Compare commits

...

1 Commits

Author SHA1 Message Date
amlrelsa-ms
879607e59b update samples from Release-120 as a part of SDK release 2022-01-28 07:00:37 +00:00

View File

@@ -5,17 +5,6 @@ import argparse
import os import os
from azureml.core import Run from azureml.core import Run
def get_dict(dict_str):
pairs = dict_str.strip("{}").split(r'\;')
new_dict = {}
for pair in pairs:
key, value = pair.strip().split(":")
new_dict[key.strip().strip("'")] = value.strip().strip("'")
return new_dict
print("Cleans the input data") print("Cleans the input data")
# Get the input green_taxi_data. To learn more about how to access dataset in your script, please # Get the input green_taxi_data. To learn more about how to access dataset in your script, please
@@ -23,7 +12,6 @@ print("Cleans the input data")
run = Run.get_context() run = Run.get_context()
raw_data = run.input_datasets["raw_data"] raw_data = run.input_datasets["raw_data"]
parser = argparse.ArgumentParser("cleanse") parser = argparse.ArgumentParser("cleanse")
parser.add_argument("--output_cleanse", type=str, help="cleaned taxi data directory") parser.add_argument("--output_cleanse", type=str, help="cleaned taxi data directory")
parser.add_argument("--useful_columns", type=str, help="useful columns to keep") parser.add_argument("--useful_columns", type=str, help="useful columns to keep")
@@ -38,8 +26,8 @@ print("Argument 3(output cleansed taxi data path): %s" % args.output_cleanse)
# These functions ensure that null data is removed from the dataset, # These functions ensure that null data is removed from the dataset,
# which will help increase machine learning model accuracy. # which will help increase machine learning model accuracy.
useful_columns = [s.strip().strip("'") for s in args.useful_columns.strip("[]").split(r'\;')] useful_columns = eval(args.useful_columns.replace(';', ','))
columns = get_dict(args.columns) columns = eval(args.columns.replace(';', ','))
new_df = (raw_data.to_pandas_dataframe() new_df = (raw_data.to_pandas_dataframe()
.dropna(how='all') .dropna(how='all')