
" sample_weight = sample_weight,\r\n",
|
||||
" X_valid = X_valid,\r\n",
|
||||
" y_valid = y_valid,\r\n",
|
||||
" sample_weight_valid = sample_weight_valid,\r\n",
|
||||
" **automl_settings) \r\n",
|
||||
" \r\n",
|
||||
" local_run = experiment.submit(automl_config, show_output = True) \r\n",
|
||||
"\r\n",
|
||||
" best_run, fitted_model = local_run.get_output()\r\n",
|
||||
"\r\n",
|
||||
" pickled_model = codecs.encode(pickle.dumps(fitted_model), \"base64\").decode()\r\n",
|
||||
"\r\n",
|
||||
" log_file_text = \"\"\r\n",
|
||||
"\r\n",
|
||||
" try:\r\n",
|
||||
" with open(log_file_name, \"r\") as log_file:\r\n",
|
||||
" log_file_text = log_file.read()\r\n",
|
||||
" except:\r\n",
|
||||
" log_file_text = \"Log file not found\"\r\n",
|
||||
"\r\n",
|
||||
" returned_model = pd.DataFrame({\"best_run\": [best_run.id], \"experiment_name\": [experiment_name], \"fitted_model\": [pickled_model], \"log_file_text\": [log_file_text], \"workspace\": [ws.name]}, dtype=np.dtype(np.str))\r\n",
|
||||
"'\r\n",
|
||||
"\t, @input_data_1 = @input_query\r\n",
|
||||
"\t, @input_data_1_name = N'input_data'\r\n",
|
||||
"\t, @output_data_1_name = N'returned_model'\r\n",
|
||||
"\t, @params = N'@label_column NVARCHAR(255), \r\n",
|
||||
"\t @primary_metric NVARCHAR(40),\r\n",
|
||||
"\t\t\t\t @iterations INT, @task NVARCHAR(40),\r\n",
|
||||
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
|
||||
"\t\t\t\t @iteration_timeout_minutes INT,\r\n",
|
||||
"\t\t\t\t @experiment_timeout_hours FLOAT,\r\n",
|
||||
"\t\t\t\t @n_cross_validations INT,\r\n",
|
||||
"\t\t\t\t @blacklist_models NVARCHAR(MAX),\r\n",
|
||||
"\t\t\t\t @whitelist_models NVARCHAR(MAX),\r\n",
|
||||
"\t\t\t\t @experiment_exit_score FLOAT,\r\n",
|
||||
"\t\t\t\t @sample_weight_column NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @is_validate_column NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @time_column_name NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @tenantid NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @appid NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @password NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
|
||||
"\t, @label_column = @label_column\r\n",
|
||||
"\t, @primary_metric = @primary_metric\r\n",
|
||||
"\t, @iterations = @iterations\r\n",
|
||||
"\t, @task = @task\r\n",
|
||||
"\t, @experiment_name = @experiment_name\r\n",
|
||||
"\t, @iteration_timeout_minutes = @iteration_timeout_minutes\r\n",
|
||||
"\t, @experiment_timeout_hours = @experiment_timeout_hours\r\n",
|
||||
"\t, @n_cross_validations = @n_cross_validations\r\n",
|
||||
"\t, @blacklist_models = @blacklist_models\r\n",
|
||||
"\t, @whitelist_models = @whitelist_models\r\n",
|
||||
"\t, @experiment_exit_score = @experiment_exit_score\r\n",
|
||||
"\t, @sample_weight_column = @sample_weight_column\r\n",
|
||||
"\t, @is_validate_column = @is_validate_column\r\n",
|
||||
"\t, @time_column_name = @time_column_name\r\n",
|
||||
"\t, @tenantid = @tenantid\r\n",
|
||||
"\t, @appid = @appid\r\n",
|
||||
"\t, @password = @password\r\n",
|
||||
"\t, @config_file = @config_file\r\n",
|
||||
"WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))\r\n",
|
||||
"END"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- This procedure returns a list of metrics for each iteration of a training run.\r\n",
|
||||
"SET ANSI_NULLS ON\r\n",
|
||||
"GO\r\n",
|
||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
||||
"GO\r\n",
|
||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]\r\n",
|
||||
" (\r\n",
|
||||
"\t@run_id NVARCHAR(250), -- The RunId\r\n",
|
||||
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
|
||||
" @connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
|
||||
" ) AS\r\n",
|
||||
"BEGIN\r\n",
|
||||
" DECLARE @tenantid NVARCHAR(255)\r\n",
|
||||
" DECLARE @appid NVARCHAR(255)\r\n",
|
||||
" DECLARE @password NVARCHAR(255)\r\n",
|
||||
" DECLARE @config_file NVARCHAR(255)\r\n",
|
||||
"\r\n",
|
||||
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
|
||||
"\tFROM aml_connection\r\n",
|
||||
"\tWHERE ConnectionName = @connection_name;\r\n",
|
||||
"\r\n",
|
||||
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
|
||||
"import logging \r\n",
|
||||
"import azureml.core \r\n",
|
||||
"import numpy as np\r\n",
|
||||
"from azureml.core.experiment import Experiment \r\n",
|
||||
"from azureml.train.automl.run import AutoMLRun\r\n",
|
||||
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
|
||||
"from azureml.core.workspace import Workspace \r\n",
|
||||
"\r\n",
|
||||
"auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
|
||||
" \r\n",
|
||||
"ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
|
||||
" \r\n",
|
||||
"experiment = Experiment(ws, experiment_name) \r\n",
|
||||
"\r\n",
|
||||
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\r\n",
|
||||
"\r\n",
|
||||
"children = list(ml_run.get_children())\r\n",
|
||||
"iterationlist = []\r\n",
|
||||
"metricnamelist = []\r\n",
|
||||
"metricvaluelist = []\r\n",
|
||||
"\r\n",
|
||||
"for run in children:\r\n",
|
||||
" properties = run.get_properties()\r\n",
|
||||
" if \"iteration\" in properties:\r\n",
|
||||
" iteration = int(properties[\"iteration\"])\r\n",
|
||||
" for metric_name, metric_value in run.get_metrics().items():\r\n",
|
||||
" if isinstance(metric_value, float):\r\n",
|
||||
" iterationlist.append(iteration)\r\n",
|
||||
" metricnamelist.append(metric_name)\r\n",
|
||||
" metricvaluelist.append(metric_value)\r\n",
|
||||
" \r\n",
|
||||
"metrics = pd.DataFrame({\"iteration\": iterationlist, \"metric_name\": metricnamelist, \"metric_value\": metricvaluelist})\r\n",
|
||||
"'\r\n",
|
||||
" , @output_data_1_name = N'metrics'\r\n",
|
||||
"\t, @params = N'@run_id NVARCHAR(250), \r\n",
|
||||
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
|
||||
" \t\t\t\t @tenantid NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @appid NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @password NVARCHAR(255),\r\n",
|
||||
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
|
||||
" , @run_id = @run_id\r\n",
|
||||
"\t, @experiment_name = @experiment_name\r\n",
|
||||
"\t, @tenantid = @tenantid\r\n",
|
||||
"\t, @appid = @appid\r\n",
|
||||
"\t, @password = @password\r\n",
|
||||
"\t, @config_file = @config_file\r\n",
|
||||
"WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))\r\n",
|
||||
"END"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.\r\n",
|
||||
"-- It returns the dataset with a new column added, which is the predicted value.\r\n",
|
||||
"SET ANSI_NULLS ON\r\n",
|
||||
"GO\r\n",
|
||||
"SET QUOTED_IDENTIFIER ON\r\n",
|
||||
"GO\r\n",
|
||||
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]\r\n",
|
||||
" (\r\n",
|
||||
" @input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.\r\n",
|
||||
" @model NVARCHAR(MAX), -- A model returned from AutoMLTrain.\r\n",
|
||||
" @label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting\r\n",
|
||||
" ) AS \r\n",
|
||||
"BEGIN \r\n",
|
||||
" \r\n",
|
||||
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd \r\n",
|
||||
"import azureml.core \r\n",
|
||||
"import numpy as np \r\n",
|
||||
"from azureml.train.automl import AutoMLConfig \r\n",
|
||||
"import pickle \r\n",
|
||||
"import codecs \r\n",
|
||||
" \r\n",
|
||||
"model_obj = pickle.loads(codecs.decode(model.encode(), \"base64\")) \r\n",
|
||||
" \r\n",
|
||||
"test_data = input_data.copy() \r\n",
|
||||
"\r\n",
|
||||
"if label_column != \"\" and label_column is not None:\r\n",
|
||||
" y_test = test_data.pop(label_column).values \r\n",
|
||||
"X_test = test_data \r\n",
|
||||
" \r\n",
|
||||
"predicted = model_obj.predict(X_test) \r\n",
|
||||
" \r\n",
|
||||
"combined_output = input_data.assign(predicted=predicted)\r\n",
|
||||
" \r\n",
|
||||
"' \r\n",
|
||||
" , @input_data_1 = @input_query \r\n",
|
||||
" , @input_data_1_name = N'input_data' \r\n",
|
||||
" , @output_data_1_name = N'combined_output' \r\n",
|
||||
" , @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)' \r\n",
|
||||
" , @model = @model \r\n",
|
||||
"\t, @label_column = @label_column\r\n",
|
||||
"END"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "jeffshep"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"None"
|
||||
],
|
||||
"datasets": [
|
||||
"None"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"Azure ML AutoML"
|
||||
],
|
||||
"friendly_name": "Setup automated ML SQL integration",
|
||||
"index_order": 1,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "sql",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "sql",
|
||||
"version": ""
|
||||
},
|
||||
"tags": [
|
||||
""
|
||||
],
|
||||
"task": "None"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -542,7 +542,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from automl.client.core.common import constants\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"conda_env_file_name = 'conda_env.yml'\n",
|
||||
"best_run.download_file(name=\"outputs/conda_env_v_1_0_0.yml\", output_file_path=conda_env_file_name)\n",
|
||||
"with open(conda_env_file_name, \"r\") as conda_file:\n",
|
||||
@@ -564,7 +564,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from automl.client.core.common import constants\n",
|
||||
"from azureml.automl.core.shared import constants\n",
|
||||
"script_file_name = 'scoring_file.py'\n",
|
||||
"best_run.download_file(name=\"outputs/scoring_file_v_1_0_0.py\", output_file_path=script_file_name)\n",
|
||||
"with open(script_file_name, \"r\") as scoring_file:\n",
|
||||
|
||||
@@ -1,497 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure ML Hardware Accelerated Object Detection"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This tutorial will show you how to deploy an object detection service based on the SSD-VGG model in just a few minutes using the Azure Machine Learning Accelerated AI service.\n",
|
||||
"\n",
|
||||
"We will use the SSD-VGG model accelerated on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
|
||||
"\n",
|
||||
"The steps in this notebook are: \n",
|
||||
"1. [Setup Environment](#set-up-environment)\n",
|
||||
"* [Construct Model](#construct-model)\n",
|
||||
" * Image Preprocessing\n",
|
||||
" * Featurizer\n",
|
||||
" * Save Model\n",
|
||||
" * Save input and output tensor names\n",
|
||||
"* [Create Image](#create-image)\n",
|
||||
"* [Deploy Image](#deploy-image)\n",
|
||||
"* [Test the Service](#test-service)\n",
|
||||
" * Create Client\n",
|
||||
" * Serve the model\n",
|
||||
"* [Cleanup](#cleanup)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"set-up-environment\"></a>\n",
|
||||
"## 1. Set up Environment\n",
|
||||
"### 1.a. Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import tensorflow as tf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1.b. Retrieve Workspace\n",
|
||||
"If you haven't created a Workspace, please follow [this notebook](\"../../../configuration.ipynb\") to do so. If you have, run the codeblock below to retrieve it. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"construct-model\"></a>\n",
|
||||
"## 2. Construct model\n",
|
||||
"### 2.a. Image preprocessing\n",
|
||||
"We'd like our service to accept JPEG images as input. However the input to SSD-VGG is a float tensor of shape \\[1, 300, 300, 3\\]. The first dimension is batch, then height, width, and channels (i.e. NHWC). To bridge this gap, we need code that decodes JPEG images and resizes them appropriately for input to SSD-VGG. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as TensorFlow strings) and produces a tensor that is ready to be featurized by SSD-VGG.\n",
|
||||
"\n",
|
||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
|
||||
"import azureml.accel.models.utils as utils\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"in_images = tf.placeholder(tf.string)\n",
|
||||
"image_tensors = utils.preprocess_array(in_images, output_width=300, output_height=300, preserve_aspect_ratio=False)\n",
|
||||
"print(image_tensors.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.b. Featurizer\n",
|
||||
"The SSD-VGG model is different from our other models in that it generates 12 tensor outputs. These corresponds to x,y displacements of the anchor boxes and the detection confidence (for 21 classes). Because these outputs are not convenient to work with, we will later use a pre-defined post-processing utility to transform the outputs into a simplified list of bounding boxes with their respective class and confidence.\n",
|
||||
"\n",
|
||||
"For more information about the output tensors, take this example: the output tensor 'ssd_300_vgg/block4_box/Reshape_1:0' has a shape of [None, 37, 37, 4, 21]. This gives the pre-softmax confidence for 4 anchor boxes situated at each site of a 37 x 37 grid imposed on the image, one confidence score for each of the 21 classes. The first dimension is the batch dimension. Likewise, 'ssd_300_vgg/block4_box/Reshape:0' has shape [None, 37, 37, 4, 4] and encodes the (cx, cy) center shift and rescaling (sw, sh) relative to each anchor box. Refer to the [SSD-VGG paper](https://arxiv.org/abs/1512.02325) to understand how these are computed. The other 10 tensors are defined similarly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.accel.models import SsdVgg\n",
|
||||
"\n",
|
||||
"saved_model_dir = os.path.join(os.path.expanduser('~'), 'models')\n",
|
||||
"model_graph = SsdVgg(saved_model_dir, is_frozen = True)\n",
|
||||
"\n",
|
||||
"print('SSD-VGG Input Tensors:')\n",
|
||||
"for idx, input_name in enumerate(model_graph.input_tensor_list):\n",
|
||||
" print('{}, {}'.format(input_name, model_graph.get_input_dims(idx)))\n",
|
||||
" \n",
|
||||
"print('SSD-VGG Output Tensors:')\n",
|
||||
"for idx, output_name in enumerate(model_graph.output_tensor_list):\n",
|
||||
" print('{}, {}'.format(output_name, model_graph.get_output_dims(idx)))\n",
|
||||
"\n",
|
||||
"ssd_outputs = model_graph.import_graph_def(image_tensors, is_training=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.c. Save Model\n",
|
||||
"Now that we loaded both parts of the tensorflow graph (preprocessor and SSD-VGG featurizer), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_name = \"ssdvgg\"\n",
|
||||
"model_save_path = os.path.join(saved_model_dir, model_name, \"saved_model\")\n",
|
||||
"print(\"Saving model in {}\".format(model_save_path))\n",
|
||||
"\n",
|
||||
"output_map = {}\n",
|
||||
"for i, output in enumerate(ssd_outputs):\n",
|
||||
" output_map['out_{}'.format(i)] = output\n",
|
||||
"\n",
|
||||
"with tf.Session() as sess:\n",
|
||||
" model_graph.restore_weights(sess)\n",
|
||||
" tf.saved_model.simple_save(sess, \n",
|
||||
" model_save_path, \n",
|
||||
" inputs={'images': in_images}, \n",
|
||||
" outputs=output_map)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.d. Important! Save names of input and output tensors\n",
|
||||
"\n",
|
||||
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"input_tensors = in_images.name\n",
|
||||
"# We will use the list of output tensors during inferencing\n",
|
||||
"output_tensors = [output.name for output in ssd_outputs]\n",
|
||||
"# However, for multiple output tensors, our AccelOnnxConverter will \n",
|
||||
"# accept comma-delimited strings (lists will cause error)\n",
|
||||
"output_tensors_str = \",\".join(output_tensors)\n",
|
||||
"\n",
|
||||
"print(input_tensors)\n",
|
||||
"print(output_tensors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"create-image\"></a>\n",
|
||||
"## 3. Create AccelContainerImage\n",
|
||||
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.image import Image\n",
|
||||
"from azureml.accel import AccelOnnxConverter\n",
|
||||
"from azureml.accel import AccelContainerImage\n",
|
||||
"\n",
|
||||
"# Retrieve workspace\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
|
||||
"\n",
|
||||
"# Register model\n",
|
||||
"registered_model = Model.register(workspace = ws,\n",
|
||||
" model_path = model_save_path,\n",
|
||||
" model_name = model_name)\n",
|
||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
|
||||
"\n",
|
||||
"# Convert model\n",
|
||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors_str)\n",
|
||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
||||
" # If the above call succeeded, get the converted model\n",
|
||||
" converted_model = convert_request.result\n",
|
||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
||||
"else:\n",
|
||||
" print(\"Model conversion failed. Showing output.\")\n",
|
||||
" convert_request.wait_for_completion(show_output = True)\n",
|
||||
"\n",
|
||||
"# Package into AccelContainerImage\n",
|
||||
"image_config = AccelContainerImage.image_configuration()\n",
|
||||
"# Image name must be lowercase\n",
|
||||
"image_name = \"{}-image\".format(model_name)\n",
|
||||
"image = Image.create(name = image_name,\n",
|
||||
" models = [converted_model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"image.wait_for_creation()\n",
|
||||
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"deploy-image\"></a>\n",
|
||||
"## 4. Deploy image\n",
|
||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
||||
"\n",
|
||||
"### 4.a. Deploy to Databox Edge Machine using IoT Hub\n",
|
||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
||||
"\n",
|
||||
"### 4.b. Deploy to AKS Cluster\n",
|
||||
"Same as in the [Quickstart section on image deployment](./accelerated-models-quickstart.ipynb#deploy-image), we are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it.\n",
|
||||
"#### Create AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"\n",
|
||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
||||
" agent_count = 1, \n",
|
||||
" location = \"eastus\")\n",
|
||||
"\n",
|
||||
"aks_name = 'aks-pb6-obj'\n",
|
||||
"# Create the cluster\n",
|
||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
||||
" name = aks_name, \n",
|
||||
" provisioning_configuration = prov_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_target.wait_for_completion(show_output = True)\n",
|
||||
"print(aks_target.provisioning_state)\n",
|
||||
"print(aks_target.provisioning_errors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"\n",
|
||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
||||
" num_replicas=1,\n",
|
||||
" auth_enabled = False)\n",
|
||||
"\n",
|
||||
"aks_service_name ='my-aks-service-3'\n",
|
||||
"\n",
|
||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
||||
" name = aks_service_name,\n",
|
||||
" image = image,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" deployment_target = aks_target)\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"test-service\"></a>\n",
|
||||
"## 5. Test the service\n",
|
||||
"<a id=\"create-client\"></a>\n",
|
||||
"### 5.a. Create Client\n",
|
||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
||||
"\n",
|
||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
||||
"from azureml.accel import client_from_service\n",
|
||||
"\n",
|
||||
"# Initialize AzureML Accelerated Models client\n",
|
||||
"client = client_from_service(aks_service)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
|
||||
"\n",
|
||||
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"serve-model\"></a>\n",
|
||||
"### 5.b. Serve the model\n",
|
||||
"The SSD-VGG model returns the confidence and bounding boxes for all possible anchor boxes. As mentioned earlier, we will use a post-processing routine to transform this into a list of bounding boxes (y1, x1, y2, x2) where x, y are fractional coordinates measured from left and top respectively. A respective list of classes and scores is also returned to tag each bounding box. Below we make use of this information to draw the bounding boxes on top the original image. Note that in the post-processing routine we select a confidence threshold of 0.5."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import cv2\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"\n",
|
||||
"colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),\n",
|
||||
" (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),\n",
|
||||
" (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),\n",
|
||||
" (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),\n",
|
||||
" (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def draw_boxes_on_img(img, classes, scores, bboxes, thickness=2):\n",
|
||||
" shape = img.shape\n",
|
||||
" for i in range(bboxes.shape[0]):\n",
|
||||
" bbox = bboxes[i]\n",
|
||||
" color = colors_tableau[classes[i]]\n",
|
||||
" # Draw bounding box...\n",
|
||||
" p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))\n",
|
||||
" p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))\n",
|
||||
" cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)\n",
|
||||
" # Draw text...\n",
|
||||
" s = '%s/%.3f' % (classes[i], scores[i])\n",
|
||||
" p1 = (p1[0]-5, p1[1])\n",
|
||||
" cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.accel._external.ssdvgg_utils as ssdvgg_utils\n",
|
||||
"\n",
|
||||
"result = client.score_file(path=\"meeting.jpg\", input_name=input_tensors, outputs=output_tensors)\n",
|
||||
"classes, scores, bboxes = ssdvgg_utils.postprocess(result, select_threshold=0.5)\n",
|
||||
"\n",
|
||||
"img = cv2.imread('meeting.jpg', 1)\n",
|
||||
"img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
|
||||
"draw_boxes_on_img(img, classes, scores, bboxes)\n",
|
||||
"plt.imshow(img)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"cleanup\"></a>\n",
|
||||
"## 6. Cleanup\n",
|
||||
"It's important to clean up your resources, so that you won't incur unnecessary costs. In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aks_service.delete()\n",
|
||||
"aks_target.delete()\n",
|
||||
"image.delete()\n",
|
||||
"registered_model.delete()\n",
|
||||
"converted_model.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "coverste"
|
||||
},
|
||||
{
|
||||
"name": "paledger"
|
||||
},
|
||||
{
|
||||
"name": "sukha"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,7 +0,0 @@
|
||||
name: accelerated-models-object-detection
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-accel-models[cpu]
|
||||
- opencv-python
|
||||
- matplotlib
|
||||
@@ -1,555 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure ML Hardware Accelerated Models Quickstart"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This tutorial will show you how to deploy an image recognition service based on the ResNet 50 classifier using the Azure Machine Learning Accelerated Models service. Get more information about our service from our [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas), [API reference](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py), or [forum](https://aka.ms/aml-forum).\n",
|
||||
"\n",
|
||||
"We will use an accelerated ResNet50 featurizer running on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
|
||||
"\n",
|
||||
"For more information about using other models besides Resnet50, see the [README](./README.md).\n",
|
||||
"\n",
|
||||
"The steps covered in this notebook are: \n",
|
||||
"1. [Set up environment](#set-up-environment)\n",
|
||||
"* [Construct model](#construct-model)\n",
|
||||
" * Image Preprocessing\n",
|
||||
" * Featurizer (Resnet50)\n",
|
||||
" * Classifier\n",
|
||||
" * Save Model\n",
|
||||
"* [Register Model](#register-model)\n",
|
||||
"* [Convert into Accelerated Model](#convert-model)\n",
|
||||
"* [Create Image](#create-image)\n",
|
||||
"* [Deploy](#deploy-image)\n",
|
||||
"* [Test service](#test-service)\n",
|
||||
"* [Clean-up](#clean-up)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"set-up-environment\"></a>\n",
|
||||
"## 1. Set up environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import tensorflow as tf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve Workspace\n",
|
||||
"If you haven't created a Workspace, please follow [this notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) to do so. If you have, run the codeblock below to retrieve it. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"construct-model\"></a>\n",
|
||||
"## 2. Construct model\n",
|
||||
"\n",
|
||||
"There are three parts to the model we are deploying: pre-processing, featurizer with ResNet50, and classifier with ImageNet dataset. Then we will save this complete Tensorflow model graph locally before registering it to your Azure ML Workspace.\n",
|
||||
"\n",
|
||||
"### 2.a. Image preprocessing\n",
|
||||
"We'd like our service to accept JPEG images as input. However the input to ResNet50 is a tensor. So we need code that decodes JPEG images and does the preprocessing required by ResNet50. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as strings) and produces a tensor that is ready to be featurized by ResNet50.\n",
|
||||
"\n",
|
||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
|
||||
"import azureml.accel.models.utils as utils\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"in_images = tf.placeholder(tf.string)\n",
|
||||
"image_tensors = utils.preprocess_array(in_images)\n",
|
||||
"print(image_tensors.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.b. Featurizer\n",
|
||||
"We use ResNet50 as a featurizer. In this step we initialize the model. This downloads a TensorFlow checkpoint of the quantized ResNet50."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.accel.models import QuantizedResnet50\n",
|
||||
"save_path = os.path.expanduser('~/models')\n",
|
||||
"model_graph = QuantizedResnet50(save_path, is_frozen = True)\n",
|
||||
"feature_tensor = model_graph.import_graph_def(image_tensors)\n",
|
||||
"print(model_graph.version)\n",
|
||||
"print(feature_tensor.name)\n",
|
||||
"print(feature_tensor.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.c. Classifier\n",
|
||||
"The model we downloaded includes a classifier which takes the output of the ResNet50 and identifies an image. This classifier is trained on the ImageNet dataset. We are going to use this classifier for our service. The next [notebook](./accelerated-models-training.ipynb) shows how to train a classifier for a different data set. The input to the classifier is a tensor matching the output of our ResNet50 featurizer."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"classifier_output = model_graph.get_default_classifier(feature_tensor)\n",
|
||||
"print(classifier_output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.d. Save Model\n",
|
||||
"Now that we loaded all three parts of the tensorflow graph (preprocessor, resnet50 featurizer, and the classifier), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model_name must be lowercase\n",
|
||||
"model_name = \"resnet50\"\n",
|
||||
"model_save_path = os.path.join(save_path, model_name)\n",
|
||||
"print(\"Saving model in {}\".format(model_save_path))\n",
|
||||
"\n",
|
||||
"with tf.Session() as sess:\n",
|
||||
" model_graph.restore_weights(sess)\n",
|
||||
" tf.saved_model.simple_save(sess, model_save_path,\n",
|
||||
" inputs={'images': in_images},\n",
|
||||
" outputs={'output_alias': classifier_output})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.e. Important! Save names of input and output tensors\n",
|
||||
"\n",
|
||||
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information! You can see our defaults for all the models in the [README](./README.md).\n",
|
||||
"\n",
|
||||
"By default for Resnet50, these are the values you should see when running the cell below: \n",
|
||||
"* input_tensors = \"Placeholder:0\"\n",
|
||||
"* output_tensors = \"classifier/resnet_v1_50/predictions/Softmax:0\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"input_tensors = in_images.name\n",
|
||||
"output_tensors = classifier_output.name\n",
|
||||
"\n",
|
||||
"print(input_tensors)\n",
|
||||
"print(output_tensors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"register-model\"></a>\n",
|
||||
"## 3. Register Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can add tags and descriptions to your models. Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"registered_model = Model.register(workspace = ws,\n",
|
||||
" model_path = model_save_path,\n",
|
||||
" model_name = model_name)\n",
|
||||
"\n",
|
||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, sep = '\\t')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"convert-model\"></a>\n",
|
||||
"## 4. Convert Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For conversion you need to provide names of input and output tensors. This information can be found from the model_graph you saved in step 2.e. above.\n",
|
||||
"\n",
|
||||
"**Note**: Conversion may take a while and on average for FPGA model it is about 1-3 minutes and it depends on model type."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.accel import AccelOnnxConverter\n",
|
||||
"\n",
|
||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
|
||||
"\n",
|
||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
||||
" # If the above call succeeded, get the converted model\n",
|
||||
" converted_model = convert_request.result\n",
|
||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
||||
"else:\n",
|
||||
" print(\"Model conversion failed. Showing output.\")\n",
|
||||
" convert_request.wait_for_completion(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"create-image\"></a>\n",
|
||||
"## 5. Package the model into an Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can add tags and descriptions to image. Also, for FPGA model an image can only contain **single** model.\n",
|
||||
"\n",
|
||||
"**Note**: The following command can take few minutes. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image\n",
|
||||
"from azureml.accel import AccelContainerImage\n",
|
||||
"\n",
|
||||
"image_config = AccelContainerImage.image_configuration()\n",
|
||||
"# Image name must be lowercase\n",
|
||||
"image_name = \"{}-image\".format(model_name)\n",
|
||||
"\n",
|
||||
"image = Image.create(name = image_name,\n",
|
||||
" models = [converted_model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"image.wait_for_creation(show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"deploy-image\"></a>\n",
|
||||
"## 6. Deploy\n",
|
||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
||||
"\n",
|
||||
"### 6.a. Databox Edge Machine using IoT Hub\n",
|
||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
||||
"\n",
|
||||
"### 6.b. Azure Kubernetes Service (AKS) using Azure ML Service\n",
|
||||
"We are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it. For more information, see [AKS official docs](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#aks).\n",
|
||||
"\n",
|
||||
"#### Create AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"sample-akscompute-provision"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"\n",
|
||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
||||
" agent_count = 1, \n",
|
||||
" location = \"eastus\")\n",
|
||||
"\n",
|
||||
"aks_name = 'my-aks-pb6'\n",
|
||||
"# Create the cluster\n",
|
||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
||||
" name = aks_name, \n",
|
||||
" provisioning_configuration = prov_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can also check the status in your Workspace under Compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_target.wait_for_completion(show_output = True)\n",
|
||||
"print(aks_target.provisioning_state)\n",
|
||||
"print(aks_target.provisioning_errors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"\n",
|
||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
||||
" num_replicas=1,\n",
|
||||
" auth_enabled = False)\n",
|
||||
"\n",
|
||||
"aks_service_name ='my-aks-service-1'\n",
|
||||
"\n",
|
||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
||||
" name = aks_service_name,\n",
|
||||
" image = image,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" deployment_target = aks_target)\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"test-service\"></a>\n",
|
||||
"## 7. Test the service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 7.a. Create Client\n",
|
||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
||||
"\n",
|
||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice, see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
||||
"from azureml.accel import client_from_service\n",
|
||||
"\n",
|
||||
"# Initialize AzureML Accelerated Models client\n",
|
||||
"client = client_from_service(aks_service)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
|
||||
"\n",
|
||||
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 7.b. Serve the model\n",
|
||||
"To understand the results we need a mapping to the human readable imagenet classes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"classes_entries = requests.get(\"https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt\").text.splitlines()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Score image with input and output tensor names\n",
|
||||
"results = client.score_file(path=\"./snowleopardgaze.jpg\", \n",
|
||||
" input_name=input_tensors, \n",
|
||||
" outputs=output_tensors)\n",
|
||||
"\n",
|
||||
"# map results [class_id] => [confidence]\n",
|
||||
"results = enumerate(results)\n",
|
||||
"# sort results by confidence\n",
|
||||
"sorted_results = sorted(results, key=lambda x: x[1], reverse=True)\n",
|
||||
"# print top 5 results\n",
|
||||
"for top in sorted_results[:5]:\n",
|
||||
" print(classes_entries[top[0]], 'confidence:', top[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"clean-up\"></a>\n",
|
||||
"## 8. Clean-up\n",
|
||||
"Run the cell below to delete your webservice, image, and model (must be done in that order). In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning and finetune the weights."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aks_service.delete()\n",
|
||||
"aks_target.delete()\n",
|
||||
"image.delete()\n",
|
||||
"registered_model.delete()\n",
|
||||
"converted_model.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "coverste"
|
||||
},
|
||||
{
|
||||
"name": "paledger"
|
||||
},
|
||||
{
|
||||
"name": "aibhalla"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,5 +0,0 @@
|
||||
name: accelerated-models-quickstart
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-accel-models[cpu]
|
||||
@@ -1,870 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Training with the Azure Machine Learning Accelerated Models Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook will introduce how to apply common machine learning techniques, like transfer learning, custom weights, and unquantized vs. quantized models, when working with our Azure Machine Learning Accelerated Models Service (Azure ML Accel Models).\n",
|
||||
"\n",
|
||||
"We will use Tensorflow for the preprocessing steps, ResNet50 for the featurizer, and the Keras API (built on Tensorflow backend) to build the classifier layers instead of the default ImageNet classifier used in Quickstart. Then we will train the model, evaluate it, and deploy it to run on an FPGA.\n",
|
||||
"\n",
|
||||
"#### Transfer Learning and Custom weights\n",
|
||||
"We will walk you through two ways to build and train a ResNet50 model on the Kaggle Cats and Dogs dataset: transfer learning only and then transfer learning with custom weights.\n",
|
||||
"\n",
|
||||
"In using transfer learning, our goal is to re-purpose the ResNet50 model already trained on the [ImageNet image dataset](http://www.image-net.org/) as a basis for our training of the Kaggle Cats and Dogs dataset. The ResNet50 featurizer will be imported as frozen, so only the Keras classifier will be trained.\n",
|
||||
"\n",
|
||||
"With the addition of custom weights, we will build the model so that the ResNet50 featurizer weights as not frozen. This will let us retrain starting with custom weights trained with ImageNet on ResNet50 and then use the Kaggle Cats and Dogs dataset to retrain and fine-tune the quantized version of the model.\n",
|
||||
"\n",
|
||||
"#### Unquantized vs. Quantized models\n",
|
||||
"The unquantized version of our models (ie. Resnet50, Resnet152, Densenet121, Vgg16, SsdVgg) uses native float precision (32-bit floats), which will be faster at training. We will use this for our first run through, then fine-tune the weights with the quantized version. The quantized version of our models (i.e. QuantizedResnet50, QuantizedResnet152, QuantizedDensenet121, QuantizedVgg16, QuantizedSsdVgg) will have the same node names as the unquantized version, but use quantized operations and will match the performance of the model when running on an FPGA.\n",
|
||||
"\n",
|
||||
"#### Contents\n",
|
||||
"1. [Setup Environment](#setup)\n",
|
||||
"* [Prepare Data](#prepare-data)\n",
|
||||
"* [Construct Model](#construct-model)\n",
|
||||
" * Preprocessor\n",
|
||||
" * Classifier\n",
|
||||
" * Model construction\n",
|
||||
"* [Train Model](#train-model)\n",
|
||||
"* [Test Model](#test-model)\n",
|
||||
"* [Execution](#execution)\n",
|
||||
" * [Transfer Learning](#transfer-learning)\n",
|
||||
" * [Transfer Learning with Custom Weights](#custom-weights)\n",
|
||||
"* [Create Image](#create-image)\n",
|
||||
"* [Deploy Image](#deploy-image)\n",
|
||||
"* [Test the service](#test-service)\n",
|
||||
"* [Clean-up](#cleanup)\n",
|
||||
"* [Appendix](#appendix)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"setup\"></a>\n",
|
||||
"## 1. Setup Environment\n",
|
||||
"#### 1.a. Please set up your environment as described in the [Quickstart](./accelerated-models-quickstart.ipynb), meaning:\n",
|
||||
"* Make sure your Workspace config.json exists and has the correct info\n",
|
||||
"* Install Tensorflow\n",
|
||||
"\n",
|
||||
"#### 1.b. Download dataset into ~/catsanddogs \n",
|
||||
"The dataset we will be using for training can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory (\"~/catsanddogs\"). \n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### 1.c. Import packages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import numpy as np\n",
|
||||
"from keras import backend as K\n",
|
||||
"import sklearn\n",
|
||||
"import tqdm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### 1.d. Create directories for later use\n",
|
||||
"After you train your model in float32, you'll write the weights to a place on disk. We also need a location to store the models that get downloaded."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"custom_weights_dir = os.path.expanduser(\"~/custom-weights\")\n",
|
||||
"saved_model_dir = os.path.expanduser(\"~/models\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"prepare-data\"></a>\n",
|
||||
"## 2. Prepare Data\n",
|
||||
"Load the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run relatively quickly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import glob\n",
|
||||
"import imghdr\n",
|
||||
"datadir = os.path.expanduser(\"~/catsanddogs\")\n",
|
||||
"\n",
|
||||
"cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg'))\n",
|
||||
"dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg'))\n",
|
||||
"\n",
|
||||
"# Limit the data set to make the notebook execute quickly.\n",
|
||||
"cat_files = cat_files[:64]\n",
|
||||
"dog_files = dog_files[:64]\n",
|
||||
"\n",
|
||||
"# The data set has a few images that are not jpeg. Remove them.\n",
|
||||
"cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg']\n",
|
||||
"dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg']\n",
|
||||
"\n",
|
||||
"if(not len(cat_files) or not len(dog_files)):\n",
|
||||
" print(\"Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to \" + datadir) \n",
|
||||
" raise ValueError(\"Data not found\")\n",
|
||||
"else:\n",
|
||||
" print(cat_files[0])\n",
|
||||
" print(dog_files[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Construct a numpy array as labels\n",
|
||||
"image_paths = cat_files + dog_files\n",
|
||||
"total_files = len(cat_files) + len(dog_files)\n",
|
||||
"labels = np.zeros(total_files)\n",
|
||||
"labels[len(cat_files):] = 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Split images data as training data and test data\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"onehot_labels = np.array([[0,1] if i else [1,0] for i in labels])\n",
|
||||
"img_train, img_test, label_train, label_test = train_test_split(image_paths, onehot_labels, random_state=42, shuffle=True)\n",
|
||||
"\n",
|
||||
"print(len(img_train), len(img_test), label_train.shape, label_test.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"construct-model\"></a>\n",
|
||||
"## 3. Construct Model\n",
|
||||
"We will define the functions to handle creating the preprocessor and the classifier first, and then run them together to actually construct the model with the Resnet50 featurizer in a single Tensorflow session in a separate cell.\n",
|
||||
"\n",
|
||||
"We use ResNet50 for the featurizer and build our own classifier using Keras layers. We train the featurizer and the classifier as one model. We will provide parameters to determine whether we are using the quantized version and whether we are using custom weights in training or not."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3.a. Define image preprocessing step\n",
|
||||
"Same as in the Quickstart, before passing image dataset to the ResNet50 featurizer, we need to preprocess the input file to get it into the form expected by ResNet50. ResNet50 expects float tensors representing the images in BGR, channel last order. We've provided a default implementation of the preprocessing that you can use.\n",
|
||||
"\n",
|
||||
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.accel.models.utils as utils\n",
|
||||
"\n",
|
||||
"def preprocess_images(scaling_factor=1.0):\n",
|
||||
" # Convert images to 3D tensors [width,height,channel] - channels are in BGR order.\n",
|
||||
" in_images = tf.placeholder(tf.string)\n",
|
||||
" image_tensors = utils.preprocess_array(in_images, 'RGB', scaling_factor)\n",
|
||||
" return in_images, image_tensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3.b. Define classifier\n",
|
||||
"We use Keras layer APIs to construct the classifier. Because we're using the tensorflow backend, we can train this classifier in one session with our Resnet50 model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def construct_classifier(in_tensor, seed=None):\n",
|
||||
" from keras.layers import Dropout, Dense, Flatten\n",
|
||||
" from keras.initializers import glorot_uniform\n",
|
||||
" K.set_session(tf.get_default_session())\n",
|
||||
"\n",
|
||||
" FC_SIZE = 1024\n",
|
||||
" NUM_CLASSES = 2\n",
|
||||
"\n",
|
||||
" x = Dropout(0.2, input_shape=(1, 1, int(in_tensor.shape[3]),), seed=seed)(in_tensor)\n",
|
||||
" x = Dense(FC_SIZE, activation='relu', input_dim=(1, 1, int(in_tensor.shape[3]),),\n",
|
||||
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
|
||||
" x = Flatten()(x)\n",
|
||||
" preds = Dense(NUM_CLASSES, activation='softmax', input_dim=FC_SIZE, name='classifier_output',\n",
|
||||
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
|
||||
" return preds"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3.c. Define model construction\n",
|
||||
"Now that the preprocessor and classifier for the model are defined, we can define how we want to construct the model. \n",
|
||||
"\n",
|
||||
"Constructing the model has these steps: \n",
|
||||
"1. Get preprocessing steps\n",
|
||||
"* Get featurizer using the Azure ML Accel Models SDK:\n",
|
||||
" * import the graph definition\n",
|
||||
" * restore the weights of the model into a Tensorflow session\n",
|
||||
"* Get classifier\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def construct_model(quantized, starting_weights_directory = None):\n",
|
||||
" from azureml.accel.models import Resnet50, QuantizedResnet50\n",
|
||||
" \n",
|
||||
" # Convert images to 3D tensors [width,height,channel]\n",
|
||||
" in_images, image_tensors = preprocess_images(1.0)\n",
|
||||
"\n",
|
||||
" # Construct featurizer using quantized or unquantized ResNet50 model\n",
|
||||
" if not quantized:\n",
|
||||
" featurizer = Resnet50(saved_model_dir)\n",
|
||||
" else:\n",
|
||||
" featurizer = QuantizedResnet50(saved_model_dir, custom_weights_directory = starting_weights_directory)\n",
|
||||
"\n",
|
||||
" features = featurizer.import_graph_def(input_tensor=image_tensors)\n",
|
||||
" \n",
|
||||
" # Construct classifier\n",
|
||||
" preds = construct_classifier(features)\n",
|
||||
" \n",
|
||||
" # Initialize weights\n",
|
||||
" sess = tf.get_default_session()\n",
|
||||
" tf.global_variables_initializer().run()\n",
|
||||
"\n",
|
||||
" featurizer.restore_weights(sess)\n",
|
||||
"\n",
|
||||
" return in_images, image_tensors, features, preds, featurizer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"train-model\"></a>\n",
|
||||
"## 4. Train Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def read_files(files):\n",
|
||||
" \"\"\" Read files to array\"\"\"\n",
|
||||
" contents = []\n",
|
||||
" for path in files:\n",
|
||||
" with open(path, 'rb') as f:\n",
|
||||
" contents.append(f.read())\n",
|
||||
" return contents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def train_model(preds, in_images, img_train, label_train, is_retrain = False, train_epoch = 10, learning_rate=None):\n",
|
||||
" \"\"\" training model \"\"\"\n",
|
||||
" from keras.objectives import binary_crossentropy\n",
|
||||
" from tqdm import tqdm\n",
|
||||
" \n",
|
||||
" learning_rate = learning_rate if learning_rate else 0.001 if is_retrain else 0.01\n",
|
||||
" \n",
|
||||
" # Specify the loss function\n",
|
||||
" in_labels = tf.placeholder(tf.float32, shape=(None, 2)) \n",
|
||||
" cross_entropy = tf.reduce_mean(binary_crossentropy(in_labels, preds))\n",
|
||||
" optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)\n",
|
||||
"\n",
|
||||
" def chunks(a, b, n):\n",
|
||||
" \"\"\"Yield successive n-sized chunks from a and b.\"\"\"\n",
|
||||
" if (len(a) != len(b)):\n",
|
||||
" print(\"a and b are not equal in chunks(a,b,n)\")\n",
|
||||
" raise ValueError(\"Parameter error\")\n",
|
||||
"\n",
|
||||
" for i in range(0, len(a), n):\n",
|
||||
" yield a[i:i + n], b[i:i + n]\n",
|
||||
"\n",
|
||||
" chunk_size = 16\n",
|
||||
" chunk_num = len(label_train) / chunk_size\n",
|
||||
"\n",
|
||||
" sess = tf.get_default_session()\n",
|
||||
" for epoch in range(train_epoch):\n",
|
||||
" avg_loss = 0\n",
|
||||
" for img_chunk, label_chunk in tqdm(chunks(img_train, label_train, chunk_size)):\n",
|
||||
" contents = read_files(img_chunk)\n",
|
||||
" _, loss = sess.run([optimizer, cross_entropy],\n",
|
||||
" feed_dict={in_images: contents,\n",
|
||||
" in_labels: label_chunk,\n",
|
||||
" K.learning_phase(): 1})\n",
|
||||
" avg_loss += loss / chunk_num\n",
|
||||
" print(\"Epoch:\", (epoch + 1), \"loss = \", \"{:.3f}\".format(avg_loss))\n",
|
||||
" \n",
|
||||
" # Reach desired performance\n",
|
||||
" if (avg_loss < 0.001):\n",
|
||||
" break"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"test-model\"></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"test-model\"></a>\n",
|
||||
"## 5. Test Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def test_model(preds, in_images, img_test, label_test):\n",
|
||||
" \"\"\"Test the model\"\"\"\n",
|
||||
" from keras.metrics import categorical_accuracy\n",
|
||||
"\n",
|
||||
" in_labels = tf.placeholder(tf.float32, shape=(None, 2))\n",
|
||||
" accuracy = tf.reduce_mean(categorical_accuracy(in_labels, preds))\n",
|
||||
" contents = read_files(img_test)\n",
|
||||
"\n",
|
||||
" accuracy = accuracy.eval(feed_dict={in_images: contents,\n",
|
||||
" in_labels: label_test,\n",
|
||||
" K.learning_phase(): 0})\n",
|
||||
" return accuracy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"execution\"></a>\n",
|
||||
"## 6. Execute steps\n",
|
||||
"You can run through the Transfer Learning section, then skip to Create AccelContainerImage. By default, because the custom weights section takes much longer for training twice, it is not saved as executable cells. You can copy the code or change cell type to 'Code'.\n",
|
||||
"\n",
|
||||
"<a id=\"transfer-learning\"></a>\n",
|
||||
"### 6.a. Training using Transfer Learning"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# Launch the training\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
||||
"\n",
|
||||
"with sess.as_default():\n",
|
||||
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=True)\n",
|
||||
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10, learning_rate=0.01) \n",
|
||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
||||
" print(\"Accuracy:\", accuracy)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Save Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_name = 'resnet50-catsanddogs-tl'\n",
|
||||
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
|
||||
"\n",
|
||||
"tf.saved_model.simple_save(sess, model_save_path,\n",
|
||||
" inputs={'images': in_images},\n",
|
||||
" outputs={'output_alias': preds})\n",
|
||||
"\n",
|
||||
"input_tensors = in_images.name\n",
|
||||
"output_tensors = preds.name\n",
|
||||
"\n",
|
||||
"print(input_tensors)\n",
|
||||
"print(output_tensors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"custom-weights\"></a>\n",
|
||||
"### 6.b. Traning using Custom Weights\n",
|
||||
"\n",
|
||||
"Because the quantized graph defintion and the float32 graph defintion share the same node names in the graph definitions, we can initally train the weights in float32, and then reload them with the quantized operations (which take longer) to fine-tune the model.\n",
|
||||
"\n",
|
||||
"First we train the model with custom weights but without quantization. Training is done with native float precision (32-bit floats). We load the training data set and batch the training with 10 epochs. When the performance reaches desired level or starts decredation, we stop the training iteration and save the weights as tensorflow checkpoint files. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Launch the training\n",
|
||||
"```\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
||||
"\n",
|
||||
"with sess.as_default():\n",
|
||||
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=False)\n",
|
||||
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10) \n",
|
||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
||||
" print(\"Accuracy:\", accuracy)\n",
|
||||
" featurizer.save_weights(custom_weights_dir + \"/rn50\", tf.get_default_session())\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Test Model\n",
|
||||
"After training, we evaluate the trained model's accuracy on test dataset with quantization. So that we know the model's performance if it is deployed on the FPGA."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"sess = tf.Session(graph=tf.get_default_graph())\n",
|
||||
"\n",
|
||||
"with sess.as_default():\n",
|
||||
" print(\"Testing trained model with quantization\")\n",
|
||||
" in_images, image_tensors, features, preds, quantized_featurizer = construct_model(quantized=True, starting_weights_directory=custom_weights_dir)\n",
|
||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
||||
" print(\"Accuracy:\", accuracy)\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Fine-Tune Model\n",
|
||||
"Sometimes, the model's accuracy can drop significantly after quantization. In those cases, we need to retrain the model enabled with quantization to get better model accuracy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```\n",
|
||||
"if (accuracy < 0.93):\n",
|
||||
" with sess.as_default():\n",
|
||||
" print(\"Fine-tuning model with quantization\")\n",
|
||||
" train_model(preds, in_images, img_train, label_train, is_retrain=True, train_epoch=10)\n",
|
||||
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
|
||||
" print(\"Accuracy:\", accuracy)\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Save Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```\n",
|
||||
"model_name = 'resnet50-catsanddogs-cw'\n",
|
||||
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
|
||||
"\n",
|
||||
"tf.saved_model.simple_save(sess, model_save_path,\n",
|
||||
" inputs={'images': in_images},\n",
|
||||
" outputs={'output_alias': preds})\n",
|
||||
"\n",
|
||||
"input_tensors = in_images.name\n",
|
||||
"output_tensors = preds.name\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"create-image\"></a>\n",
|
||||
"## 7. Create AccelContainerImage\n",
|
||||
"\n",
|
||||
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.image import Image\n",
|
||||
"from azureml.accel import AccelOnnxConverter\n",
|
||||
"from azureml.accel import AccelContainerImage\n",
|
||||
"\n",
|
||||
"# Retrieve workspace\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
|
||||
"\n",
|
||||
"# Register model\n",
|
||||
"registered_model = Model.register(workspace = ws,\n",
|
||||
" model_path = model_save_path,\n",
|
||||
" model_name = model_name)\n",
|
||||
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
|
||||
"\n",
|
||||
"# Convert model\n",
|
||||
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
|
||||
"if convert_request.wait_for_completion(show_output = False):\n",
|
||||
" # If the above call succeeded, get the converted model\n",
|
||||
" converted_model = convert_request.result\n",
|
||||
" print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
|
||||
" converted_model.id, converted_model.created_time, '\\n')\n",
|
||||
"else:\n",
|
||||
" print(\"Model conversion failed. Showing output.\")\n",
|
||||
" convert_request.wait_for_completion(show_output = True)\n",
|
||||
"\n",
|
||||
"# Package into AccelContainerImage\n",
|
||||
"image_config = AccelContainerImage.image_configuration()\n",
|
||||
"# Image name must be lowercase\n",
|
||||
"image_name = \"{}-image\".format(model_name)\n",
|
||||
"image = Image.create(name = image_name,\n",
|
||||
" models = [converted_model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"image.wait_for_creation()\n",
|
||||
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"deploy-image\"></a>\n",
|
||||
"## 8. Deploy image\n",
|
||||
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
|
||||
"\n",
|
||||
"### 8.a. Deploy to Databox Edge Machine using IoT Hub\n",
|
||||
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
|
||||
"\n",
|
||||
"### 8.b. Deploy to AKS Cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Create AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"\n",
|
||||
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
|
||||
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
|
||||
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
|
||||
" agent_count = 1,\n",
|
||||
" location = \"eastus\")\n",
|
||||
"\n",
|
||||
"aks_name = 'aks-pb6-tl'\n",
|
||||
"# Create the cluster\n",
|
||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
||||
" name = aks_name, \n",
|
||||
" provisioning_configuration = prov_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_target.wait_for_completion(show_output = True)\n",
|
||||
"print(aks_target.provisioning_state)\n",
|
||||
"print(aks_target.provisioning_errors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Deploy AccelContainerImage to AKS ComputeTarget"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"sample-akswebservice-deploy-from-image"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"\n",
|
||||
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
|
||||
"# Authentication is enabled by default, but for testing we specify False\n",
|
||||
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
|
||||
" num_replicas=1,\n",
|
||||
" auth_enabled = False)\n",
|
||||
"\n",
|
||||
"aks_service_name ='my-aks-service-2'\n",
|
||||
"\n",
|
||||
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
|
||||
" name = aks_service_name,\n",
|
||||
" image = image,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" deployment_target = aks_target)\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"test-service\"></a>\n",
|
||||
"## 9. Test the service\n",
|
||||
"\n",
|
||||
"<a id=\"create-client\"></a>\n",
|
||||
"### 9.a. Create Client\n",
|
||||
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
|
||||
"\n",
|
||||
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
|
||||
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using the grpc client in AzureML Accelerated Models SDK\n",
|
||||
"from azureml.accel import client_from_service\n",
|
||||
"\n",
|
||||
"# Initialize AzureML Accelerated Models client\n",
|
||||
"client = client_from_service(aks_service)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"serve-model\"></a>\n",
|
||||
"### 9.b. Serve the model\n",
|
||||
"Let's see how our service does on a few images. It may get a few wrong."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Specify an image to classify\n",
|
||||
"print('CATS')\n",
|
||||
"for image_file in cat_files[:8]:\n",
|
||||
" results = client.score_file(path=image_file, \n",
|
||||
" input_name=input_tensors, \n",
|
||||
" outputs=output_tensors)\n",
|
||||
" result = 'CORRECT ' if results[0] > results[1] else 'WRONG '\n",
|
||||
" print(result + str(results))\n",
|
||||
"print('DOGS')\n",
|
||||
"for image_file in dog_files[:8]:\n",
|
||||
" results = client.score_file(path=image_file, \n",
|
||||
" input_name=input_tensors, \n",
|
||||
" outputs=output_tensors)\n",
|
||||
" result = 'CORRECT ' if results[1] > results[0] else 'WRONG '\n",
|
||||
" print(result + str(results))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"cleanup\"></a>\n",
|
||||
"## 10. Cleanup\n",
|
||||
"It's important to clean up your resources, so that you won't incur unnecessary costs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aks_service.delete()\n",
|
||||
"aks_target.delete()\n",
|
||||
"image.delete()\n",
|
||||
"registered_model.delete()\n",
|
||||
"converted_model.delete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"appendix\"></a>\n",
|
||||
"## 11. Appendix"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"License for plot_confusion_matrix:\n",
|
||||
"\n",
|
||||
"New BSD License\n",
|
||||
"\n",
|
||||
"Copyright (c) 2007-2018 The scikit-learn developers.\n",
|
||||
"All rights reserved.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Redistribution and use in source and binary forms, with or without\n",
|
||||
"modification, are permitted provided that the following conditions are met:\n",
|
||||
"\n",
|
||||
" a. Redistributions of source code must retain the above copyright notice,\n",
|
||||
" this list of conditions and the following disclaimer.\n",
|
||||
" b. Redistributions in binary form must reproduce the above copyright\n",
|
||||
" notice, this list of conditions and the following disclaimer in the\n",
|
||||
" documentation and/or other materials provided with the distribution.\n",
|
||||
" c. Neither the name of the Scikit-learn Developers nor the names of\n",
|
||||
" its contributors may be used to endorse or promote products\n",
|
||||
" derived from this software without specific prior written\n",
|
||||
" permission. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n",
|
||||
"AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n",
|
||||
"IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n",
|
||||
"ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR\n",
|
||||
"ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n",
|
||||
"DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n",
|
||||
"SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n",
|
||||
"CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT\n",
|
||||
"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY\n",
|
||||
"OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH\n",
|
||||
"DAMAGE.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "coverste"
|
||||
},
|
||||
{
|
||||
"name": "paledger"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
name: accelerated-models-training
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-accel-models[cpu]
|
||||
- keras
|
||||
- tqdm
|
||||
- sklearn
|
||||
|
Before Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 79 KiB |
@@ -383,6 +383,8 @@
|
||||
"- an inference configuration\n",
|
||||
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
|
||||
"\n",
|
||||
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
|
||||
"\n",
|
||||
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
|
||||
"\n",
|
||||
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
|
||||
@@ -483,6 +485,7 @@
|
||||
" cpu=1.0,\n",
|
||||
" memory_in_gb=0.5)\n",
|
||||
"\n",
|
||||
"# profiling is a long running operation and may take up to 25 min\n",
|
||||
"profile.wait_for_completion(True)\n",
|
||||
"details = profile.get_details()"
|
||||
]
|
||||
|
||||
@@ -3,6 +3,6 @@ dependencies:
|
||||
- python=3.6.2
|
||||
- pip:
|
||||
- azureml-defaults
|
||||
- scikit-learn
|
||||
- scikit-learn==0.19.1
|
||||
- numpy
|
||||
- inference-schema[numpy-support]
|
||||
|
||||
@@ -86,7 +86,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model_local_adv` in the workspace.\n",
|
||||
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
|
||||
"\n",
|
||||
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
|
||||
]
|
||||
@@ -105,7 +105,7 @@
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
|
||||
" model_name=\"sklearn_regression_model_local_adv\",\n",
|
||||
" model_name=\"sklearn_regression_model\",\n",
|
||||
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
|
||||
" description=\"Ridge regression model to predict diabetes\",\n",
|
||||
" workspace=ws)"
|
||||
@@ -126,12 +126,12 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"source_directory = \"C:/abc\"\n",
|
||||
"source_directory = \"source_directory\"\n",
|
||||
"\n",
|
||||
"os.makedirs(source_directory, exist_ok=True)\n",
|
||||
"os.makedirs(\"C:/abc/x/y\", exist_ok=True)\n",
|
||||
"os.makedirs(\"C:/abc/env\", exist_ok=True)\n",
|
||||
"os.makedirs(\"C:/abc/dockerstep\", exist_ok=True)"
|
||||
"os.makedirs(os.path.join(source_directory, \"x/y\"), exist_ok=True)\n",
|
||||
"os.makedirs(os.path.join(source_directory, \"env\"), exist_ok=True)\n",
|
||||
"os.makedirs(os.path.join(source_directory, \"dockerstep\"), exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -147,7 +147,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile C:/abc/x/y/score.py\n",
|
||||
"%%writefile source_directory/x/y/score.py\n",
|
||||
"import os\n",
|
||||
"import pickle\n",
|
||||
"import json\n",
|
||||
@@ -170,7 +170,7 @@
|
||||
" global name\n",
|
||||
" # note here, entire source directory on inference config gets added into image\n",
|
||||
" # bellow is the example how you can use any extra files in image\n",
|
||||
" with open('./abc/extradata.json') as json_file: \n",
|
||||
" with open('./source_directory/extradata.json') as json_file:\n",
|
||||
" data = json.load(json_file)\n",
|
||||
" name = data[\"people\"][0][\"name\"]\n",
|
||||
"\n",
|
||||
@@ -191,9 +191,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Please note that you must indicate azureml-defaults with verion >= 1.0.45 as a pip dependency for your environemnt. This package contains the functionality needed to host the model as a web service."
|
||||
]
|
||||
@@ -204,7 +202,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile C:/abc/env/myenv.yml\n",
|
||||
"%%writefile source_directory/env/myenv.yml\n",
|
||||
"name: project_environment\n",
|
||||
"dependencies:\n",
|
||||
" - python=3.6.2\n",
|
||||
@@ -221,7 +219,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile C:/abc/extradata.json\n",
|
||||
"%%writefile source_directory/extradata.json\n",
|
||||
"{\n",
|
||||
" \"people\": [\n",
|
||||
" {\n",
|
||||
@@ -255,13 +253,14 @@
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"myenv = Environment.from_conda_specification(name='myenv', file_path='env/myenv.yml')\n",
|
||||
"myenv = Environment.from_conda_specification(name='myenv', file_path='myenv.yml')\n",
|
||||
"\n",
|
||||
"# explicitly set base_image to None when setting base_dockerfile\n",
|
||||
"myenv.docker.base_image = None\n",
|
||||
"myenv.docker.base_dockerfile = \"RUN echo \\\"this is test\\\"\"\n",
|
||||
"myenv.docker.base_dockerfile = \"FROM mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04\\nRUN echo \\\"this is test\\\"\"\n",
|
||||
"myenv.inferencing_stack_version = \"latest\"\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(source_directory=\"C:/abc\",\n",
|
||||
"inference_config = InferenceConfig(source_directory=source_directory,\n",
|
||||
" entry_script=\"x/y/score.py\",\n",
|
||||
" environment=myenv)\n"
|
||||
]
|
||||
@@ -379,7 +378,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile C:/abc/x/y/score.py\n",
|
||||
"%%writefile source_directory/x/y/score.py\n",
|
||||
"import os\n",
|
||||
"import pickle\n",
|
||||
"import json\n",
|
||||
@@ -401,7 +400,7 @@
|
||||
" global name, from_location\n",
|
||||
" # note here, entire source directory on inference config gets added into image\n",
|
||||
" # bellow is the example how you can use any extra files in image\n",
|
||||
" with open('./abc/extradata.json') as json_file: \n",
|
||||
" with open('source_directory/extradata.json') as json_file: \n",
|
||||
" data = json.load(json_file)\n",
|
||||
" name = data[\"people\"][0][\"name\"]\n",
|
||||
" from_location = data[\"people\"][0][\"from\"]\n",
|
||||
|
||||
@@ -82,7 +82,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model_local` in the workspace.\n",
|
||||
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
|
||||
"\n",
|
||||
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
|
||||
]
|
||||
@@ -100,7 +100,7 @@
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
|
||||
" model_name=\"sklearn_regression_model_local\",\n",
|
||||
" model_name=\"sklearn_regression_model\",\n",
|
||||
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
|
||||
" description=\"Ridge regression model to predict diabetes\",\n",
|
||||
" workspace=ws)"
|
||||
@@ -159,6 +159,8 @@
|
||||
"- an inference configuration\n",
|
||||
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
|
||||
"\n",
|
||||
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
|
||||
"\n",
|
||||
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
|
||||
"\n",
|
||||
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
|
||||
@@ -231,7 +233,8 @@
|
||||
" 'inference-schema[numpy-support]',\n",
|
||||
" 'joblib',\n",
|
||||
" 'numpy',\n",
|
||||
" 'scikit-learn'\n",
|
||||
" 'scikit-learn==0.19.1',\n",
|
||||
" 'scipy'\n",
|
||||
"])\n",
|
||||
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
|
||||
"# if cpu and memory_in_gb parameters are not provided\n",
|
||||
@@ -245,6 +248,7 @@
|
||||
" cpu=1.0,\n",
|
||||
" memory_in_gb=0.5)\n",
|
||||
"\n",
|
||||
"# profiling is a long running operation and may take up to 25 min\n",
|
||||
"profile.wait_for_completion(True)\n",
|
||||
"details = profile.get_details()"
|
||||
]
|
||||
|
||||
@@ -45,11 +45,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"from azureml.core.webservice import AksWebservice\n",
|
||||
"import azureml.core\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"print(azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
@@ -84,10 +86,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Register the model\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
|
||||
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
|
||||
"from azureml.core import Model\n",
|
||||
"\n",
|
||||
"model = Model.register(model_path=\"sklearn_regression_model.pkl\", # This points to a local file.\n",
|
||||
" model_name=\"sklearn_regression_model.pkl\", # This is the name the model is registered as.\n",
|
||||
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
|
||||
" description=\"Ridge regression model to predict diabetes\",\n",
|
||||
" workspace=ws)\n",
|
||||
@@ -190,9 +192,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"\n",
|
||||
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
|
||||
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
|
||||
@@ -216,7 +217,7 @@
|
||||
"aci_deployment_config = AciWebservice.deploy_configuration(cpu_cores=1,\n",
|
||||
" memory_gb=1,\n",
|
||||
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
|
||||
" description = 'Predict diabetes using regression model',\n",
|
||||
" description=\"Predict diabetes using regression model\",\n",
|
||||
" enable_app_insights=True)"
|
||||
]
|
||||
},
|
||||
@@ -226,11 +227,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"aci_service_name = \"aci-service-appinsights\"\n",
|
||||
"\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aci_deployment_config, overwrite=True)\n",
|
||||
"aci_service.wait_for_deployment(show_output=True)\n",
|
||||
"\n",
|
||||
"aci_service_name = 'my-aci-service-4'\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aci_deployment_config)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
},
|
||||
@@ -240,23 +241,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
"if aci_service.state == \"Healthy\":\n",
|
||||
" test_sample = json.dumps({\n",
|
||||
" \"data\": [\n",
|
||||
" [1,28,13,45,54,6,57,8,8,10],\n",
|
||||
" [101,9,8,37,6,45,4,3,2,41]\n",
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding='utf8')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if aci_service.state == \"Healthy\":\n",
|
||||
" prediction = aci_service.run(input_data=test_sample)\n",
|
||||
" ]\n",
|
||||
" })\n",
|
||||
"\n",
|
||||
" prediction = aci_service.run(test_sample)\n",
|
||||
"\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service. Error: \", aci_service.error)"
|
||||
@@ -282,11 +276,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Use the default configuration (can also provide parameters to customize)\n",
|
||||
"prov_config = AksCompute.provisioning_configuration()\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"\n",
|
||||
"aks_name = 'my-aks-test3' \n",
|
||||
"# Create the cluster\n",
|
||||
"aks_name = \"my-aks\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" aks_target = ComputeTarget(ws, aks_name)\n",
|
||||
" print(\"Using existing AKS cluster {}.\".format(aks_name))\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"Creating a new AKS cluster {}.\".format(aks_name))\n",
|
||||
"\n",
|
||||
" # Use the default configuration (can also provide parameters to customize).\n",
|
||||
" prov_config = AksCompute.provisioning_configuration()\n",
|
||||
" aks_target = ComputeTarget.create(workspace=ws,\n",
|
||||
" name=aks_name,\n",
|
||||
" provisioning_configuration=prov_config)"
|
||||
@@ -299,6 +300,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"if aks_target.provisioning_state != \"Succeeded\":\n",
|
||||
" aks_target.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
@@ -349,7 +351,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Set the web service configuration\n",
|
||||
"# Set the web service configuration.\n",
|
||||
"aks_deployment_config = AksWebservice.deploy_configuration(enable_app_insights=True)"
|
||||
]
|
||||
},
|
||||
@@ -367,13 +369,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if aks_target.provisioning_state == \"Succeeded\":\n",
|
||||
" aks_service_name ='aks-w-dc5'\n",
|
||||
" aks_service_name = \"aks-service-appinsights\"\n",
|
||||
" aks_service = Model.deploy(ws,\n",
|
||||
" aks_service_name,\n",
|
||||
" [model],\n",
|
||||
" inference_config,\n",
|
||||
" aks_deployment_config,\n",
|
||||
" deployment_target = aks_target) \n",
|
||||
" deployment_target=aks_target,\n",
|
||||
" overwrite=True)\n",
|
||||
" aks_service.wait_for_deployment(show_output=True)\n",
|
||||
" print(aks_service.state)\n",
|
||||
"else:\n",
|
||||
@@ -395,13 +398,14 @@
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
"if aks_service.state == \"Healthy\":\n",
|
||||
" test_sample = json.dumps({\n",
|
||||
" \"data\": [\n",
|
||||
" [1,28,13,45,54,6,57,8,8,10],\n",
|
||||
" [101,9,8,37,6,45,4,3,2,41]\n",
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding='utf8')\n",
|
||||
" ]\n",
|
||||
" })\n",
|
||||
"\n",
|
||||
"if aks_service.state == \"Healthy\":\n",
|
||||
" prediction = aks_service.run(input_data=test_sample)\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
|
||||
@@ -115,6 +115,11 @@
|
||||
"# Convert from CoreML into ONNX\n",
|
||||
"onnx_model = onnxmltools.convert_coreml(coreml_model, 'TinyYOLOv2')\n",
|
||||
"\n",
|
||||
"# Fix the preprocessor bias in the ImageScaler\n",
|
||||
"for init in onnx_model.graph.initializer:\n",
|
||||
" if init.name == 'scalerPreprocessor_bias':\n",
|
||||
" init.dims[1] = 1\n",
|
||||
"\n",
|
||||
"# Save ONNX model\n",
|
||||
"onnxmltools.utils.save_model(onnx_model, 'tinyyolov2.onnx')\n",
|
||||
"\n",
|
||||
@@ -255,7 +260,7 @@
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime==0.4.0\", \"azureml-core\", \"azureml-defaults\"])\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime\", \"azureml-core\", \"azureml-defaults\"])\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())"
|
||||
@@ -316,7 +321,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aci_service_name = 'my-aci-service-15ad'\n",
|
||||
"aci_service_name = 'my-aci-service-tiny-yolo'\n",
|
||||
"print(\"Service\", aci_service_name)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
|
||||
@@ -4,4 +4,5 @@ dependencies:
|
||||
- azureml-sdk
|
||||
- numpy
|
||||
- git+https://github.com/apple/coremltools@v2.1
|
||||
- onnxmltools==1.3.1
|
||||
- onnx<1.7.0
|
||||
- onnxmltools
|
||||
|
||||
@@ -5,5 +5,5 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- numpy
|
||||
- onnx
|
||||
- opencv-python
|
||||
- onnx<1.7.0
|
||||
- opencv-python-headless
|
||||
|
||||
@@ -5,5 +5,5 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- numpy
|
||||
- onnx
|
||||
- opencv-python
|
||||
- onnx<1.7.0
|
||||
- opencv-python-headless
|
||||
|
||||
@@ -59,8 +59,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Register the model\n",
|
||||
"Register an existing trained model, add descirption and tags. Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. You can download a [pretrained resnet50](http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v1_fp32_savedmodel_NCHW_jpg.tar.gz) and unpack it to that directory."
|
||||
"# Download the model\n",
|
||||
"\n",
|
||||
"Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. This cell will download a [pretrained resnet50](http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v1_fp32_savedmodel_NCHW_jpg.tar.gz) and unpack it to that directory."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -68,11 +69,46 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import requests\n",
|
||||
"import shutil\n",
|
||||
"import tarfile\n",
|
||||
"import tempfile\n",
|
||||
"\n",
|
||||
"from io import BytesIO\n",
|
||||
"\n",
|
||||
"model_url = \"http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v1_fp32_savedmodel_NCHW_jpg.tar.gz\"\n",
|
||||
"\n",
|
||||
"archive_prefix = \"./resnet_v1_fp32_savedmodel_NCHW_jpg/1538686758/\"\n",
|
||||
"target_folder = \"resnet50\"\n",
|
||||
"\n",
|
||||
"if not os.path.exists(target_folder):\n",
|
||||
" response = requests.get(model_url)\n",
|
||||
" archive = tarfile.open(fileobj=BytesIO(response.content))\n",
|
||||
" with tempfile.TemporaryDirectory() as temp_folder:\n",
|
||||
" archive.extractall(temp_folder)\n",
|
||||
" shutil.copytree(os.path.join(temp_folder, archive_prefix), target_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Register the model\n",
|
||||
"Register an existing trained model, add description and tags."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import Model\n",
|
||||
"model = Model.register(model_path = \"resnet50\", # this points to a local file\n",
|
||||
" model_name = \"resnet50\", # this is the name the model is registered as\n",
|
||||
"\n",
|
||||
"model = Model.register(model_path=\"resnet50\", # This points to the local directory to upload.\n",
|
||||
" model_name=\"resnet50\", # This is the name the model is registered as.\n",
|
||||
" tags={'area': \"Image classification\", 'type': \"classification\"},\n",
|
||||
" description=\"Image classification trained on Imagenet Dataset\",\n",
|
||||
" workspace=ws)\n",
|
||||
|
||||
@@ -212,6 +212,8 @@
|
||||
"- an inference configuration\n",
|
||||
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
|
||||
"\n",
|
||||
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
|
||||
"\n",
|
||||
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
|
||||
"\n",
|
||||
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
|
||||
@@ -312,6 +314,7 @@
|
||||
" cpu=1.0,\n",
|
||||
" memory_in_gb=0.5)\n",
|
||||
"\n",
|
||||
"# profiling is a long running operation and may take up to 25 min\n",
|
||||
"profile.wait_for_completion(True)\n",
|
||||
"details = profile.get_details()"
|
||||
]
|
||||
|
||||
@@ -1,260 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Register TensorFlow SavedModel and deploy as webservice\n",
|
||||
"\n",
|
||||
"Following this notebook, you will:\n",
|
||||
"\n",
|
||||
" - Learn how to register a TF SavedModel in your Azure Machine Learning Workspace.\n",
|
||||
" - Deploy your model as a web service in an Azure Container Instance."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and create a workspace."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"# Check core SDK version number.\n",
|
||||
"print('SDK version:', azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize workspace\n",
|
||||
"\n",
|
||||
"Create a [Workspace](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py) object from your persisted configuration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"create workspace"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download the Model\n",
|
||||
"\n",
|
||||
"Download and extract the model from https://amlsamplenotebooksdata.blob.core.windows.net/data/flowers_model.tar.gz to \"models\" directory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import tarfile\n",
|
||||
"import urllib.request\n",
|
||||
"\n",
|
||||
"# create directory for model\n",
|
||||
"model_dir = 'models'\n",
|
||||
"if not os.path.isdir(model_dir):\n",
|
||||
" os.mkdir(model_dir)\n",
|
||||
"\n",
|
||||
"url=\"https://amlsamplenotebooksdata.blob.core.windows.net/data/flowers_model.tar.gz\"\n",
|
||||
"response = urllib.request.urlretrieve(url, model_dir + \"/flowers_model.tar.gz\")\n",
|
||||
"tar = tarfile.open(model_dir + \"/flowers_model.tar.gz\", \"r:gz\")\n",
|
||||
"tar.extractall(model_dir)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register model\n",
|
||||
"\n",
|
||||
"Register a file or folder as a model by calling [Model.register()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none-). For this example, we have provided a TensorFlow SavedModel (`flowers_model` in the notebook's directory).\n",
|
||||
"\n",
|
||||
"In addition to the content of the model file itself, your registered model will also store model metadata -- model description, tags, and framework information -- that will be useful when managing and deploying models in your workspace. Using tags, for instance, you can categorize your models and apply filters when listing models in your workspace. Also, marking this model with the scikit-learn framework will simplify deploying it as a web service, as we'll see later."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Model\n",
|
||||
"\n",
|
||||
"model = Model.register(workspace=ws,\n",
|
||||
" model_name='flowers', # Name of the registered model in your workspace.\n",
|
||||
" model_path= model_dir + '/flowers_model', # Local Tensorflow SavedModel folder to upload and register as a model.\n",
|
||||
" model_framework=Model.Framework.TENSORFLOW, # Framework used to create the model.\n",
|
||||
" model_framework_version='1.14.0', # Version of Tensorflow used to create the model.\n",
|
||||
" description='Flowers model')\n",
|
||||
"\n",
|
||||
"print('Name:', model.name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy model\n",
|
||||
"\n",
|
||||
"Deploy your model as a web service using [Model.deploy()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config--deployment-config-none--deployment-target-none-). Web services take one or more models, load them in an environment, and run them on one of several supported deployment targets.\n",
|
||||
"\n",
|
||||
"For this example, we will deploy your TensorFlow SavedModel to an Azure Container Instance (ACI)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Use a default environment (for supported models)\n",
|
||||
"\n",
|
||||
"The Azure Machine Learning service provides a default environment for supported model frameworks, including TensorFlow, based on the metadata you provided when registering your model. This is the easiest way to deploy your model.\n",
|
||||
"\n",
|
||||
"**Note**: This step can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Webservice\n",
|
||||
"from azureml.exceptions import WebserviceException\n",
|
||||
"\n",
|
||||
"service_name = 'tensorflow-flower-service'\n",
|
||||
"\n",
|
||||
"# Remove any existing service under the same name.\n",
|
||||
"try:\n",
|
||||
" Webservice(ws, service_name).delete()\n",
|
||||
"except WebserviceException:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"service = Model.deploy(ws, service_name, [model])\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"After your model is deployed, perform a call to the web service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"headers = {'Content-Type': 'application/json'}\n",
|
||||
"\n",
|
||||
"if service.auth_enabled:\n",
|
||||
" headers['Authorization'] = 'Bearer '+ service.get_keys()[0]\n",
|
||||
"elif service.token_auth_enabled:\n",
|
||||
" headers['Authorization'] = 'Bearer '+ service.get_token()[0]\n",
|
||||
"\n",
|
||||
"scoring_uri = service.scoring_uri # If you have a SavedModel with classify and regress, \n",
|
||||
" # you can change the scoring_uri from 'uri:predict' to 'uri:classify' or 'uri:regress'.\n",
|
||||
"print(scoring_uri)\n",
|
||||
"\n",
|
||||
"with open('tensorflow-flower-predict-input.json', 'rb') as data_file:\n",
|
||||
" response = requests.post(\n",
|
||||
" scoring_uri, data=data_file, headers=headers)\n",
|
||||
"print(response.status_code)\n",
|
||||
"print(response.elapsed)\n",
|
||||
"print(response.json())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"When you are finished testing your service, clean up the deployment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"service.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "vaidyas"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,4 +0,0 @@
|
||||
name: tensorflow-model-register-and-deploy
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -58,7 +58,7 @@
|
||||
"\n",
|
||||
"Problem: Boston Housing Price Prediction with scikit-learn (train a model and run an explainer remotely via AMLCompute, and download and visualize the remotely-calculated explanations.)\n",
|
||||
"\n",
|
||||
"|  |\n",
|
||||
"|  |\n",
|
||||
"|:--:|\n"
|
||||
]
|
||||
},
|
||||
@@ -243,8 +243,25 @@
|
||||
" 'azureml-interpret', 'sklearn-pandas', 'azureml-dataprep'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"# Now submit a run on AmlCompute\n",
|
||||
@@ -344,8 +361,25 @@
|
||||
" 'azureml-interpret', 'azureml-dataprep'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"from azureml.core import Run\n",
|
||||
@@ -457,8 +491,25 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"from azureml.core import Run\n",
|
||||
@@ -621,7 +672,7 @@
|
||||
"source": [
|
||||
"# retrieve model for visualization and deployment\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"import joblib\n",
|
||||
"original_model = Model(ws, 'model_explain_model_on_amlcomp')\n",
|
||||
"model_path = original_model.download(exist_ok=True)\n",
|
||||
"original_model = joblib.load(model_path)"
|
||||
@@ -641,7 +692,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# retrieve x_test for visualization\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test_boston_housing.pkl'\n",
|
||||
"run.download_file('x_test_boston_housing.pkl', output_file_path=x_test_path)"
|
||||
]
|
||||
@@ -696,6 +747,7 @@
|
||||
"1. [Save model explanations via Azure Machine Learning Run History](../run-history/save-retrieve-explanations-run-history.ipynb)\n",
|
||||
"1. Inferencing time: deploy a classification model and explainer:\n",
|
||||
" 1. [Deploy a locally-trained model and explainer](../scoring-time/train-explain-model-locally-and-deploy.ipynb)\n",
|
||||
" 1. [Deploy a locally-trained keras model and explainer](../scoring-time/train-explain-model-keras-locally-and-deploy.ipynb)\n",
|
||||
" 1. [Deploy a remotely-trained model and explainer](../scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -7,7 +7,7 @@ from interpret.ext.blackbox import TabularExplainer
|
||||
from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient
|
||||
from sklearn.model_selection import train_test_split
|
||||
from azureml.core.run import Run
|
||||
from sklearn.externals import joblib
|
||||
import joblib
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -591,6 +591,7 @@
|
||||
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
|
||||
"1. Inferencing time: deploy a classification model and explainer:\n",
|
||||
" 1. [Deploy a locally-trained model and explainer](../scoring-time/train-explain-model-locally-and-deploy.ipynb)\n",
|
||||
" 1. [Deploy a locally-trained keras model and explainer](../scoring-time/train-explain-model-keras-locally-and-deploy.ipynb)\n",
|
||||
" 1. [Deploy a remotely-trained model and explainer](../scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -3,7 +3,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
import pickle
|
||||
from sklearn.externals import joblib
|
||||
import joblib
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
import pickle
|
||||
from sklearn.externals import joblib
|
||||
import joblib
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
@@ -165,7 +165,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"import joblib\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
@@ -328,8 +328,25 @@
|
||||
"]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas'],\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
|
||||
" pin_sdk_version=False)\n",
|
||||
"\n",
|
||||
@@ -453,7 +470,8 @@
|
||||
" 1. [Advanced feature transformations](https://github.com/interpretml/interpret-community/blob/master/notebooks/advanced-feature-transformations-explain-local.ipynb)\n",
|
||||
"1. [Save model explanations via Azure Machine Learning Run History](../run-history/save-retrieve-explanations-run-history.ipynb)\n",
|
||||
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
|
||||
"1. [Inferencing time: deploy a remotely-trained model and explainer](./train-explain-model-on-amlcompute-and-deploy.ipynb)"
|
||||
"1. [Inferencing time: deploy a remotely-trained model and explainer](./train-explain-model-on-amlcompute-and-deploy.ipynb)\n",
|
||||
"1. [Inferencing time: deploy a locally-trained keras model and explainer](./train-explain-model-keras-locally-and-deploy.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -63,7 +63,7 @@
|
||||
"7.\tCreate an image and register it in the image registry.\n",
|
||||
"8.\tDeploy the image as a web service in Azure.\n",
|
||||
"\n",
|
||||
"|  |\n",
|
||||
"|  |\n",
|
||||
"|:--:|"
|
||||
]
|
||||
},
|
||||
@@ -246,8 +246,25 @@
|
||||
" \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn version to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=['sklearn_pandas', 'pyyaml'] + azureml_pip_packages,\n",
|
||||
" pin_sdk_version=False)\n",
|
||||
"# Now submit a run on AmlCompute\n",
|
||||
@@ -308,7 +325,7 @@
|
||||
"source": [
|
||||
"# retrieve model for visualization and deployment\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"import joblib\n",
|
||||
"original_model = Model(ws, 'amlcompute_deploy_model')\n",
|
||||
"model_path = original_model.download(exist_ok=True)\n",
|
||||
"original_svm_model = joblib.load(model_path)"
|
||||
@@ -335,7 +352,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# retrieve x_test for visualization\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test.pkl'\n",
|
||||
"run.download_file('x_test_ibm.pkl', output_file_path=x_test_path)\n",
|
||||
"x_test = joblib.load(x_test_path)"
|
||||
@@ -397,8 +414,25 @@
|
||||
"]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas'],\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
|
||||
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
|
||||
" pin_sdk_version=False)\n",
|
||||
"\n",
|
||||
@@ -491,7 +525,8 @@
|
||||
" 1. [Advanced feature transformations](https://github.com/interpretml/interpret-community/blob/master/notebooks/advanced-feature-transformations-explain-local.ipynb)\n",
|
||||
"1. [Save model explanations via Azure Machine Learning Run History](../run-history/save-retrieve-explanations-run-history.ipynb)\n",
|
||||
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
|
||||
"1. [Inferencing time: deploy a locally-trained model and explainer](./train-explain-model-locally-and-deploy.ipynb)"
|
||||
"1. [Inferencing time: deploy a locally-trained model and explainer](./train-explain-model-locally-and-deploy.ipynb)\n",
|
||||
"1. [Inferencing time: deploy a locally-trained keras model and explainer](./train-explain-model-keras-locally-and-deploy.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -6,7 +6,7 @@ import os
|
||||
import pandas as pd
|
||||
import zipfile
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.externals import joblib
|
||||
import joblib
|
||||
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.pipeline import Pipeline
|
||||
|
||||
@@ -252,7 +252,7 @@
|
||||
"source": [
|
||||
"binaries_folder = \"azurebatch/job_binaries\"\n",
|
||||
"if not os.path.isdir(binaries_folder):\n",
|
||||
" os.mkdir(binaries_folder)\n",
|
||||
" os.makedirs(binaries_folder)\n",
|
||||
"\n",
|
||||
"file_name=\"azurebatch.cmd\"\n",
|
||||
"with open(path.join(binaries_folder, file_name), 'w') as f:\n",
|
||||
|
||||
@@ -537,259 +537,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy the model in ACI\n",
|
||||
"Now we are ready to deploy the model as a web service running in Azure Container Instance [ACI](https://azure.microsoft.com/en-us/services/container-instances/). \n",
|
||||
"### Create score.py\n",
|
||||
"First, we will create a scoring script that will be invoked by the web service call. \n",
|
||||
"\n",
|
||||
"* Note that the scoring script must have two required functions, `init()` and `run(input_data)`. \n",
|
||||
" * In `init()` function, you typically load the model into a global object. This function is executed only once when the Docker container is started. \n",
|
||||
" * In `run(input_data)` function, the model is used to predict a value based on the input data. The input and output to `run` typically use JSON as serialization and de-serialization format but you are not limited to that."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile score.py\n",
|
||||
"import json\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"def init():\n",
|
||||
" global X, output, sess\n",
|
||||
" tf.reset_default_graph()\n",
|
||||
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
|
||||
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
|
||||
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
|
||||
" model_root = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model')\n",
|
||||
" saver = tf.train.import_meta_graph(os.path.join(model_root, 'mnist-tf.model.meta'))\n",
|
||||
" X = tf.get_default_graph().get_tensor_by_name(\"network/X:0\")\n",
|
||||
" output = tf.get_default_graph().get_tensor_by_name(\"network/output/MatMul:0\")\n",
|
||||
" \n",
|
||||
" sess = tf.Session()\n",
|
||||
" saver.restore(sess, os.path.join(model_root, 'mnist-tf.model'))\n",
|
||||
"\n",
|
||||
"def run(raw_data):\n",
|
||||
" data = np.array(json.loads(raw_data)['data'])\n",
|
||||
" # make prediction\n",
|
||||
" out = output.eval(session=sess, feed_dict={X: data})\n",
|
||||
" y_hat = np.argmax(out, axis=1)\n",
|
||||
" return y_hat.tolist()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create myenv.yml\n",
|
||||
"We also need to create an environment file so that Azure Machine Learning can install the necessary packages in the Docker image which are required by your scoring script. In this case, we need to specify packages `numpy`, `tensorflow`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import CondaDependencies\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create()\n",
|
||||
"cd.add_conda_package('numpy')\n",
|
||||
"cd.add_tensorflow_conda_package()\n",
|
||||
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
|
||||
"\n",
|
||||
"print(cd.serialize_to_string())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy to ACI\n",
|
||||
"Now we can deploy. **This cell will run for about 7-8 minutes**. Behind the scene, AzureML will build a Docker container image with the given configuration, if already not available. This image will be deployed to the ACI infrastructure and the scoring script and model will be mounted on the container. The model will then be available as a web service with an HTTP endpoint to accept REST client calls."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"from azureml.core.model import Model, InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"myenv = Environment.from_conda_specification(name=\"env\", file_path=\"myenv.yml\")\n",
|
||||
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
" memory_gb=1, \n",
|
||||
" tags={'name':'mnist', 'framework': 'TensorFlow DNN'},\n",
|
||||
" description='Tensorflow DNN on MNIST')\n",
|
||||
"\n",
|
||||
"service = Model.deploy(ws, 'tf-mnist-svc', [model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(service.get_logs())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This is the scoring web service endpoint:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(service.scoring_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the deployed model\n",
|
||||
"Let's test the deployed model. Pick 30 random samples from the test set, and send it to the web service hosted in ACI. Note here we are using the `run` API in the SDK to invoke the service. You can also make raw HTTP calls using any HTTP tool such as curl.\n",
|
||||
"\n",
|
||||
"After the invocation, we print the returned predictions and plot them along with the input images. Use red font color and inversed image (white on black) to highlight the misclassified samples. Note since the model accuracy is pretty high, you might have to run the below cell a few times before you can see a misclassified sample."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"# find 30 random samples from test set\n",
|
||||
"n = 30\n",
|
||||
"sample_indices = np.random.permutation(X_test.shape[0])[0:n]\n",
|
||||
"\n",
|
||||
"test_samples = json.dumps({\"data\": X_test[sample_indices].tolist()})\n",
|
||||
"test_samples = bytes(test_samples, encoding='utf8')\n",
|
||||
"\n",
|
||||
"# predict using the deployed model\n",
|
||||
"result = service.run(input_data=test_samples)\n",
|
||||
"\n",
|
||||
"# compare actual value vs. the predicted values:\n",
|
||||
"i = 0\n",
|
||||
"plt.figure(figsize = (20, 1))\n",
|
||||
"\n",
|
||||
"for s in sample_indices:\n",
|
||||
" plt.subplot(1, n, i + 1)\n",
|
||||
" plt.axhline('')\n",
|
||||
" plt.axvline('')\n",
|
||||
" \n",
|
||||
" # use different color for misclassified sample\n",
|
||||
" font_color = 'red' if y_test[s] != result[i] else 'black'\n",
|
||||
" clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys\n",
|
||||
" \n",
|
||||
" plt.text(x=10, y=-10, s=y_hat[s], fontsize=18, color=font_color)\n",
|
||||
" plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)\n",
|
||||
" \n",
|
||||
" i = i + 1\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can also send raw HTTP request to the service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"# send a random row from the test set to score\n",
|
||||
"random_index = np.random.randint(0, len(X_test)-1)\n",
|
||||
"input_data = \"{\\\"data\\\": [\" + str(list(X_test[random_index])) + \"]}\"\n",
|
||||
"\n",
|
||||
"headers = {'Content-Type':'application/json'}\n",
|
||||
"\n",
|
||||
"resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
|
||||
"\n",
|
||||
"print(\"POST to url\", service.scoring_uri)\n",
|
||||
"print(\"input data:\", input_data)\n",
|
||||
"print(\"label:\", y_test[random_index])\n",
|
||||
"print(\"prediction:\", resp.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's look at the workspace after the web service was deployed. You should see \n",
|
||||
"* a registered model named 'model' and with the id 'model:1'\n",
|
||||
"* an image called 'tf-mnist' and with a docker image location pointing to your workspace's Azure Container Registry (ACR) \n",
|
||||
"* a webservice called 'tf-mnist' with some scoring URL"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"models = ws.models\n",
|
||||
"for name, model in models.items():\n",
|
||||
" print(\"Model: {}, ID: {}\".format(name, model.id))\n",
|
||||
" \n",
|
||||
"images = ws.images\n",
|
||||
"for name, image in images.items():\n",
|
||||
" print(\"Image: {}, location: {}\".format(name, image.image_location))\n",
|
||||
" \n",
|
||||
"webservices = ws.webservices\n",
|
||||
"for name, webservice in webservices.items():\n",
|
||||
" print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clean up\n",
|
||||
"You can delete the ACI deployment with a simple delete API call."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"service.delete()"
|
||||
"For model deployment, please refer to [Training, hyperparameter tune, and deploy with TensorFlow](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb)."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -0,0 +1,510 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Showcasing Dataset and PipelineParameter\n",
|
||||
"\n",
|
||||
"This notebook demonstrates how a [**FileDataset**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) or [**TabularDataset**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) can be parametrized with [**PipelineParameters**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py) in an AML [Pipeline](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline(class)?view=azure-ml-py). By parametrizing datasets, you can dynamically run pipeline experiments with different datasets without any code change.\n",
|
||||
"\n",
|
||||
"A common use case is building a training pipeline with a sample of your training data for quick iterative development. When you're ready to test and deploy your pipeline at scale, you can pass in your full training dataset to the pipeline experiment without making any changes to your training script. \n",
|
||||
" \n",
|
||||
"To see more about how parameters work between steps, please refer [aml-pipelines-with-data-dependency-steps](https://aka.ms/pl-data-dep).\n",
|
||||
"\n",
|
||||
"* [How to create a Pipeline with a Dataset PipelineParameter](#index1)\n",
|
||||
"* [How to submit a Pipeline with a Dataset PipelineParameter](#index2)\n",
|
||||
"* [How to submit a Pipeline and change the Dataset PipelineParameter value from the sdk](#index3)\n",
|
||||
"* [How to submit a Pipeline and change the Dataset PipelineParameter value using a REST call](#index4)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Azure Machine Learning and Pipeline SDK-specific imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment, Dataset\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.data.dataset_consumption_config import DatasetConsumptionConfig\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"from azureml.pipeline.core import PipelineParameter\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineRun\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize Workspace\n",
|
||||
"\n",
|
||||
"Initialize a workspace object from persisted configuration. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure the config file is present at .\\config.json\n",
|
||||
"\n",
|
||||
"If you don't have a config.json file, go through the [configuration Notebook](https://aka.ms/pl-config) first.\n",
|
||||
"\n",
|
||||
"This sets you up with a working config file that has information on your workspace, subscription id, etc."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Azure ML experiment\n",
|
||||
"\n",
|
||||
"Let's create an experiment named \"showcasing-dataset\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"experiment_name = 'showcasing-dataset'\n",
|
||||
"source_directory = '.'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for your cluster.\n",
|
||||
"amlcompute_cluster_name = \"cpu-cluster\"\n",
|
||||
"\n",
|
||||
"found = False\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
" \n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
||||
" #vm_priority = 'lowpriority', # optional\n",
|
||||
" max_nodes = 4)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
" \n",
|
||||
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
" compute_target.wait_for_completion(show_output = True, timeout_in_minutes = 10)\n",
|
||||
" \n",
|
||||
" # For a more detailed view of current AmlCompute status, use get_status()."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dataset Configuration\n",
|
||||
"\n",
|
||||
"The following steps detail how to create a [FileDataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) and [TabularDataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) from an external CSV file, and configure them to be used by a [Pipeline](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline(class)?view=azure-ml-py):\n",
|
||||
"\n",
|
||||
"1. Create a dataset from a csv file\n",
|
||||
"2. Create a [PipelineParameter](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py) object and set the `default_value` to the dataset. [PipelineParameter](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py) objects enabled arguments to be passed into Pipelines when they are resubmitted after creation. The `name` is referenced later on when we submit additional pipeline runs with different input datasets. \n",
|
||||
"3. Create a [DatasetConsumptionConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.dataset_consumption_config.datasetconsumptionconfig?view=azure-ml-py) object from the [PiepelineParameter](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py). The [DatasetConsumptionConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.dataset_consumption_config.datasetconsumptionconfig?view=azure-ml-py) object specifies how the dataset should be used by the remote compute where the pipeline is run. **NOTE** only [DatasetConsumptionConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.dataset_consumption_config.datasetconsumptionconfig?view=azure-ml-py) objects built on [FileDataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) can be set `as_mount()` or `as_download()` on the remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"datapath-remarks-sample"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"file_dataset = Dataset.File.from_files('https://dprepdata.blob.core.windows.net/demo/Titanic.csv')\n",
|
||||
"file_pipeline_param = PipelineParameter(name=\"file_ds_param\", default_value=file_dataset)\n",
|
||||
"file_ds_consumption = DatasetConsumptionConfig(\"file_dataset\", file_pipeline_param).as_mount()\n",
|
||||
"\n",
|
||||
"tabular_dataset = Dataset.Tabular.from_delimited_files('https://dprepdata.blob.core.windows.net/demo/Titanic.csv')\n",
|
||||
"tabular_pipeline_param = PipelineParameter(name=\"tabular_ds_param\", default_value=tabular_dataset)\n",
|
||||
"tabular_ds_consumption = DatasetConsumptionConfig(\"tabular_dataset\", tabular_pipeline_param)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We will setup a training script to ingest our passed-in datasets and print their contents. **NOTE** the names of the datasets referenced inside the training script correspond to the `name` of their respective [DatasetConsumptionConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.dataset_consumption_config.datasetconsumptionconfig?view=azure-ml-py) objects we defined above."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile train_with_dataset.py\n",
|
||||
"from azureml.core import Run\n",
|
||||
"\n",
|
||||
"input_file_ds_path = Run.get_context().input_datasets['file_dataset']\n",
|
||||
"with open(input_file_ds_path, 'r') as f:\n",
|
||||
" content = f.read()\n",
|
||||
" print(content)\n",
|
||||
"\n",
|
||||
"input_tabular_ds = Run.get_context().input_datasets['tabular_dataset']\n",
|
||||
"tabular_df = input_tabular_ds.to_pandas_dataframe()\n",
|
||||
"print(tabular_df)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='index1'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Pipeline with a Dataset PipelineParameter\n",
|
||||
"\n",
|
||||
"Note that the ```file_ds_consumption``` and ```tabular_ds_consumption``` are specified as both arguments and inputs to create a step."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_step = PythonScriptStep(\n",
|
||||
" name=\"train_step\",\n",
|
||||
" script_name=\"train_with_dataset.py\",\n",
|
||||
" arguments=[\"--param1\", file_ds_consumption, \"--param2\", tabular_ds_consumption],\n",
|
||||
" inputs=[file_ds_consumption, tabular_ds_consumption],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" source_directory=source_directory)\n",
|
||||
"\n",
|
||||
"print(\"train_step created\")\n",
|
||||
"\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=[train_step])\n",
|
||||
"print(\"pipeline with the train_step created\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='index2'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Submit a Pipeline with a Dataset PipelineParameter\n",
|
||||
"\n",
|
||||
"Pipelines can be submitted with default values of PipelineParameters by not specifying any parameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Pipeline will run with default file_ds and tabular_ds\n",
|
||||
"pipeline_run = experiment.submit(pipeline)\n",
|
||||
"print(\"Pipeline is submitted for execution\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='index3'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Submit a Pipeline with a different Dataset PipelineParameter value from the SDK\n",
|
||||
"\n",
|
||||
"The training pipeline can be reused with different input datasets by passing them in as PipelineParameters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"iris_file_ds = Dataset.File.from_files('https://raw.githubusercontent.com/Azure/MachineLearningNotebooks/'\n",
|
||||
" '4e7b3784d50e81c313c62bcdf9a330194153d9cd/how-to-use-azureml/work-with-data/'\n",
|
||||
" 'datasets-tutorial/train-with-datasets/train-dataset/iris.csv')\n",
|
||||
"\n",
|
||||
"iris_tabular_ds = Dataset.Tabular.from_delimited_files('https://raw.githubusercontent.com/Azure/MachineLearningNotebooks/'\n",
|
||||
" '4e7b3784d50e81c313c62bcdf9a330194153d9cd/how-to-use-azureml/work-with-data/'\n",
|
||||
" 'datasets-tutorial/train-with-datasets/train-dataset/iris.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_run_with_params = experiment.submit(pipeline, pipeline_parameters={'file_ds_param': iris_file_ds, 'tabular_ds_param': iris_tabular_ds}) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"RunDetails(pipeline_run_with_params).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_run_with_params.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='index4'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dynamically Set the Dataset PipelineParameter Values using a REST Call\n",
|
||||
"\n",
|
||||
"Let's publish the pipeline we created previously, so we can generate a pipeline endpoint. We can then submit the iris datasets to the pipeline REST endpoint by passing in their IDs. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"published_pipeline = pipeline.publish(name=\"Dataset_Pipeline\", description=\"Pipeline to test Dataset PipelineParameter\", continue_on_step_failure=True)\n",
|
||||
"published_pipeline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"published_pipeline.submit(ws, experiment_name=\"publishedexperiment\", pipeline_parameters={'file_ds_param': iris_file_ds, 'tabular_ds_param': iris_tabular_ds})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"auth = InteractiveLoginAuthentication()\n",
|
||||
"aad_token = auth.get_authentication_header()\n",
|
||||
"\n",
|
||||
"rest_endpoint = published_pipeline.endpoint\n",
|
||||
"\n",
|
||||
"print(\"You can perform HTTP POST on URL {} to trigger this pipeline\".format(rest_endpoint))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# specify the param when running the pipeline\n",
|
||||
"response = requests.post(rest_endpoint, \n",
|
||||
" headers=aad_token, \n",
|
||||
" json={\"ExperimentName\": \"MyRestPipeline\",\n",
|
||||
" \"RunSource\": \"SDK\",\n",
|
||||
" \"DataSetDefinitionValueAssignments\": {\"file_ds_param\": {\"SavedDataSetReference\": {\"Id\": iris_file_ds.id}},\n",
|
||||
" \"tabular_ds_param\": {\"SavedDataSetReference\": {\"Id\": iris_tabular_ds.id}}}\n",
|
||||
" }\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" response.raise_for_status()\n",
|
||||
"except Exception: \n",
|
||||
" raise Exception('Received bad response from the endpoint: {}\\n'\n",
|
||||
" 'Response Code: {}\\n'\n",
|
||||
" 'Headers: {}\\n'\n",
|
||||
" 'Content: {}'.format(rest_endpoint, response.status_code, response.headers, response.content))\n",
|
||||
"\n",
|
||||
"run_id = response.json().get('Id')\n",
|
||||
"print('Submitted pipeline run: ', run_id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"published_pipeline_run_via_rest = PipelineRun(ws.experiments[\"MyRestPipeline\"], run_id)\n",
|
||||
"RunDetails(published_pipeline_run_via_rest).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"published_pipeline_run_via_rest.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='index5'></a>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "rafarmah"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
],
|
||||
"datasets": [
|
||||
"Custom"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"Azure ML"
|
||||
],
|
||||
"friendly_name": "How to use Dataset as a PipelineParameter",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"order_index": 13,
|
||||
"star_tag": [
|
||||
"featured"
|
||||
],
|
||||
"tags": [
|
||||
"None"
|
||||
],
|
||||
"task": "Demonstrates the use of Dataset as a PipelineParameter"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,5 @@
|
||||
name: aml-pipelines-showcasing-dataset-and-pipelineparameter
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
@@ -510,7 +510,7 @@
|
||||
" inputs=[step_1_input],\n",
|
||||
" num_workers=1,\n",
|
||||
" python_script_path=python_script_path,\n",
|
||||
" python_script_params={'arg1', pipeline_param, 'arg2},\n",
|
||||
" python_script_params={'arg1', pipeline_param, 'arg2'},\n",
|
||||
" run_name='DB_Python_demo',\n",
|
||||
" compute_target=databricks_compute,\n",
|
||||
" allow_reuse=True\n",
|
||||
|
||||
@@ -70,11 +70,7 @@
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"from azureml.pipeline.steps import AutoMLStep\n",
|
||||
"\n",
|
||||
@@ -138,30 +134,24 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for your cluster.\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"amlcompute_cluster_name = \"cpu-cluster\"\n",
|
||||
"\n",
|
||||
"found = False\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
" \n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',# for GPU, use \"STANDARD_NC6\"\n",
|
||||
" #vm_priority = 'lowpriority', # optional\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
" \n",
|
||||
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
"compute_target.wait_for_completion(show_output=True, min_node_count = 1, timeout_in_minutes = 10)\n",
|
||||
" \n",
|
||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
||||
]
|
||||
},
|
||||
|
||||
@@ -279,8 +279,7 @@
|
||||
"# Specify CondaDependencies obj, add necessary packages\n",
|
||||
"aml_run_config.environment.python.conda_dependencies = CondaDependencies.create(\n",
|
||||
" conda_packages=['pandas','scikit-learn'], \n",
|
||||
" pip_packages=['azureml-sdk[automl,explain]', 'pyarrow'], \n",
|
||||
" pin_sdk_version=False)\n",
|
||||
" pip_packages=['azureml-sdk[automl,explain]', 'pyarrow'])\n",
|
||||
"\n",
|
||||
"print (\"Run configuration created.\")"
|
||||
]
|
||||
@@ -686,17 +685,15 @@
|
||||
" \"n_cross_validations\": 5\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"train_X = output_split_train.parse_parquet_files(file_extension=None).keep_columns(['pickup_weekday','pickup_hour', 'distance','passengers', 'vendor'])\n",
|
||||
"train_y = output_split_train.parse_parquet_files(file_extension=None).keep_columns('cost')\n",
|
||||
"training_dataset = output_split_train.parse_parquet_files(file_extension=None).keep_columns(['pickup_weekday','pickup_hour', 'distance','passengers', 'vendor', 'cost'])\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log = 'automated_ml_errors.log',\n",
|
||||
" path = train_model_folder,\n",
|
||||
" compute_target = aml_compute,\n",
|
||||
" run_configuration = aml_run_config,\n",
|
||||
" featurization = 'auto',\n",
|
||||
" X = train_X,\n",
|
||||
" y = train_y,\n",
|
||||
" training_data = training_dataset,\n",
|
||||
" label_column_name = 'cost',\n",
|
||||
" **automl_settings)\n",
|
||||
" \n",
|
||||
"print(\"AutoML config created.\")"
|
||||
|
||||
@@ -2,18 +2,16 @@
|
||||
|
||||
Azure Machine Learning Batch Inference targets large inference jobs that are not time-sensitive. Batch Inference provides cost-effective inference compute scaling, with unparalleled throughput for asynchronous applications. It is optimized for high-throughput, fire-and-forget inference over large collections of data.
|
||||
|
||||
# Getting Started with Batch Inference Public Preview
|
||||
# Getting Started with Batch Inference
|
||||
|
||||
Batch inference public preview offers a platform in which to do large inference or generic parallel map-style operations. Below introduces the major steps to use this new functionality. For a quick try, please follow the prerequisites and simply run the sample notebooks provided in this directory.
|
||||
Batch inference offers a platform in which to do large inference or generic parallel map-style operations. Below introduces the major steps to use this new functionality. For a quick try, please follow the prerequisites and simply run the sample notebooks provided in this directory.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
### Python package installation
|
||||
Following the convention of most AzureML Public Preview features, Batch Inference SDK is currently available as a contrib package.
|
||||
|
||||
If you're unfamiliar with creating a new Python environment, you may follow this example for [creating a conda environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local). Batch Inference package can be installed through the following pip command.
|
||||
```
|
||||
pip install azureml-contrib-pipeline-steps
|
||||
pip install azureml-pipeline-steps
|
||||
```
|
||||
|
||||
### Creation of Azure Machine Learning Workspace
|
||||
@@ -66,9 +64,8 @@ base_image_registry.password = "password"
|
||||
|
||||
## Create a batch inference job
|
||||
|
||||
**ParallelRunStep** is a newly added step in the azureml.contrib.pipeline.steps package. You will use it to add a step to create a batch inference job with your Azure machine learning pipeline. (Use batch inference without an Azure machine learning pipeline is not supported yet). ParallelRunStep has all the following parameters:
|
||||
**ParallelRunStep** is a newly added step in the azureml.pipeline.steps package. You will use it to add a step to create a batch inference job with your Azure machine learning pipeline. (Use batch inference without an Azure machine learning pipeline is not supported yet). ParallelRunStep has all the following parameters:
|
||||
- **name**: this name will be used to register batch inference service, has the following naming restrictions: (unique, 3-32 chars and regex ^\[a-z\]([-a-z0-9]*[a-z0-9])?$)
|
||||
- **models**: zero or more model names already registered in Azure Machine Learning model registry.
|
||||
- **parallel_run_config**: ParallelRunConfig as defined above.
|
||||
- **inputs**: one or more Dataset objects.
|
||||
- **output**: this should be a PipelineData object encapsulating an Azure BLOB container path.
|
||||
|
||||
@@ -23,11 +23,6 @@
|
||||
"\n",
|
||||
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
|
||||
"\n",
|
||||
"> **Note**\n",
|
||||
"This notebook uses public preview functionality (ParallelRunStep). Please install azureml-contrib-pipeline-steps package before running this notebook. Pandas is used to display job results.\n",
|
||||
"```\n",
|
||||
"pip install azureml-contrib-pipeline-steps pandas\n",
|
||||
"```\n",
|
||||
"> **Tip**\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"\n",
|
||||
@@ -86,7 +81,6 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"compute_name = os.environ.get(\"AML_COMPUTE_CLUSTER_NAME\", \"cpu-cluster\")\n",
|
||||
@@ -184,9 +178,20 @@
|
||||
"mnist_ds_name = 'mnist_sample_data'\n",
|
||||
"\n",
|
||||
"path_on_datastore = mnist_data.path('mnist')\n",
|
||||
"input_mnist_ds = Dataset.File.from_files(path=path_on_datastore, validate=False)\n",
|
||||
"registered_mnist_ds = input_mnist_ds.register(ws, mnist_ds_name, create_new_version=True)\n",
|
||||
"named_mnist_ds = registered_mnist_ds.as_named_input(mnist_ds_name)"
|
||||
"input_mnist_ds = Dataset.File.from_files(path=path_on_datastore, validate=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.data.dataset_consumption_config import DatasetConsumptionConfig\n",
|
||||
"from azureml.pipeline.core import PipelineParameter\n",
|
||||
"\n",
|
||||
"pipeline_param = PipelineParameter(name=\"mnist_param\", default_value=input_mnist_ds)\n",
|
||||
"input_mnist_ds_consumption = DatasetConsumptionConfig(\"minist_param_config\", pipeline_param).as_mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -306,8 +311,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"scripts_folder = \"Code\"\n",
|
||||
"script_file = \"digit_identification.py\"\n",
|
||||
"\n",
|
||||
@@ -341,8 +344,8 @@
|
||||
"from azureml.core import Environment\n",
|
||||
"from azureml.core.runconfig import CondaDependencies, DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"batch_conda_deps = CondaDependencies.create(pip_packages=[\"tensorflow==1.13.1\", \"pillow\"])\n",
|
||||
"\n",
|
||||
"batch_conda_deps = CondaDependencies.create(pip_packages=[\"tensorflow==1.15.2\", \"pillow\", \n",
|
||||
" \"azureml-core\", \"azureml-dataprep[fuse]\"])\n",
|
||||
"batch_env = Environment(name=\"batch_environment\")\n",
|
||||
"batch_env.python.conda_dependencies = batch_conda_deps\n",
|
||||
"batch_env.docker.enabled = True\n",
|
||||
@@ -362,17 +365,21 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.contrib.pipeline.steps import ParallelRunStep, ParallelRunConfig\n",
|
||||
"from azureml.pipeline.core import PipelineParameter\n",
|
||||
"from azureml.pipeline.steps import ParallelRunStep, ParallelRunConfig\n",
|
||||
"\n",
|
||||
"parallel_run_config = ParallelRunConfig(\n",
|
||||
" source_directory=scripts_folder,\n",
|
||||
" entry_script=script_file,\n",
|
||||
" mini_batch_size=\"5\",\n",
|
||||
" mini_batch_size=PipelineParameter(name=\"batch_size_param\", default_value=\"5\"),\n",
|
||||
" error_threshold=10,\n",
|
||||
" output_action=\"append_row\",\n",
|
||||
" append_row_file_name=\"mnist_outputs.txt\",\n",
|
||||
" environment=batch_env,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" node_count=2)"
|
||||
" process_count_per_node=PipelineParameter(name=\"process_count_param\", default_value=2),\n",
|
||||
" node_count=2\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -392,10 +399,8 @@
|
||||
"parallelrun_step = ParallelRunStep(\n",
|
||||
" name=\"predict-digits-mnist\",\n",
|
||||
" parallel_run_config=parallel_run_config,\n",
|
||||
" inputs=[ named_mnist_ds ],\n",
|
||||
" inputs=[ input_mnist_ds_consumption ],\n",
|
||||
" output=output_dir,\n",
|
||||
" models=[ model ],\n",
|
||||
" arguments=[ ],\n",
|
||||
" allow_reuse=True\n",
|
||||
")"
|
||||
]
|
||||
@@ -454,6 +459,47 @@
|
||||
"pipeline_run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Resubmit a with different dataset\n",
|
||||
"Since we made the input a `PipelineParameter`, we can resubmit with a different dataset without having to create an entirely new experiment. We'll use the same datastore but use only a single image."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"path_on_datastore = mnist_data.path('mnist/0.png')\n",
|
||||
"single_image_ds = Dataset.File.from_files(path=path_on_datastore, validate=False)\n",
|
||||
"single_image_ds._ensure_saved(ws)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_run_2 = experiment.submit(pipeline, \n",
|
||||
" pipeline_parameters={\"mnist_param\": single_image_ds, \n",
|
||||
" \"batch_size_param\": \"1\",\n",
|
||||
" \"process_count_param\": 1}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_run_2.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -480,7 +526,7 @@
|
||||
"\n",
|
||||
"for root, dirs, files in os.walk(\"mnist_results\"):\n",
|
||||
" for file in files:\n",
|
||||
" if file.endswith('parallel_run_step.txt'):\n",
|
||||
" if file.endswith('mnist_outputs.txt'):\n",
|
||||
" result_file = os.path.join(root,file)\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(result_file, delimiter=\":\", header=None)\n",
|
||||
|
||||
@@ -2,6 +2,6 @@ name: file-dataset-image-inference-mnist
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-pipeline-steps
|
||||
- azureml-pipeline-steps
|
||||
- azureml-widgets
|
||||
- pandas
|
||||
|
||||
@@ -23,11 +23,6 @@
|
||||
"\n",
|
||||
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
|
||||
"\n",
|
||||
"> **Note**\n",
|
||||
"This notebook uses public preview functionality (ParallelRunStep). Please install azureml-contrib-pipeline-steps package before running this notebook. Pandas is used to display job results.\n",
|
||||
"```\n",
|
||||
"pip install azureml-contrib-pipeline-steps pandas\n",
|
||||
"```\n",
|
||||
"> **Tip**\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"\n",
|
||||
@@ -84,7 +79,6 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"compute_name = os.environ.get(\"AML_COMPUTE_CLUSTER_NAME\", \"cpu-cluster\")\n",
|
||||
@@ -304,7 +298,8 @@
|
||||
"from azureml.core import Environment\n",
|
||||
"from azureml.core.runconfig import CondaDependencies\n",
|
||||
"\n",
|
||||
"predict_conda_deps = CondaDependencies.create(pip_packages=[ \"scikit-learn==0.20.3\" ])\n",
|
||||
"predict_conda_deps = CondaDependencies.create(pip_packages=[\"scikit-learn==0.20.3\",\n",
|
||||
" \"azureml-core\", \"azureml-dataprep[pandas,fuse]\"])\n",
|
||||
"\n",
|
||||
"predict_env = Environment(name=\"predict_environment\")\n",
|
||||
"predict_env.python.conda_dependencies = predict_conda_deps\n",
|
||||
@@ -325,7 +320,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.contrib.pipeline.steps import ParallelRunStep, ParallelRunConfig\n",
|
||||
"from azureml.pipeline.steps import ParallelRunStep, ParallelRunConfig\n",
|
||||
"\n",
|
||||
"# In a real-world scenario, you'll want to shape your process per node and nodes to fit your problem domain.\n",
|
||||
"parallel_run_config = ParallelRunConfig(\n",
|
||||
@@ -334,10 +329,12 @@
|
||||
" mini_batch_size='5MB',\n",
|
||||
" error_threshold=5,\n",
|
||||
" output_action='append_row',\n",
|
||||
" append_row_file_name=\"iris_outputs.txt\",\n",
|
||||
" environment=predict_env,\n",
|
||||
" compute_target=compute_target, \n",
|
||||
" node_count=3,\n",
|
||||
" run_invocation_timeout=600)"
|
||||
" run_invocation_timeout=600\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -359,7 +356,6 @@
|
||||
" inputs=[named_iris_ds],\n",
|
||||
" output=output_folder,\n",
|
||||
" parallel_run_config=parallel_run_config,\n",
|
||||
" models=[model],\n",
|
||||
" arguments=['--model_name', 'iris'],\n",
|
||||
" allow_reuse=True\n",
|
||||
")"
|
||||
@@ -453,7 +449,7 @@
|
||||
"\n",
|
||||
"for root, dirs, files in os.walk(\"iris_results\"):\n",
|
||||
" for file in files:\n",
|
||||
" if file.endswith('parallel_run_step.txt'):\n",
|
||||
" if file.endswith('iris_outputs.txt'):\n",
|
||||
" result_file = os.path.join(root,file)\n",
|
||||
"\n",
|
||||
"# cleanup output format\n",
|
||||
|
||||
@@ -2,6 +2,6 @@ name: tabular-dataset-inference-iris
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-pipeline-steps
|
||||
- azureml-pipeline-steps
|
||||
- azureml-widgets
|
||||
- pandas
|
||||
|
||||
@@ -26,11 +26,8 @@
|
||||
"2. Run neural style on each image using one of the provided models (from `pytorch` pretrained models for this example).\n",
|
||||
"3. Stitch the image back into a video.\n",
|
||||
"\n",
|
||||
"> **Note**\n",
|
||||
"This notebook uses public preview functionality (ParallelRunStep). Please install azureml-contrib-pipeline-steps package before running this notebook.\n",
|
||||
"```\n",
|
||||
"pip install azureml-contrib-pipeline-steps\n",
|
||||
"```"
|
||||
"> **Tip**\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -356,7 +353,9 @@
|
||||
"source": [
|
||||
"from azureml.pipeline.core.graph import PipelineParameter\n",
|
||||
"# create a parameter for style (one of \"candy\", \"mosaic\") to transfer the images to\n",
|
||||
"style_param = PipelineParameter(name=\"style\", default_value=\"mosaic\")"
|
||||
"style_param = PipelineParameter(name=\"style\", default_value=\"mosaic\")\n",
|
||||
"# create a parameter for the number of nodes to use in step no. 2 (style transfer)\n",
|
||||
"nodecount_param = PipelineParameter(name=\"nodecount\", default_value=2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -415,6 +414,8 @@
|
||||
"parallel_cd.add_conda_package(\"pytorch\")\n",
|
||||
"parallel_cd.add_conda_package(\"torchvision\")\n",
|
||||
"parallel_cd.add_conda_package(\"pillow<7\") # needed for torchvision==0.4.0\n",
|
||||
"parallel_cd.add_pip_package(\"azureml-core\")\n",
|
||||
"parallel_cd.add_pip_package(\"azureml-dataprep[fuse]\")\n",
|
||||
"\n",
|
||||
"styleenvironment = Environment(name=\"styleenvironment\")\n",
|
||||
"styleenvironment.python.conda_dependencies=parallel_cd\n",
|
||||
@@ -427,7 +428,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.contrib.pipeline.steps import ParallelRunConfig\n",
|
||||
"from azureml.pipeline.core import PipelineParameter\n",
|
||||
"from azureml.pipeline.steps import ParallelRunConfig\n",
|
||||
"\n",
|
||||
"parallel_run_config = ParallelRunConfig(\n",
|
||||
" environment=styleenvironment,\n",
|
||||
@@ -437,7 +439,9 @@
|
||||
" error_threshold=1,\n",
|
||||
" source_directory=scripts_folder,\n",
|
||||
" compute_target=gpu_cluster, \n",
|
||||
" node_count=3)"
|
||||
" node_count=nodecount_param,\n",
|
||||
" process_count_per_node=2\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -446,7 +450,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.contrib.pipeline.steps import ParallelRunStep\n",
|
||||
"from azureml.pipeline.steps import ParallelRunStep\n",
|
||||
"from datetime import datetime\n",
|
||||
"\n",
|
||||
"parallel_step_name = 'styletransfer-' + datetime.now().strftime('%Y%m%d%H%M')\n",
|
||||
@@ -455,9 +459,6 @@
|
||||
" name=parallel_step_name,\n",
|
||||
" inputs=[ffmpeg_images_file_dataset], # Input file share/blob container/file dataset\n",
|
||||
" output=processed_images, # Output file share/blob container\n",
|
||||
" models=[mosaic_model, candy_model],\n",
|
||||
" tags = {'scenario': \"batch inference\", 'type': \"demo\"},\n",
|
||||
" properties = {'area': \"style transfer\"},\n",
|
||||
" arguments=[\"--style\", style_param],\n",
|
||||
" parallel_run_config=parallel_run_config,\n",
|
||||
" allow_reuse=True #[optional - default value True]\n",
|
||||
@@ -666,7 +667,8 @@
|
||||
"response = requests.post(rest_endpoint, \n",
|
||||
" headers=aad_token,\n",
|
||||
" json={\"ExperimentName\": experiment_name,\n",
|
||||
" \"ParameterAssignments\": {\"style\": \"candy\", \"aml_node_count\": 2}})\n",
|
||||
" \"ParameterAssignments\": {\"style\": \"candy\", \"NodeCount\": 3}})\n",
|
||||
"\n",
|
||||
"run_id = response.json()[\"Id\"]\n",
|
||||
"\n",
|
||||
"from azureml.pipeline.core.run import PipelineRun\n",
|
||||
|
||||
@@ -2,6 +2,6 @@ name: pipeline-style-transfer
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-pipeline-steps
|
||||
- azureml-pipeline-steps
|
||||
- azureml-widgets
|
||||
- requests
|
||||
|
||||
@@ -1,350 +0,0 @@
|
||||
import json
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
import time
|
||||
import torch
|
||||
import torch._six
|
||||
|
||||
from pycocotools.cocoeval import COCOeval
|
||||
from pycocotools.coco import COCO
|
||||
import pycocotools.mask as mask_util
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
import utils
|
||||
|
||||
|
||||
class CocoEvaluator(object):
|
||||
def __init__(self, coco_gt, iou_types):
|
||||
assert isinstance(iou_types, (list, tuple))
|
||||
coco_gt = copy.deepcopy(coco_gt)
|
||||
self.coco_gt = coco_gt
|
||||
|
||||
self.iou_types = iou_types
|
||||
self.coco_eval = {}
|
||||
for iou_type in iou_types:
|
||||
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
||||
|
||||
self.img_ids = []
|
||||
self.eval_imgs = {k: [] for k in iou_types}
|
||||
|
||||
def update(self, predictions):
|
||||
img_ids = list(np.unique(list(predictions.keys())))
|
||||
self.img_ids.extend(img_ids)
|
||||
|
||||
for iou_type in self.iou_types:
|
||||
results = self.prepare(predictions, iou_type)
|
||||
coco_dt = loadRes(self.coco_gt, results) if results else COCO()
|
||||
coco_eval = self.coco_eval[iou_type]
|
||||
|
||||
coco_eval.cocoDt = coco_dt
|
||||
coco_eval.params.imgIds = list(img_ids)
|
||||
img_ids, eval_imgs = evaluate(coco_eval)
|
||||
|
||||
self.eval_imgs[iou_type].append(eval_imgs)
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
for iou_type in self.iou_types:
|
||||
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
||||
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
||||
|
||||
def accumulate(self):
|
||||
for coco_eval in self.coco_eval.values():
|
||||
coco_eval.accumulate()
|
||||
|
||||
def summarize(self):
|
||||
for iou_type, coco_eval in self.coco_eval.items():
|
||||
print("IoU metric: {}".format(iou_type))
|
||||
coco_eval.summarize()
|
||||
|
||||
def prepare(self, predictions, iou_type):
|
||||
if iou_type == "bbox":
|
||||
return self.prepare_for_coco_detection(predictions)
|
||||
elif iou_type == "segm":
|
||||
return self.prepare_for_coco_segmentation(predictions)
|
||||
elif iou_type == "keypoints":
|
||||
return self.prepare_for_coco_keypoint(predictions)
|
||||
else:
|
||||
raise ValueError("Unknown iou type {}".format(iou_type))
|
||||
|
||||
def prepare_for_coco_detection(self, predictions):
|
||||
coco_results = []
|
||||
for original_id, prediction in predictions.items():
|
||||
if len(prediction) == 0:
|
||||
continue
|
||||
|
||||
boxes = prediction["boxes"]
|
||||
boxes = convert_to_xywh(boxes).tolist()
|
||||
scores = prediction["scores"].tolist()
|
||||
labels = prediction["labels"].tolist()
|
||||
|
||||
coco_results.extend(
|
||||
[
|
||||
{
|
||||
"image_id": original_id,
|
||||
"category_id": labels[k],
|
||||
"bbox": box,
|
||||
"score": scores[k],
|
||||
}
|
||||
for k, box in enumerate(boxes)
|
||||
]
|
||||
)
|
||||
return coco_results
|
||||
|
||||
def prepare_for_coco_segmentation(self, predictions):
|
||||
coco_results = []
|
||||
for original_id, prediction in predictions.items():
|
||||
if len(prediction) == 0:
|
||||
continue
|
||||
|
||||
scores = prediction["scores"]
|
||||
labels = prediction["labels"]
|
||||
masks = prediction["masks"]
|
||||
|
||||
masks = masks > 0.5
|
||||
|
||||
scores = prediction["scores"].tolist()
|
||||
labels = prediction["labels"].tolist()
|
||||
|
||||
rles = [
|
||||
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
||||
for mask in masks
|
||||
]
|
||||
for rle in rles:
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
|
||||
coco_results.extend(
|
||||
[
|
||||
{
|
||||
"image_id": original_id,
|
||||
"category_id": labels[k],
|
||||
"segmentation": rle,
|
||||
"score": scores[k],
|
||||
}
|
||||
for k, rle in enumerate(rles)
|
||||
]
|
||||
)
|
||||
return coco_results
|
||||
|
||||
def prepare_for_coco_keypoint(self, predictions):
|
||||
coco_results = []
|
||||
for original_id, prediction in predictions.items():
|
||||
if len(prediction) == 0:
|
||||
continue
|
||||
|
||||
boxes = prediction["boxes"]
|
||||
boxes = convert_to_xywh(boxes).tolist()
|
||||
scores = prediction["scores"].tolist()
|
||||
labels = prediction["labels"].tolist()
|
||||
keypoints = prediction["keypoints"]
|
||||
keypoints = keypoints.flatten(start_dim=1).tolist()
|
||||
|
||||
coco_results.extend(
|
||||
[
|
||||
{
|
||||
"image_id": original_id,
|
||||
"category_id": labels[k],
|
||||
'keypoints': keypoint,
|
||||
"score": scores[k],
|
||||
}
|
||||
for k, keypoint in enumerate(keypoints)
|
||||
]
|
||||
)
|
||||
return coco_results
|
||||
|
||||
|
||||
def convert_to_xywh(boxes):
|
||||
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
||||
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
||||
|
||||
|
||||
def merge(img_ids, eval_imgs):
|
||||
all_img_ids = utils.all_gather(img_ids)
|
||||
all_eval_imgs = utils.all_gather(eval_imgs)
|
||||
|
||||
merged_img_ids = []
|
||||
for p in all_img_ids:
|
||||
merged_img_ids.extend(p)
|
||||
|
||||
merged_eval_imgs = []
|
||||
for p in all_eval_imgs:
|
||||
merged_eval_imgs.append(p)
|
||||
|
||||
merged_img_ids = np.array(merged_img_ids)
|
||||
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
||||
|
||||
# keep only unique (and in sorted order) images
|
||||
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
||||
merged_eval_imgs = merged_eval_imgs[..., idx]
|
||||
|
||||
return merged_img_ids, merged_eval_imgs
|
||||
|
||||
|
||||
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
||||
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
||||
img_ids = list(img_ids)
|
||||
eval_imgs = list(eval_imgs.flatten())
|
||||
|
||||
coco_eval.evalImgs = eval_imgs
|
||||
coco_eval.params.imgIds = img_ids
|
||||
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
||||
|
||||
|
||||
#################################################################
|
||||
# From pycocotools, just removed the prints and fixed
|
||||
# a Python3 bug about unicode not defined
|
||||
#################################################################
|
||||
|
||||
# Ideally, pycocotools wouldn't have hard-coded prints
|
||||
# so that we could avoid copy-pasting those two functions
|
||||
|
||||
def createIndex(self):
|
||||
# create index
|
||||
# print('creating index...')
|
||||
anns, cats, imgs = {}, {}, {}
|
||||
imgToAnns, catToImgs = defaultdict(list), defaultdict(list)
|
||||
if 'annotations' in self.dataset:
|
||||
for ann in self.dataset['annotations']:
|
||||
imgToAnns[ann['image_id']].append(ann)
|
||||
anns[ann['id']] = ann
|
||||
|
||||
if 'images' in self.dataset:
|
||||
for img in self.dataset['images']:
|
||||
imgs[img['id']] = img
|
||||
|
||||
if 'categories' in self.dataset:
|
||||
for cat in self.dataset['categories']:
|
||||
cats[cat['id']] = cat
|
||||
|
||||
if 'annotations' in self.dataset and 'categories' in self.dataset:
|
||||
for ann in self.dataset['annotations']:
|
||||
catToImgs[ann['category_id']].append(ann['image_id'])
|
||||
|
||||
# print('index created!')
|
||||
|
||||
# create class members
|
||||
self.anns = anns
|
||||
self.imgToAnns = imgToAnns
|
||||
self.catToImgs = catToImgs
|
||||
self.imgs = imgs
|
||||
self.cats = cats
|
||||
|
||||
|
||||
maskUtils = mask_util
|
||||
|
||||
|
||||
def loadRes(self, resFile):
|
||||
"""
|
||||
Load result file and return a result api object.
|
||||
:param resFile (str) : file name of result file
|
||||
:return: res (obj) : result api object
|
||||
"""
|
||||
res = COCO()
|
||||
res.dataset['images'] = [img for img in self.dataset['images']]
|
||||
|
||||
# print('Loading and preparing results...')
|
||||
# tic = time.time()
|
||||
if isinstance(resFile, torch._six.string_classes):
|
||||
anns = json.load(open(resFile))
|
||||
elif type(resFile) == np.ndarray:
|
||||
anns = self.loadNumpyAnnotations(resFile)
|
||||
else:
|
||||
anns = resFile
|
||||
assert type(anns) == list, 'results in not an array of objects'
|
||||
annsImgIds = [ann['image_id'] for ann in anns]
|
||||
assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
|
||||
'Results do not correspond to current coco set'
|
||||
if 'caption' in anns[0]:
|
||||
imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns])
|
||||
res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds]
|
||||
for id, ann in enumerate(anns):
|
||||
ann['id'] = id + 1
|
||||
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
|
||||
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
||||
for id, ann in enumerate(anns):
|
||||
bb = ann['bbox']
|
||||
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
|
||||
if 'segmentation' not in ann:
|
||||
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
|
||||
ann['area'] = bb[2] * bb[3]
|
||||
ann['id'] = id + 1
|
||||
ann['iscrowd'] = 0
|
||||
elif 'segmentation' in anns[0]:
|
||||
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
||||
for id, ann in enumerate(anns):
|
||||
# now only support compressed RLE format as segmentation results
|
||||
ann['area'] = maskUtils.area(ann['segmentation'])
|
||||
if 'bbox' not in ann:
|
||||
ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
|
||||
ann['id'] = id + 1
|
||||
ann['iscrowd'] = 0
|
||||
elif 'keypoints' in anns[0]:
|
||||
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
||||
for id, ann in enumerate(anns):
|
||||
s = ann['keypoints']
|
||||
x = s[0::3]
|
||||
y = s[1::3]
|
||||
x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y)
|
||||
ann['area'] = (x2 - x1) * (y2 - y1)
|
||||
ann['id'] = id + 1
|
||||
ann['bbox'] = [x1, y1, x2 - x1, y2 - y1]
|
||||
# print('DONE (t={:0.2f}s)'.format(time.time()- tic))
|
||||
|
||||
res.dataset['annotations'] = anns
|
||||
createIndex(res)
|
||||
return res
|
||||
|
||||
|
||||
def evaluate(self):
|
||||
'''
|
||||
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
||||
:return: None
|
||||
'''
|
||||
# tic = time.time()
|
||||
# print('Running per image evaluation...')
|
||||
p = self.params
|
||||
# add backward compatibility if useSegm is specified in params
|
||||
if p.useSegm is not None:
|
||||
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
|
||||
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
|
||||
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
||||
p.imgIds = list(np.unique(p.imgIds))
|
||||
if p.useCats:
|
||||
p.catIds = list(np.unique(p.catIds))
|
||||
p.maxDets = sorted(p.maxDets)
|
||||
self.params = p
|
||||
|
||||
self._prepare()
|
||||
# loop through images, area range, max detection number
|
||||
catIds = p.catIds if p.useCats else [-1]
|
||||
|
||||
if p.iouType == 'segm' or p.iouType == 'bbox':
|
||||
computeIoU = self.computeIoU
|
||||
elif p.iouType == 'keypoints':
|
||||
computeIoU = self.computeOks
|
||||
self.ious = {
|
||||
(imgId, catId): computeIoU(imgId, catId)
|
||||
for imgId in p.imgIds
|
||||
for catId in catIds}
|
||||
|
||||
evaluateImg = self.evaluateImg
|
||||
maxDet = p.maxDets[-1]
|
||||
evalImgs = [
|
||||
evaluateImg(imgId, catId, areaRng, maxDet)
|
||||
for catId in catIds
|
||||
for areaRng in p.areaRng
|
||||
for imgId in p.imgIds
|
||||
]
|
||||
# this is NOT in the pycocotools code, but could be done outside
|
||||
evalImgs = np.asarray(evalImgs).reshape(
|
||||
len(catIds), len(p.areaRng), len(p.imgIds))
|
||||
self._paramsEval = copy.deepcopy(self.params)
|
||||
# toc = time.time()
|
||||
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
||||
return p.imgIds, evalImgs
|
||||
|
||||
#################################################################
|
||||
# end of straight copy from pycocotools, just removing the prints
|
||||
#################################################################
|
||||
@@ -1,252 +0,0 @@
|
||||
import copy
|
||||
import os
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import torchvision
|
||||
|
||||
from pycocotools import mask as coco_mask
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
import transforms as T
|
||||
|
||||
|
||||
class FilterAndRemapCocoCategories(object):
|
||||
def __init__(self, categories, remap=True):
|
||||
self.categories = categories
|
||||
self.remap = remap
|
||||
|
||||
def __call__(self, image, target):
|
||||
anno = target["annotations"]
|
||||
anno = [obj for obj in anno if obj["category_id"] in self.categories]
|
||||
if not self.remap:
|
||||
target["annotations"] = anno
|
||||
return image, target
|
||||
anno = copy.deepcopy(anno)
|
||||
for obj in anno:
|
||||
obj["category_id"] = self.categories.index(obj["category_id"])
|
||||
target["annotations"] = anno
|
||||
return image, target
|
||||
|
||||
|
||||
def convert_coco_poly_to_mask(segmentations, height, width):
|
||||
masks = []
|
||||
for polygons in segmentations:
|
||||
rles = coco_mask.frPyObjects(polygons, height, width)
|
||||
mask = coco_mask.decode(rles)
|
||||
if len(mask.shape) < 3:
|
||||
mask = mask[..., None]
|
||||
mask = torch.as_tensor(mask, dtype=torch.uint8)
|
||||
mask = mask.any(dim=2)
|
||||
masks.append(mask)
|
||||
if masks:
|
||||
masks = torch.stack(masks, dim=0)
|
||||
else:
|
||||
masks = torch.zeros((0, height, width), dtype=torch.uint8)
|
||||
return masks
|
||||
|
||||
|
||||
class ConvertCocoPolysToMask(object):
|
||||
def __call__(self, image, target):
|
||||
w, h = image.size
|
||||
|
||||
image_id = target["image_id"]
|
||||
image_id = torch.tensor([image_id])
|
||||
|
||||
anno = target["annotations"]
|
||||
|
||||
anno = [obj for obj in anno if obj['iscrowd'] == 0]
|
||||
|
||||
boxes = [obj["bbox"] for obj in anno]
|
||||
# guard against no boxes via resizing
|
||||
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
||||
boxes[:, 2:] += boxes[:, :2]
|
||||
boxes[:, 0::2].clamp_(min=0, max=w)
|
||||
boxes[:, 1::2].clamp_(min=0, max=h)
|
||||
|
||||
classes = [obj["category_id"] for obj in anno]
|
||||
classes = torch.tensor(classes, dtype=torch.int64)
|
||||
|
||||
segmentations = [obj["segmentation"] for obj in anno]
|
||||
masks = convert_coco_poly_to_mask(segmentations, h, w)
|
||||
|
||||
keypoints = None
|
||||
if anno and "keypoints" in anno[0]:
|
||||
keypoints = [obj["keypoints"] for obj in anno]
|
||||
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
|
||||
num_keypoints = keypoints.shape[0]
|
||||
if num_keypoints:
|
||||
keypoints = keypoints.view(num_keypoints, -1, 3)
|
||||
|
||||
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
||||
boxes = boxes[keep]
|
||||
classes = classes[keep]
|
||||
masks = masks[keep]
|
||||
if keypoints is not None:
|
||||
keypoints = keypoints[keep]
|
||||
|
||||
target = {}
|
||||
target["boxes"] = boxes
|
||||
target["labels"] = classes
|
||||
target["masks"] = masks
|
||||
target["image_id"] = image_id
|
||||
if keypoints is not None:
|
||||
target["keypoints"] = keypoints
|
||||
|
||||
# for conversion to coco api
|
||||
area = torch.tensor([obj["area"] for obj in anno])
|
||||
iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
|
||||
target["area"] = area
|
||||
target["iscrowd"] = iscrowd
|
||||
|
||||
return image, target
|
||||
|
||||
|
||||
def _coco_remove_images_without_annotations(dataset, cat_list=None):
|
||||
def _has_only_empty_bbox(anno):
|
||||
return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)
|
||||
|
||||
def _count_visible_keypoints(anno):
|
||||
return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)
|
||||
|
||||
min_keypoints_per_image = 10
|
||||
|
||||
def _has_valid_annotation(anno):
|
||||
# if it's empty, there is no annotation
|
||||
if len(anno) == 0:
|
||||
return False
|
||||
# if all boxes have close to zero area, there is no annotation
|
||||
if _has_only_empty_bbox(anno):
|
||||
return False
|
||||
# keypoints task have a slight different critera for considering
|
||||
# if an annotation is valid
|
||||
if "keypoints" not in anno[0]:
|
||||
return True
|
||||
# for keypoint detection tasks, only consider valid images those
|
||||
# containing at least min_keypoints_per_image
|
||||
if _count_visible_keypoints(anno) >= min_keypoints_per_image:
|
||||
return True
|
||||
return False
|
||||
|
||||
assert isinstance(dataset, torchvision.datasets.CocoDetection)
|
||||
ids = []
|
||||
for ds_idx, img_id in enumerate(dataset.ids):
|
||||
ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
|
||||
anno = dataset.coco.loadAnns(ann_ids)
|
||||
if cat_list:
|
||||
anno = [obj for obj in anno if obj["category_id"] in cat_list]
|
||||
if _has_valid_annotation(anno):
|
||||
ids.append(ds_idx)
|
||||
|
||||
dataset = torch.utils.data.Subset(dataset, ids)
|
||||
return dataset
|
||||
|
||||
|
||||
def convert_to_coco_api(ds):
|
||||
coco_ds = COCO()
|
||||
# annotation IDs need to start at 1, not 0, see torchvision issue #1530
|
||||
ann_id = 1
|
||||
dataset = {'images': [], 'categories': [], 'annotations': []}
|
||||
categories = set()
|
||||
for img_idx in range(len(ds)):
|
||||
# find better way to get target
|
||||
# targets = ds.get_annotations(img_idx)
|
||||
img, targets = ds[img_idx]
|
||||
image_id = targets["image_id"].item()
|
||||
img_dict = {}
|
||||
img_dict['id'] = image_id
|
||||
img_dict['height'] = img.shape[-2]
|
||||
img_dict['width'] = img.shape[-1]
|
||||
dataset['images'].append(img_dict)
|
||||
bboxes = targets["boxes"]
|
||||
bboxes[:, 2:] -= bboxes[:, :2]
|
||||
bboxes = bboxes.tolist()
|
||||
labels = targets['labels'].tolist()
|
||||
areas = targets['area'].tolist()
|
||||
iscrowd = targets['iscrowd'].tolist()
|
||||
if 'masks' in targets:
|
||||
masks = targets['masks']
|
||||
# make masks Fortran contiguous for coco_mask
|
||||
masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
|
||||
if 'keypoints' in targets:
|
||||
keypoints = targets['keypoints']
|
||||
keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
|
||||
num_objs = len(bboxes)
|
||||
for i in range(num_objs):
|
||||
ann = {}
|
||||
ann['image_id'] = image_id
|
||||
ann['bbox'] = bboxes[i]
|
||||
ann['category_id'] = labels[i]
|
||||
categories.add(labels[i])
|
||||
ann['area'] = areas[i]
|
||||
ann['iscrowd'] = iscrowd[i]
|
||||
ann['id'] = ann_id
|
||||
if 'masks' in targets:
|
||||
ann["segmentation"] = coco_mask.encode(masks[i].numpy())
|
||||
if 'keypoints' in targets:
|
||||
ann['keypoints'] = keypoints[i]
|
||||
ann['num_keypoints'] = sum(k != 0 for k in keypoints[i][2::3])
|
||||
dataset['annotations'].append(ann)
|
||||
ann_id += 1
|
||||
dataset['categories'] = [{'id': i} for i in sorted(categories)]
|
||||
coco_ds.dataset = dataset
|
||||
coco_ds.createIndex()
|
||||
return coco_ds
|
||||
|
||||
|
||||
def get_coco_api_from_dataset(dataset):
|
||||
for _ in range(10):
|
||||
if isinstance(dataset, torchvision.datasets.CocoDetection):
|
||||
break
|
||||
if isinstance(dataset, torch.utils.data.Subset):
|
||||
dataset = dataset.dataset
|
||||
if isinstance(dataset, torchvision.datasets.CocoDetection):
|
||||
return dataset.coco
|
||||
return convert_to_coco_api(dataset)
|
||||
|
||||
|
||||
class CocoDetection(torchvision.datasets.CocoDetection):
|
||||
def __init__(self, img_folder, ann_file, transforms):
|
||||
super(CocoDetection, self).__init__(img_folder, ann_file)
|
||||
self._transforms = transforms
|
||||
|
||||
def __getitem__(self, idx):
|
||||
img, target = super(CocoDetection, self).__getitem__(idx)
|
||||
image_id = self.ids[idx]
|
||||
target = dict(image_id=image_id, annotations=target)
|
||||
if self._transforms is not None:
|
||||
img, target = self._transforms(img, target)
|
||||
return img, target
|
||||
|
||||
|
||||
def get_coco(root, image_set, transforms, mode='instances'):
|
||||
anno_file_template = "{}_{}2017.json"
|
||||
PATHS = {
|
||||
"train": ("train2017", os.path.join("annotations", anno_file_template.format(mode, "train"))),
|
||||
"val": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))),
|
||||
# "train": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val")))
|
||||
}
|
||||
|
||||
t = [ConvertCocoPolysToMask()]
|
||||
|
||||
if transforms is not None:
|
||||
t.append(transforms)
|
||||
transforms = T.Compose(t)
|
||||
|
||||
img_folder, ann_file = PATHS[image_set]
|
||||
img_folder = os.path.join(root, img_folder)
|
||||
ann_file = os.path.join(root, ann_file)
|
||||
|
||||
dataset = CocoDetection(img_folder, ann_file, transforms=transforms)
|
||||
|
||||
if image_set == "train":
|
||||
dataset = _coco_remove_images_without_annotations(dataset)
|
||||
|
||||
# dataset = torch.utils.data.Subset(dataset, [i for i in range(500)])
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def get_coco_kp(root, image_set, transforms):
|
||||
return get_coco(root, image_set, transforms, mode="person_keypoints")
|
||||
@@ -1,77 +0,0 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import torch.utils.data
|
||||
|
||||
from azureml.core import Run
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class PennFudanDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, root, transforms=None):
|
||||
self.root = root
|
||||
self.transforms = transforms
|
||||
|
||||
# load all image files, sorting them to ensure that they are aligned
|
||||
self.img_dir = os.path.join(root, "PNGImages")
|
||||
self.mask_dir = os.path.join(root, "PedMasks")
|
||||
|
||||
self.imgs = list(sorted(os.listdir(self.img_dir)))
|
||||
self.masks = list(sorted(os.listdir(self.mask_dir)))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# load images ad masks
|
||||
img_path = os.path.join(self.img_dir, self.imgs[idx])
|
||||
mask_path = os.path.join(self.mask_dir, self.masks[idx])
|
||||
|
||||
img = Image.open(img_path).convert("RGB")
|
||||
# note that we haven't converted the mask to RGB,
|
||||
# because each color corresponds to a different instance
|
||||
# with 0 being background
|
||||
mask = Image.open(mask_path)
|
||||
|
||||
mask = np.array(mask)
|
||||
# instances are encoded as different colors
|
||||
obj_ids = np.unique(mask)
|
||||
# first id is the background, so remove it
|
||||
obj_ids = obj_ids[1:]
|
||||
|
||||
# split the color-encoded mask into a set
|
||||
# of binary masks
|
||||
masks = mask == obj_ids[:, None, None]
|
||||
|
||||
# get bounding box coordinates for each mask
|
||||
num_objs = len(obj_ids)
|
||||
boxes = []
|
||||
for i in range(num_objs):
|
||||
pos = np.where(masks[i])
|
||||
xmin = np.min(pos[1])
|
||||
xmax = np.max(pos[1])
|
||||
ymin = np.min(pos[0])
|
||||
ymax = np.max(pos[0])
|
||||
boxes.append([xmin, ymin, xmax, ymax])
|
||||
|
||||
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
||||
# there is only one class
|
||||
labels = torch.ones((num_objs,), dtype=torch.int64)
|
||||
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
||||
|
||||
image_id = torch.tensor([idx])
|
||||
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
|
||||
# suppose all instances are not crowd
|
||||
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
|
||||
|
||||
target = {}
|
||||
target["boxes"] = boxes
|
||||
target["labels"] = labels
|
||||
target["masks"] = masks
|
||||
target["image_id"] = image_id
|
||||
target["area"] = area
|
||||
target["iscrowd"] = iscrowd
|
||||
|
||||
if self.transforms is not None:
|
||||
img, target = self.transforms(img, target)
|
||||
|
||||
return img, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.imgs)
|
||||
@@ -1,16 +0,0 @@
|
||||
# From https://github.com/microsoft/AzureML-BERT/blob/master/finetune/PyTorch/dockerfile
|
||||
|
||||
FROM mcr.microsoft.com/azureml/base-gpu:openmpi3.1.2-cuda10.1-cudnn7-ubuntu18.04
|
||||
|
||||
RUN apt update && apt install git -y && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN /opt/miniconda/bin/conda update -n base -c defaults conda
|
||||
RUN /opt/miniconda/bin/conda install -y cython=0.29.15 numpy=1.18.1
|
||||
RUN /opt/miniconda/bin/conda install -y pytorch=1.4 torchvision=0.5.0 -c pytorch
|
||||
|
||||
# Install cocoapi, required for drawing bounding boxes
|
||||
RUN git clone https://github.com/cocodataset/cocoapi.git && cd cocoapi/PythonAPI && python setup.py build_ext install
|
||||
|
||||
RUN pip install azureml-defaults
|
||||
RUN pip install "azureml-dataprep[fuse]"
|
||||
RUN pip install pandas pyarrow
|
||||
@@ -1,108 +0,0 @@
|
||||
import math
|
||||
import sys
|
||||
import time
|
||||
import torch
|
||||
|
||||
import torchvision.models.detection.mask_rcnn
|
||||
|
||||
from coco_utils import get_coco_api_from_dataset
|
||||
from coco_eval import CocoEvaluator
|
||||
import utils
|
||||
|
||||
|
||||
def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq):
|
||||
model.train()
|
||||
metric_logger = utils.MetricLogger(delimiter=" ")
|
||||
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
||||
header = 'Epoch: [{}]'.format(epoch)
|
||||
|
||||
lr_scheduler = None
|
||||
if epoch == 0:
|
||||
warmup_factor = 1. / 1000
|
||||
warmup_iters = min(1000, len(data_loader) - 1)
|
||||
|
||||
lr_scheduler = utils.warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor)
|
||||
|
||||
for images, targets in metric_logger.log_every(data_loader, print_freq, header):
|
||||
images = list(image.to(device) for image in images)
|
||||
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
||||
|
||||
loss_dict = model(images, targets)
|
||||
|
||||
losses = sum(loss for loss in loss_dict.values())
|
||||
|
||||
# reduce losses over all GPUs for logging purposes
|
||||
loss_dict_reduced = utils.reduce_dict(loss_dict)
|
||||
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
|
||||
|
||||
loss_value = losses_reduced.item()
|
||||
|
||||
if not math.isfinite(loss_value):
|
||||
print("Loss is {}, stopping training".format(loss_value))
|
||||
print(loss_dict_reduced)
|
||||
sys.exit(1)
|
||||
|
||||
optimizer.zero_grad()
|
||||
losses.backward()
|
||||
optimizer.step()
|
||||
|
||||
if lr_scheduler is not None:
|
||||
lr_scheduler.step()
|
||||
|
||||
metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
|
||||
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
||||
|
||||
|
||||
def _get_iou_types(model):
|
||||
model_without_ddp = model
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
model_without_ddp = model.module
|
||||
iou_types = ["bbox"]
|
||||
if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
|
||||
iou_types.append("segm")
|
||||
if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
|
||||
iou_types.append("keypoints")
|
||||
return iou_types
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def evaluate(model, data_loader, device):
|
||||
n_threads = torch.get_num_threads()
|
||||
# FIXME remove this and make paste_masks_in_image run on the GPU
|
||||
torch.set_num_threads(1)
|
||||
cpu_device = torch.device("cpu")
|
||||
model.eval()
|
||||
metric_logger = utils.MetricLogger(delimiter=" ")
|
||||
header = 'Test:'
|
||||
|
||||
coco = get_coco_api_from_dataset(data_loader.dataset)
|
||||
iou_types = _get_iou_types(model)
|
||||
coco_evaluator = CocoEvaluator(coco, iou_types)
|
||||
|
||||
for image, targets in metric_logger.log_every(data_loader, 100, header):
|
||||
image = list(img.to(device) for img in image)
|
||||
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
||||
|
||||
torch.cuda.synchronize()
|
||||
model_time = time.time()
|
||||
outputs = model(image)
|
||||
|
||||
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
|
||||
model_time = time.time() - model_time
|
||||
|
||||
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
|
||||
evaluator_time = time.time()
|
||||
coco_evaluator.update(res)
|
||||
evaluator_time = time.time() - evaluator_time
|
||||
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
|
||||
|
||||
# gather the stats from all processes
|
||||
metric_logger.synchronize_between_processes()
|
||||
print("Averaged stats:", metric_logger)
|
||||
coco_evaluator.synchronize_between_processes()
|
||||
|
||||
# accumulate predictions from all images
|
||||
coco_evaluator.accumulate()
|
||||
coco_evaluator.summarize()
|
||||
torch.set_num_threads(n_threads)
|
||||
return coco_evaluator
|
||||
@@ -1,23 +0,0 @@
|
||||
import torchvision
|
||||
|
||||
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
||||
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
|
||||
|
||||
|
||||
def get_instance_segmentation_model(num_classes):
|
||||
# load an instance segmentation model pre-trained on COCO
|
||||
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
|
||||
|
||||
# get the number of input features for the classifier
|
||||
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
||||
# replace the pre-trained head with a new one
|
||||
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
|
||||
|
||||
# now get the number of input features for the mask classifier
|
||||
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
|
||||
hidden_layer = 256
|
||||
# and replace the mask predictor with a new one
|
||||
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
|
||||
hidden_layer,
|
||||
num_classes)
|
||||
return model
|
||||
@@ -1,544 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Object detection with PyTorch, Mask R-CNN, and a custom Dockerfile\n",
|
||||
"\n",
|
||||
"In this tutorial, you will finetune a pre-trained [Mask R-CNN](https://arxiv.org/abs/1703.06870) model on images from the [Penn-Fudan Database for Pedestrian Detection and Segmentation](https://www.cis.upenn.edu/~jshi/ped_html/). The dataset has 170 images with 345 instances of pedestrians. After running this tutorial, you will have a model that can outline the silhouettes of all pedestrians within an image.\n",
|
||||
"\n",
|
||||
"You\u00e2\u20ac\u2122ll use Azure Machine Learning to: \n",
|
||||
"\n",
|
||||
"- Initialize a workspace \n",
|
||||
"- Create a compute cluster\n",
|
||||
"- Define a training environment\n",
|
||||
"- Train a model remotely\n",
|
||||
"- Register your model\n",
|
||||
"- Generate predictions locally\n",
|
||||
"\n",
|
||||
"## Prerequisities\n",
|
||||
"\n",
|
||||
"- If you are using an Azure Machine Learning Notebook VM, your environment already meets these prerequisites. Otherwise, go through the [configuration notebook](../../../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and [create an Azure ML Workspace](https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace#create-a-workspace). You also need matplotlib 3.2, pycocotools-2.0.0, torchvision >= 0.5.0 and torch >= 1.4.0.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check core SDK version number, check other dependencies\n",
|
||||
"import azureml.core\n",
|
||||
"import matplotlib\n",
|
||||
"import pycocotools\n",
|
||||
"import torch\n",
|
||||
"import torchvision\n",
|
||||
"\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security in future releases."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize a workspace\n",
|
||||
"\n",
|
||||
"Initialize a [workspace](https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`, using the [from_config()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py#from-config-path-none--auth-none---logger-none---file-name-none-) method."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or attach existing Azure ML Managed Compute\n",
|
||||
"\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/concept-compute-target) for training your model. In this tutorial, we use [Azure ML managed compute](https://docs.microsoft.com/azure/machine-learning/how-to-set-up-training-targets#amlcompute) for our remote training compute resource. Specifically, the below code creates a `STANDARD_NC6` GPU cluster that autoscales from 0 to 4 nodes.\n",
|
||||
"\n",
|
||||
"**Creation of Compute takes approximately 5 minutes.** If the Aauzre ML Compute with that name is already in your workspace, this code will skip the creation process. \n",
|
||||
"\n",
|
||||
"As with other Azure servies, there are limits on certain resources associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/how-to-manage-quotas) on the default limits and how to request more quota.\n",
|
||||
"\n",
|
||||
"> Note that the below code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"cluster_name = 'gpu-cluster'\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# use get_status() to get a detailed status for the current cluster. \n",
|
||||
"print(compute_target.get_status().serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Define a training environment\n",
|
||||
"\n",
|
||||
"### Create a project directory\n",
|
||||
"Create a directory that will contain all the code from your local machine that you will need access to on the remote resource. This includes the training script an any additional files your training script depends on."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"project_folder = './pytorch-peds'\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" os.makedirs(project_folder, exist_ok=False)\n",
|
||||
"except FileExistsError:\n",
|
||||
" print('project folder {} exists, moving on...'.format(project_folder))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Copy training script and dependencies into project directory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"files_to_copy = ['data', 'model', 'script', 'utils', 'transforms', 'coco_eval', 'engine', 'coco_utils']\n",
|
||||
"for file in files_to_copy:\n",
|
||||
" shutil.copy(os.path.join(os.getcwd(), (file + '.py')), project_folder)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create an experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"\n",
|
||||
"experiment_name = 'pytorch-peds'\n",
|
||||
"experiment = Experiment(ws, name=experiment_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Specify dependencies with a custom Dockerfile\n",
|
||||
"\n",
|
||||
"There are a number of ways to [use environments](https://docs.microsoft.com/azure/machine-learning/how-to-use-environments) for specifying dependencies during model training. In this case, we use a custom Dockerfile."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Environment\n",
|
||||
"\n",
|
||||
"my_env = Environment(name='maskr-docker')\n",
|
||||
"my_env.docker.enabled = True\n",
|
||||
"with open(\"dockerfiles/Dockerfile\", \"r\") as f:\n",
|
||||
" dockerfile_contents=f.read()\n",
|
||||
"my_env.docker.base_dockerfile=dockerfile_contents\n",
|
||||
"my_env.docker.base_image = None\n",
|
||||
"my_env.python.interpreter_path = '/opt/miniconda/bin/python'\n",
|
||||
"my_env.python.user_managed_dependencies = True\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a ScriptRunConfig\n",
|
||||
"\n",
|
||||
"Use the [ScriptRunConfig](https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py) class to define your run. Specify the source directory, compute target, and environment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.dnn import PyTorch\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"model_name = 'pytorch-peds'\n",
|
||||
"output_dir = './outputs/'\n",
|
||||
"n_epochs = 2\n",
|
||||
"\n",
|
||||
"script_args = [\n",
|
||||
" '--model_name', model_name,\n",
|
||||
" '--output_dir', output_dir,\n",
|
||||
" '--n_epochs', n_epochs,\n",
|
||||
"]\n",
|
||||
"# Add training script to run config\n",
|
||||
"runconfig = ScriptRunConfig(\n",
|
||||
" source_directory=project_folder,\n",
|
||||
" script=\"script.py\",\n",
|
||||
" arguments=script_args)\n",
|
||||
"\n",
|
||||
"# Attach compute target to run config\n",
|
||||
"runconfig.run_config.target = cluster_name\n",
|
||||
"\n",
|
||||
"# Uncomment the line below if you want to try this locally first\n",
|
||||
"#runconfig.run_config.target = \"local\"\n",
|
||||
"\n",
|
||||
"# Attach environment to run config\n",
|
||||
"runconfig.run_config.environment = my_env"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train remotely\n",
|
||||
"\n",
|
||||
"### Submit your run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Submit run \n",
|
||||
"run = experiment.submit(runconfig)\n",
|
||||
"\n",
|
||||
"# to get more details of your run\n",
|
||||
"print(run.get_details())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Monitor your run\n",
|
||||
"\n",
|
||||
"Use a widget to keep track of your run. You can also view the status of the run within the [Azure Machine Learning service portal](https://ml.azure.com)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"RunDetails(run).show()\n",
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test your model\n",
|
||||
"\n",
|
||||
"Now that we are done training, let's see how well this model actually performs.\n",
|
||||
"\n",
|
||||
"### Get your latest run\n",
|
||||
"First, pull the latest run using `experiment.get_runs()`, which lists runs from `experiment` in reverse chronological order."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Run\n",
|
||||
"\n",
|
||||
"last_run = next(experiment.get_runs())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Register your model\n",
|
||||
"Next, [register the model](https://docs.microsoft.com/azure/machine-learning/concept-model-management-and-deployment#register-package-and-deploy-models-from-anywhere) from your run. Registering your model assigns it a version and helps you with auditability."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"last_run.register_model(model_name=model_name, model_path=os.path.join(output_dir, model_name))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download your model\n",
|
||||
"Next, download this registered model. Notice how we can initialize the `Model` object with the name of the registered model, rather than a path to the file itself."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Model\n",
|
||||
"\n",
|
||||
"model = Model(workspace=ws, name=model_name)\n",
|
||||
"path = model.download(target_dir='model', exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Use your model to make a prediction\n",
|
||||
"\n",
|
||||
"Run inferencing on a single test image and display the results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from azureml.core import Dataset\n",
|
||||
"from data import PennFudanDataset\n",
|
||||
"from script import get_transform, download_data, NUM_CLASSES\n",
|
||||
"from model import get_instance_segmentation_model\n",
|
||||
"\n",
|
||||
"if torch.cuda.is_available():\n",
|
||||
" device = torch.device('cuda')\n",
|
||||
"else:\n",
|
||||
" device = torch.device('cpu')\n",
|
||||
"\n",
|
||||
"# Instantiate model with correct weights, cast to correct device, place in evaluation mode\n",
|
||||
"predict_model = get_instance_segmentation_model(NUM_CLASSES)\n",
|
||||
"predict_model.to(device)\n",
|
||||
"predict_model.load_state_dict(torch.load(path, map_location=device))\n",
|
||||
"predict_model.eval()\n",
|
||||
"\n",
|
||||
"# Load dataset\n",
|
||||
"root_dir=download_data()\n",
|
||||
"dataset_test = PennFudanDataset(root=root_dir, transforms=get_transform(train=False))\n",
|
||||
"\n",
|
||||
"# pick one image from the test set\n",
|
||||
"img, _ = dataset_test[0]\n",
|
||||
"\n",
|
||||
"with torch.no_grad():\n",
|
||||
" prediction = predict_model([img.to(device)])\n",
|
||||
"\n",
|
||||
"# model = torch.load(path)\n",
|
||||
"#torch.load(model.get_model_path(model_name='outputs/model.pt'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Display the input image\n",
|
||||
"\n",
|
||||
"While tensors are great for computers, a tensor of RGB values doesn't mean much to a human. Let's display the input image in a way that a human could understand."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Display the predicted masks\n",
|
||||
"\n",
|
||||
"The prediction consists of masks, displaying the outline of pedestrians in the image. Let's take a look at the first two masks, below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Image.fromarray(prediction[0]['masks'][0, 0].mul(255).byte().cpu().numpy())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Image.fromarray(prediction[0]['masks'][1, 0].mul(255).byte().cpu().numpy())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"Congratulations! You just trained a Mask R-CNN model with PyTorch in Azure Machine Learning. As next steps, consider:\n",
|
||||
"1. Learn more about using PyTorch in Azure Machine Learning service by checking out the [README](./README.md]\n",
|
||||
"2. Try exporting your model to [ONNX](https://docs.microsoft.com/azure/machine-learning/concept-onnx) for accelerated inferencing."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "gopalv"
|
||||
}
|
||||
],
|
||||
"category": "training",
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
],
|
||||
"datasets": [
|
||||
"Custom"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"PyTorch"
|
||||
],
|
||||
"friendly_name": "PyTorch object detection",
|
||||
"index_order": 1,
|
||||
"kernel_info": {
|
||||
"name": "python3"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5-final"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "nteract-front-end@1.0.0"
|
||||
},
|
||||
"tags": [
|
||||
"remote run",
|
||||
"docker"
|
||||
],
|
||||
"task": "Fine-tune PyTorch object detection model with a custom dockerfile"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
name: pytorch-mask-rcnn
|
||||
dependencies:
|
||||
- cython
|
||||
- pytorch -c pytorch
|
||||
- torchvision -c pytorch
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
- azureml-dataprep
|
||||
- fuse
|
||||
- pandas
|
||||
- matplotlib
|
||||
- pillow==7.0.0
|
||||
- git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
|
||||
@@ -1,117 +0,0 @@
|
||||
import argparse
|
||||
import os
|
||||
import torch
|
||||
import torchvision
|
||||
import transforms as T
|
||||
import urllib.request
|
||||
import utils
|
||||
|
||||
from azureml.core import Dataset, Run
|
||||
from data import PennFudanDataset
|
||||
from engine import train_one_epoch, evaluate
|
||||
from model import get_instance_segmentation_model
|
||||
from zipfile import ZipFile
|
||||
|
||||
NUM_CLASSES = 2
|
||||
|
||||
|
||||
def download_data():
|
||||
data_file = 'PennFudanPed.zip'
|
||||
ds_path = 'PennFudanPed/'
|
||||
urllib.request.urlretrieve('https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip', data_file)
|
||||
zip = ZipFile(file=data_file)
|
||||
zip.extractall(path=ds_path)
|
||||
return os.path.join(ds_path, zip.namelist()[0])
|
||||
|
||||
|
||||
def get_transform(train):
|
||||
transforms = []
|
||||
# converts the image, a PIL image, into a PyTorch Tensor
|
||||
transforms.append(T.ToTensor())
|
||||
if train:
|
||||
# during training, randomly flip the training images
|
||||
# and ground-truth for data augmentation
|
||||
transforms.append(T.RandomHorizontalFlip(0.5))
|
||||
return T.Compose(transforms)
|
||||
|
||||
|
||||
def main():
|
||||
print("Torch version:", torch.__version__)
|
||||
# get command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model_name', type=str, default="pytorch-peds.pt",
|
||||
help='name with which to register your model')
|
||||
parser.add_argument('--output_dir', default="local-outputs",
|
||||
type=str, help='output directory')
|
||||
parser.add_argument('--n_epochs', type=int,
|
||||
default=10, help='number of epochs')
|
||||
args = parser.parse_args()
|
||||
|
||||
# In case user inputs a nested output directory
|
||||
os.makedirs(name=args.output_dir, exist_ok=True)
|
||||
|
||||
# Get a dataset by name
|
||||
root_dir = download_data()
|
||||
|
||||
# use our dataset and defined transformations
|
||||
dataset = PennFudanDataset(root=root_dir, transforms=get_transform(train=True))
|
||||
dataset_test = PennFudanDataset(root=root_dir, transforms=get_transform(train=False))
|
||||
|
||||
# split the dataset in train and test set
|
||||
torch.manual_seed(1)
|
||||
indices = torch.randperm(len(dataset)).tolist()
|
||||
dataset = torch.utils.data.Subset(dataset, indices[:-50])
|
||||
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
|
||||
|
||||
# define training and validation data loaders
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
dataset, batch_size=2, shuffle=True, num_workers=4,
|
||||
collate_fn=utils.collate_fn)
|
||||
|
||||
data_loader_test = torch.utils.data.DataLoader(
|
||||
dataset_test, batch_size=1, shuffle=False, num_workers=4,
|
||||
collate_fn=utils.collate_fn)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
print('Using GPU')
|
||||
device = torch.device('cuda')
|
||||
else:
|
||||
print('Using CPU')
|
||||
device = torch.device('cpu')
|
||||
|
||||
# our dataset has two classes only - background and person
|
||||
num_classes = NUM_CLASSES
|
||||
|
||||
# get the model using our helper function
|
||||
model = get_instance_segmentation_model(num_classes)
|
||||
|
||||
# move model to the right device
|
||||
model.to(device)
|
||||
|
||||
# construct an optimizer
|
||||
params = [p for p in model.parameters() if p.requires_grad]
|
||||
optimizer = torch.optim.SGD(params, lr=0.005,
|
||||
momentum=0.9, weight_decay=0.0005)
|
||||
|
||||
# and a learning rate scheduler which decreases the learning rate by
|
||||
# 10x every 3 epochs
|
||||
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
|
||||
step_size=3,
|
||||
gamma=0.1)
|
||||
|
||||
for epoch in range(args.n_epochs):
|
||||
# train for one epoch, printing every 10 iterations
|
||||
train_one_epoch(
|
||||
model, optimizer, data_loader, device, epoch, print_freq=10)
|
||||
# update the learning rate
|
||||
lr_scheduler.step()
|
||||
# evaluate on the test dataset
|
||||
evaluate(model, data_loader_test, device=device)
|
||||
|
||||
# Saving the state dict is recommended method, per
|
||||
# https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
||||
torch.save(model.state_dict(), os.path.join(args.output_dir, args.model_name))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,50 +0,0 @@
|
||||
import random
|
||||
import torch
|
||||
|
||||
from torchvision.transforms import functional as F
|
||||
|
||||
|
||||
def _flip_coco_person_keypoints(kps, width):
|
||||
flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
flipped_data = kps[:, flip_inds]
|
||||
flipped_data[..., 0] = width - flipped_data[..., 0]
|
||||
# Maintain COCO convention that if visibility == 0, then x, y = 0
|
||||
inds = flipped_data[..., 2] == 0
|
||||
flipped_data[inds] = 0
|
||||
return flipped_data
|
||||
|
||||
|
||||
class Compose(object):
|
||||
def __init__(self, transforms):
|
||||
self.transforms = transforms
|
||||
|
||||
def __call__(self, image, target):
|
||||
for t in self.transforms:
|
||||
image, target = t(image, target)
|
||||
return image, target
|
||||
|
||||
|
||||
class RandomHorizontalFlip(object):
|
||||
def __init__(self, prob):
|
||||
self.prob = prob
|
||||
|
||||
def __call__(self, image, target):
|
||||
if random.random() < self.prob:
|
||||
height, width = image.shape[-2:]
|
||||
image = image.flip(-1)
|
||||
bbox = target["boxes"]
|
||||
bbox[:, [0, 2]] = width - bbox[:, [2, 0]]
|
||||
target["boxes"] = bbox
|
||||
if "masks" in target:
|
||||
target["masks"] = target["masks"].flip(-1)
|
||||
if "keypoints" in target:
|
||||
keypoints = target["keypoints"]
|
||||
keypoints = _flip_coco_person_keypoints(keypoints, width)
|
||||
target["keypoints"] = keypoints
|
||||
return image, target
|
||||
|
||||
|
||||
class ToTensor(object):
|
||||
def __call__(self, image, target):
|
||||
image = F.to_tensor(image)
|
||||
return image, target
|
||||
@@ -1,326 +0,0 @@
|
||||
from __future__ import print_function
|
||||
|
||||
from collections import defaultdict, deque
|
||||
import datetime
|
||||
import pickle
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import errno
|
||||
import os
|
||||
|
||||
|
||||
class SmoothedValue(object):
|
||||
"""Track a series of values and provide access to smoothed values over a
|
||||
window or the global series average.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size=20, fmt=None):
|
||||
if fmt is None:
|
||||
fmt = "{median:.4f} ({global_avg:.4f})"
|
||||
self.deque = deque(maxlen=window_size)
|
||||
self.total = 0.0
|
||||
self.count = 0
|
||||
self.fmt = fmt
|
||||
|
||||
def update(self, value, n=1):
|
||||
self.deque.append(value)
|
||||
self.count += n
|
||||
self.total += value * n
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
"""
|
||||
Warning: does not synchronize the deque!
|
||||
"""
|
||||
if not is_dist_avail_and_initialized():
|
||||
return
|
||||
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
||||
dist.barrier()
|
||||
dist.all_reduce(t)
|
||||
t = t.tolist()
|
||||
self.count = int(t[0])
|
||||
self.total = t[1]
|
||||
|
||||
@property
|
||||
def median(self):
|
||||
d = torch.tensor(list(self.deque))
|
||||
return d.median().item()
|
||||
|
||||
@property
|
||||
def avg(self):
|
||||
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
||||
return d.mean().item()
|
||||
|
||||
@property
|
||||
def global_avg(self):
|
||||
return self.total / self.count
|
||||
|
||||
@property
|
||||
def max(self):
|
||||
return max(self.deque)
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
return self.deque[-1]
|
||||
|
||||
def __str__(self):
|
||||
return self.fmt.format(
|
||||
median=self.median,
|
||||
avg=self.avg,
|
||||
global_avg=self.global_avg,
|
||||
max=self.max,
|
||||
value=self.value)
|
||||
|
||||
|
||||
def all_gather(data):
|
||||
"""
|
||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
||||
Args:
|
||||
data: any picklable object
|
||||
Returns:
|
||||
list[data]: list of data gathered from each rank
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
|
||||
# serialized to a Tensor
|
||||
buffer = pickle.dumps(data)
|
||||
storage = torch.ByteStorage.from_buffer(buffer)
|
||||
tensor = torch.ByteTensor(storage).to("cuda")
|
||||
|
||||
# obtain Tensor size of each rank
|
||||
local_size = torch.tensor([tensor.numel()], device="cuda")
|
||||
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
||||
dist.all_gather(size_list, local_size)
|
||||
size_list = [int(size.item()) for size in size_list]
|
||||
max_size = max(size_list)
|
||||
|
||||
# receiving Tensor from all ranks
|
||||
# we pad the tensor because torch all_gather does not support
|
||||
# gathering tensors of different shapes
|
||||
tensor_list = []
|
||||
for _ in size_list:
|
||||
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
||||
if local_size != max_size:
|
||||
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
||||
tensor = torch.cat((tensor, padding), dim=0)
|
||||
dist.all_gather(tensor_list, tensor)
|
||||
|
||||
data_list = []
|
||||
for size, tensor in zip(size_list, tensor_list):
|
||||
buffer = tensor.cpu().numpy().tobytes()[:size]
|
||||
data_list.append(pickle.loads(buffer))
|
||||
|
||||
return data_list
|
||||
|
||||
|
||||
def reduce_dict(input_dict, average=True):
|
||||
"""
|
||||
Args:
|
||||
input_dict (dict): all the values will be reduced
|
||||
average (bool): whether to do average or sum
|
||||
Reduce the values in the dictionary from all processes so that all processes
|
||||
have the averaged results. Returns a dict with the same fields as
|
||||
input_dict, after reduction.
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size < 2:
|
||||
return input_dict
|
||||
with torch.no_grad():
|
||||
names = []
|
||||
values = []
|
||||
# sort the keys so that they are consistent across processes
|
||||
for k in sorted(input_dict.keys()):
|
||||
names.append(k)
|
||||
values.append(input_dict[k])
|
||||
values = torch.stack(values, dim=0)
|
||||
dist.all_reduce(values)
|
||||
if average:
|
||||
values /= world_size
|
||||
reduced_dict = {k: v for k, v in zip(names, values)}
|
||||
return reduced_dict
|
||||
|
||||
|
||||
class MetricLogger(object):
|
||||
def __init__(self, delimiter="\t"):
|
||||
self.meters = defaultdict(SmoothedValue)
|
||||
self.delimiter = delimiter
|
||||
|
||||
def update(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
v = v.item()
|
||||
assert isinstance(v, (float, int))
|
||||
self.meters[k].update(v)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
if attr in self.meters:
|
||||
return self.meters[attr]
|
||||
if attr in self.__dict__:
|
||||
return self.__dict__[attr]
|
||||
raise AttributeError("'{}' object has no attribute '{}'".format(
|
||||
type(self).__name__, attr))
|
||||
|
||||
def __str__(self):
|
||||
loss_str = []
|
||||
for name, meter in self.meters.items():
|
||||
loss_str.append(
|
||||
"{}: {}".format(name, str(meter))
|
||||
)
|
||||
return self.delimiter.join(loss_str)
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
for meter in self.meters.values():
|
||||
meter.synchronize_between_processes()
|
||||
|
||||
def add_meter(self, name, meter):
|
||||
self.meters[name] = meter
|
||||
|
||||
def log_every(self, iterable, print_freq, header=None):
|
||||
i = 0
|
||||
if not header:
|
||||
header = ''
|
||||
start_time = time.time()
|
||||
end = time.time()
|
||||
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
||||
data_time = SmoothedValue(fmt='{avg:.4f}')
|
||||
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
||||
if torch.cuda.is_available():
|
||||
log_msg = self.delimiter.join([
|
||||
header,
|
||||
'[{0' + space_fmt + '}/{1}]',
|
||||
'eta: {eta}',
|
||||
'{meters}',
|
||||
'time: {time}',
|
||||
'data: {data}',
|
||||
'max mem: {memory:.0f}'
|
||||
])
|
||||
else:
|
||||
log_msg = self.delimiter.join([
|
||||
header,
|
||||
'[{0' + space_fmt + '}/{1}]',
|
||||
'eta: {eta}',
|
||||
'{meters}',
|
||||
'time: {time}',
|
||||
'data: {data}'
|
||||
])
|
||||
MB = 1024.0 * 1024.0
|
||||
for obj in iterable:
|
||||
data_time.update(time.time() - end)
|
||||
yield obj
|
||||
iter_time.update(time.time() - end)
|
||||
if i % print_freq == 0 or i == len(iterable) - 1:
|
||||
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
||||
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
||||
if torch.cuda.is_available():
|
||||
print(log_msg.format(
|
||||
i, len(iterable), eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time), data=str(data_time),
|
||||
memory=torch.cuda.max_memory_allocated() / MB))
|
||||
else:
|
||||
print(log_msg.format(
|
||||
i, len(iterable), eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time), data=str(data_time)))
|
||||
i += 1
|
||||
end = time.time()
|
||||
total_time = time.time() - start_time
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
print('{} Total time: {} ({:.4f} s / it)'.format(
|
||||
header, total_time_str, total_time / len(iterable)))
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
return tuple(zip(*batch))
|
||||
|
||||
|
||||
def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor):
|
||||
|
||||
def f(x):
|
||||
if x >= warmup_iters:
|
||||
return 1
|
||||
alpha = float(x) / warmup_iters
|
||||
return warmup_factor * (1 - alpha) + alpha
|
||||
|
||||
return torch.optim.lr_scheduler.LambdaLR(optimizer, f)
|
||||
|
||||
|
||||
def mkdir(path):
|
||||
try:
|
||||
os.makedirs(path)
|
||||
except OSError as e:
|
||||
if e.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
|
||||
def setup_for_distributed(is_master):
|
||||
"""
|
||||
This function disables printing when not in master process
|
||||
"""
|
||||
import builtins as __builtin__
|
||||
builtin_print = __builtin__.print
|
||||
|
||||
def print(*args, **kwargs):
|
||||
force = kwargs.pop('force', False)
|
||||
if is_master or force:
|
||||
builtin_print(*args, **kwargs)
|
||||
|
||||
__builtin__.print = print
|
||||
|
||||
|
||||
def is_dist_avail_and_initialized():
|
||||
if not dist.is_available():
|
||||
return False
|
||||
if not dist.is_initialized():
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def get_rank():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def is_main_process():
|
||||
return get_rank() == 0
|
||||
|
||||
|
||||
def save_on_master(*args, **kwargs):
|
||||
if is_main_process():
|
||||
torch.save(*args, **kwargs)
|
||||
|
||||
|
||||
def init_distributed_mode(args):
|
||||
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
||||
args.rank = int(os.environ["RANK"])
|
||||
args.world_size = int(os.environ['WORLD_SIZE'])
|
||||
args.gpu = int(os.environ['LOCAL_RANK'])
|
||||
elif 'SLURM_PROCID' in os.environ:
|
||||
args.rank = int(os.environ['SLURM_PROCID'])
|
||||
args.gpu = args.rank % torch.cuda.device_count()
|
||||
else:
|
||||
print('Not using distributed mode')
|
||||
args.distributed = False
|
||||
return
|
||||
|
||||
args.distributed = True
|
||||
|
||||
torch.cuda.set_device(args.gpu)
|
||||
args.dist_backend = 'nccl'
|
||||
print('| distributed init (rank {}): {}'.format(
|
||||
args.rank, args.dist_url), flush=True)
|
||||
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
||||
world_size=args.world_size, rank=args.rank)
|
||||
torch.distributed.barrier()
|
||||
setup_for_distributed(args.rank == 0)
|
||||
@@ -4,33 +4,100 @@
|
||||
import numpy as np
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import tensorflow as tf
|
||||
import time
|
||||
import glob
|
||||
|
||||
from azureml.core import Run
|
||||
from utils import load_data
|
||||
from tensorflow.keras import Model, layers
|
||||
|
||||
|
||||
# Create TF Model.
|
||||
class NeuralNet(Model):
|
||||
# Set layers.
|
||||
def __init__(self):
|
||||
super(NeuralNet, self).__init__()
|
||||
# First hidden layer.
|
||||
self.h1 = layers.Dense(n_h1, activation=tf.nn.relu)
|
||||
# Second hidden layer.
|
||||
self.h2 = layers.Dense(n_h2, activation=tf.nn.relu)
|
||||
self.out = layers.Dense(n_outputs)
|
||||
|
||||
# Set forward pass.
|
||||
def call(self, x, is_training=False):
|
||||
x = self.h1(x)
|
||||
x = self.h2(x)
|
||||
x = self.out(x)
|
||||
if not is_training:
|
||||
# Apply softmax when not training.
|
||||
x = tf.nn.softmax(x)
|
||||
return x
|
||||
|
||||
|
||||
def cross_entropy_loss(y, logits):
|
||||
# Convert labels to int 64 for tf cross-entropy function.
|
||||
y = tf.cast(y, tf.int64)
|
||||
# Apply softmax to logits and compute cross-entropy.
|
||||
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
|
||||
# Average loss across the batch.
|
||||
return tf.reduce_mean(loss)
|
||||
|
||||
|
||||
# Accuracy metric.
|
||||
def accuracy(y_pred, y_true):
|
||||
# Predicted class is the index of highest score in prediction vector (i.e. argmax).
|
||||
correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))
|
||||
return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1)
|
||||
|
||||
|
||||
# Optimization process.
|
||||
def run_optimization(x, y):
|
||||
# Wrap computation inside a GradientTape for automatic differentiation.
|
||||
with tf.GradientTape() as g:
|
||||
# Forward pass.
|
||||
logits = neural_net(x, is_training=True)
|
||||
# Compute loss.
|
||||
loss = cross_entropy_loss(y, logits)
|
||||
|
||||
# Variables to update, i.e. trainable variables.
|
||||
trainable_variables = neural_net.trainable_variables
|
||||
|
||||
# Compute gradients.
|
||||
gradients = g.gradient(loss, trainable_variables)
|
||||
|
||||
# Update W and b following gradients.
|
||||
optimizer.apply_gradients(zip(gradients, trainable_variables))
|
||||
|
||||
|
||||
print("TensorFlow version:", tf.__version__)
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
|
||||
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
|
||||
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
|
||||
parser.add_argument('--data-folder', type=str, dest='data_folder', default='data', help='data folder mounting point')
|
||||
parser.add_argument('--batch-size', type=int, dest='batch_size', default=128, help='mini batch size for training')
|
||||
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=128,
|
||||
help='# of neurons in the first layer')
|
||||
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
|
||||
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=128,
|
||||
help='# of neurons in the second layer')
|
||||
parser.add_argument('--learning-rate', type=float, dest='learning_rate', default=0.01, help='learning rate')
|
||||
parser.add_argument('--resume-from', type=str, default=None,
|
||||
help='location of the model or checkpoint files from where to resume the training')
|
||||
args = parser.parse_args()
|
||||
|
||||
previous_model_location = args.resume_from
|
||||
# You can also use environment variable to get the model/checkpoint files location
|
||||
# previous_model_location = os.path.expandvars(os.getenv("AZUREML_DATAREFERENCE_MODEL_LOCATION", None))
|
||||
|
||||
data_folder = args.data_folder
|
||||
print('Data folder:', data_folder)
|
||||
|
||||
# load train and test set into numpy arrays
|
||||
# note we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can converge faster.
|
||||
X_train = load_data(glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'),
|
||||
recursive=True)[0], False) / 255.0
|
||||
recursive=True)[0], False) / np.float32(255.0)
|
||||
X_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-images-idx3-ubyte.gz'),
|
||||
recursive=True)[0], False) / 255.0
|
||||
recursive=True)[0], False) / np.float32(255.0)
|
||||
y_train = load_data(glob.glob(os.path.join(data_folder, '**/train-labels-idx1-ubyte.gz'),
|
||||
recursive=True)[0], True).reshape(-1)
|
||||
y_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-labels-idx1-ubyte.gz'),
|
||||
@@ -48,33 +115,28 @@ learning_rate = args.learning_rate
|
||||
n_epochs = 20
|
||||
batch_size = args.batch_size
|
||||
|
||||
with tf.name_scope('network'):
|
||||
# construct the DNN
|
||||
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
|
||||
y = tf.placeholder(tf.int64, shape=(None), name='y')
|
||||
h1 = tf.layers.dense(X, n_h1, activation=tf.nn.relu, name='h1')
|
||||
h2 = tf.layers.dense(h1, n_h2, activation=tf.nn.relu, name='h2')
|
||||
output = tf.layers.dense(h2, n_outputs, name='output')
|
||||
# Build neural network model.
|
||||
neural_net = NeuralNet()
|
||||
|
||||
with tf.name_scope('train'):
|
||||
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=output)
|
||||
loss = tf.reduce_mean(cross_entropy, name='loss')
|
||||
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
|
||||
train_op = optimizer.minimize(loss)
|
||||
|
||||
with tf.name_scope('eval'):
|
||||
correct = tf.nn.in_top_k(output, y, 1)
|
||||
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
|
||||
|
||||
init = tf.global_variables_initializer()
|
||||
saver = tf.train.Saver()
|
||||
# Stochastic gradient descent optimizer.
|
||||
optimizer = tf.optimizers.SGD(learning_rate)
|
||||
|
||||
# start an Azure ML run
|
||||
run = Run.get_context()
|
||||
|
||||
with tf.Session() as sess:
|
||||
init.run()
|
||||
for epoch in range(n_epochs):
|
||||
if previous_model_location:
|
||||
# Restore variables from latest checkpoint.
|
||||
checkpoint = tf.train.Checkpoint(model=neural_net, optimizer=optimizer)
|
||||
checkpoint_file_path = tf.train.latest_checkpoint(previous_model_location)
|
||||
checkpoint.restore(checkpoint_file_path)
|
||||
checkpoint_filename = os.path.basename(checkpoint_file_path)
|
||||
num_found = re.search(r'\d+', checkpoint_filename)
|
||||
if num_found:
|
||||
start_epoch = int(num_found.group(0))
|
||||
print("Resuming from epoch {}".format(str(start_epoch)))
|
||||
|
||||
start_time = time.perf_counter()
|
||||
for epoch in range(0, n_epochs):
|
||||
|
||||
# randomly shuffle training set
|
||||
indices = np.random.permutation(training_set_size)
|
||||
@@ -93,20 +155,36 @@ with tf.Session() as sess:
|
||||
b_end = min(b_start + batch_size, training_set_size)
|
||||
|
||||
# train
|
||||
sess.run(train_op, feed_dict={X: X_batch, y: y_batch})
|
||||
run_optimization(X_batch, y_batch)
|
||||
|
||||
# evaluate training set
|
||||
acc_train = acc_op.eval(feed_dict={X: X_batch, y: y_batch})
|
||||
pred = neural_net(X_batch, is_training=False)
|
||||
acc_train = accuracy(pred, y_batch)
|
||||
|
||||
# evaluate validation set
|
||||
acc_val = acc_op.eval(feed_dict={X: X_test, y: y_test})
|
||||
pred = neural_net(X_test, is_training=False)
|
||||
acc_val = accuracy(pred, y_test)
|
||||
|
||||
# log accuracies
|
||||
run.log('training_acc', np.float(acc_train))
|
||||
run.log('validation_acc', np.float(acc_val))
|
||||
print(epoch, '-- Training accuracy:', acc_train, '\b Validation accuracy:', acc_val)
|
||||
y_hat = np.argmax(output.eval(feed_dict={X: X_test}), axis=1)
|
||||
|
||||
# Save checkpoints in the "./outputs" folder so that they are automatically uploaded into run history.
|
||||
checkpoint_dir = './outputs/'
|
||||
checkpoint = tf.train.Checkpoint(model=neural_net, optimizer=optimizer)
|
||||
|
||||
if epoch % 2 == 0:
|
||||
checkpoint.save(checkpoint_dir)
|
||||
|
||||
run.log('final_acc', np.float(acc_val))
|
||||
|
||||
os.makedirs('./outputs/model', exist_ok=True)
|
||||
|
||||
# files saved in the "./outputs" folder are automatically uploaded into run history
|
||||
saver.save(sess, './outputs/model/mnist-tf.model')
|
||||
# this is workaround for https://github.com/tensorflow/tensorflow/issues/33913 and will be fixed once we move to >tf2.1
|
||||
neural_net._set_inputs(X_train)
|
||||
tf.saved_model.save(neural_net, './outputs/model/')
|
||||
|
||||
stop_time = time.perf_counter()
|
||||
training_time = (stop_time - start_time) * 1000
|
||||
print("Total time in milliseconds for training: {}".format(str(training_time)))
|
||||
|
||||
@@ -170,18 +170,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import urllib\n",
|
||||
"data_folder = 'data'\n",
|
||||
"import urllib.request\n",
|
||||
"\n",
|
||||
"data_folder = os.path.join(os.getcwd(), 'data')\n",
|
||||
"os.makedirs(data_folder, exist_ok=True)\n",
|
||||
"\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-images.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 'train-images-idx3-ubyte.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-labels.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 'train-labels-idx1-ubyte.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'test-images.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'test-labels.gz'))"
|
||||
" filename=os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -209,11 +210,10 @@
|
||||
"from utils import load_data\n",
|
||||
"\n",
|
||||
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
|
||||
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0\n",
|
||||
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
|
||||
"\n",
|
||||
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0\n",
|
||||
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
|
||||
"X_train = load_data(os.path.join(data_folder, 'train-images-idx3-ubyte.gz'), False) / np.float32(255.0)\n",
|
||||
"X_test = load_data(os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'), False) / np.float32(255.0)\n",
|
||||
"y_train = load_data(os.path.join(data_folder, 'train-labels-idx1-ubyte.gz'), True).reshape(-1)\n",
|
||||
"y_test = load_data(os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'), True).reshape(-1)\n",
|
||||
"\n",
|
||||
"count = 0\n",
|
||||
"sample_size = 30\n",
|
||||
@@ -447,9 +447,9 @@
|
||||
"\n",
|
||||
"script_params = {\n",
|
||||
" '--data-folder': dataset.as_named_input('mnist').as_mount(),\n",
|
||||
" '--batch-size': 50,\n",
|
||||
" '--first-layer-neurons': 300,\n",
|
||||
" '--second-layer-neurons': 100,\n",
|
||||
" '--batch-size': 64,\n",
|
||||
" '--first-layer-neurons': 256,\n",
|
||||
" '--second-layer-neurons': 128,\n",
|
||||
" '--learning-rate': 0.01\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
@@ -458,6 +458,7 @@
|
||||
" compute_target=compute_target,\n",
|
||||
" entry_script='tf_mnist.py',\n",
|
||||
" use_gpu=True,\n",
|
||||
" framework_version='2.0',\n",
|
||||
" pip_packages=['azureml-dataprep[pandas,fuse]'])"
|
||||
]
|
||||
},
|
||||
@@ -622,14 +623,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create a model folder in the current directory\n",
|
||||
"os.makedirs('./model', exist_ok=True)\n",
|
||||
"\n",
|
||||
"for f in run.get_file_names():\n",
|
||||
" if f.startswith('outputs/model'):\n",
|
||||
" output_file_path = os.path.join('./model', f.split('/')[-1])\n",
|
||||
" print('Downloading from {} to {} ...'.format(f, output_file_path))\n",
|
||||
" run.download_file(name=f, output_file_path=output_file_path)"
|
||||
"run.download_files(prefix='outputs/model', output_directory='./model', append_prefix=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -649,22 +643,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"saver = tf.train.import_meta_graph(\"./model/mnist-tf.model.meta\")\n",
|
||||
"graph = tf.get_default_graph()\n",
|
||||
"\n",
|
||||
"for op in graph.get_operations():\n",
|
||||
" if op.name.startswith('network'):\n",
|
||||
" print(op.name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Feed test dataset to the persisted model to get predictions."
|
||||
"imported_model = tf.saved_model.load('./model')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -673,16 +652,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# input tensor. this is an array of 784 elements, each representing the intensity of a pixel in the digit image.\n",
|
||||
"X = tf.get_default_graph().get_tensor_by_name(\"network/X:0\")\n",
|
||||
"# output tensor. this is an array of 10 elements, each representing the probability of predicted value of the digit.\n",
|
||||
"output = tf.get_default_graph().get_tensor_by_name(\"network/output/MatMul:0\")\n",
|
||||
"\n",
|
||||
"with tf.Session() as sess:\n",
|
||||
" saver.restore(sess, './model/mnist-tf.model')\n",
|
||||
" k = output.eval(feed_dict={X : X_test})\n",
|
||||
"# get the prediction, which is the index of the element that has the largest probability value.\n",
|
||||
"y_hat = np.argmax(k, axis=1)\n",
|
||||
"pred =imported_model(X_test)\n",
|
||||
"y_hat = np.argmax(pred, axis=1)\n",
|
||||
"\n",
|
||||
"# print the first 30 labels and predictions\n",
|
||||
"print('labels: \\t', y_test[:30])\n",
|
||||
@@ -690,10 +661,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Calculate the overall accuracy by comparing the predicted value against the test set."
|
||||
"print(\"Accuracy on the test set:\", np.average(y_hat == y_test))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -724,9 +697,9 @@
|
||||
"\n",
|
||||
"ps = RandomParameterSampling(\n",
|
||||
" {\n",
|
||||
" '--batch-size': choice(25, 50, 100),\n",
|
||||
" '--first-layer-neurons': choice(10, 50, 200, 300, 500),\n",
|
||||
" '--second-layer-neurons': choice(10, 50, 200, 500),\n",
|
||||
" '--batch-size': choice(32, 64, 128),\n",
|
||||
" '--first-layer-neurons': choice(16, 64, 128, 256, 512),\n",
|
||||
" '--second-layer-neurons': choice(16, 64, 256, 512),\n",
|
||||
" '--learning-rate': loguniform(-6, -1)\n",
|
||||
" }\n",
|
||||
")"
|
||||
@@ -749,6 +722,7 @@
|
||||
" script_params={'--data-folder': dataset.as_named_input('mnist').as_mount()},\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" entry_script='tf_mnist.py',\n",
|
||||
" framework_version='2.0',\n",
|
||||
" use_gpu=True,\n",
|
||||
" pip_packages=['azureml-dataprep[pandas,fuse]'])"
|
||||
]
|
||||
@@ -928,24 +902,20 @@
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"def init():\n",
|
||||
" global X, output, sess\n",
|
||||
" tf.reset_default_graph()\n",
|
||||
" global tf_model\n",
|
||||
" model_root = os.getenv('AZUREML_MODEL_DIR')\n",
|
||||
" # the name of the folder in which to look for tensorflow model files\n",
|
||||
" tf_model_folder = 'model'\n",
|
||||
" saver = tf.train.import_meta_graph(\n",
|
||||
" os.path.join(model_root, tf_model_folder, 'mnist-tf.model.meta'))\n",
|
||||
" X = tf.get_default_graph().get_tensor_by_name(\"network/X:0\")\n",
|
||||
" output = tf.get_default_graph().get_tensor_by_name(\"network/output/MatMul:0\")\n",
|
||||
" \n",
|
||||
" sess = tf.Session()\n",
|
||||
" saver.restore(sess, os.path.join(model_root, tf_model_folder, 'mnist-tf.model'))\n",
|
||||
" tf_model = tf.saved_model.load(os.path.join(model_root, tf_model_folder))\n",
|
||||
"\n",
|
||||
"def run(raw_data):\n",
|
||||
" data = np.array(json.loads(raw_data)['data'])\n",
|
||||
" data = np.array(json.loads(raw_data)['data'], dtype=np.float32)\n",
|
||||
" \n",
|
||||
" # make prediction\n",
|
||||
" out = output.eval(session=sess, feed_dict={X: data})\n",
|
||||
" out = tf_model(data)\n",
|
||||
" y_hat = np.argmax(out, axis=1)\n",
|
||||
"\n",
|
||||
" return y_hat.tolist()"
|
||||
]
|
||||
},
|
||||
@@ -967,7 +937,7 @@
|
||||
"\n",
|
||||
"cd = CondaDependencies.create()\n",
|
||||
"cd.add_conda_package('numpy')\n",
|
||||
"cd.add_pip_package('tensorflow==1.13.1')\n",
|
||||
"cd.add_pip_package('tensorflow==2.0.0')\n",
|
||||
"cd.add_pip_package(\"azureml-defaults\")\n",
|
||||
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
|
||||
"\n",
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
name: train-hyperparameter-tune-deploy-with-tensorflow
|
||||
dependencies:
|
||||
- numpy
|
||||
- tensorflow==1.10.0
|
||||
- matplotlib
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
- pandas
|
||||
- keras
|
||||
- tensorflow==2.0.0
|
||||
- matplotlib
|
||||
- azureml-dataprep
|
||||
- fuse
|
||||
|
||||
@@ -7,6 +7,5 @@ dependencies:
|
||||
- tensorflow-gpu==1.13.2
|
||||
- horovod==0.16.1
|
||||
- matplotlib
|
||||
- azureml-dataprep
|
||||
- pandas
|
||||
- fuse
|
||||
|
||||