Compare commits

...

152 Commits

Author SHA1 Message Date
Shané Winner
cf0490ab92 Update auto-ml-classification-bank-marketing.ipynb 2019-10-31 12:24:08 -07:00
Shané Winner
9f0e817c70 Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:28:00 -07:00
Shané Winner
a4d713d19b Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:25:03 -07:00
Shané Winner
91a20a0ff9 Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:24:01 -07:00
Shané Winner
a0c510bf42 Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:23:17 -07:00
Shané Winner
116d57c012 Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:19:51 -07:00
Shané Winner
660708db63 Update auto-ml-classification-with-deployment.ipynb 2019-10-09 15:10:30 -07:00
Shané Winner
206df82f9b Update auto-ml-classification-with-deployment.ipynb 2019-10-08 08:34:28 -07:00
Shané Winner
7cfb2da5b8 Update configuration.ipynb 2019-10-01 17:37:28 -07:00
Shané Winner
e5adb4af3a Update configuration.ipynb 2019-10-01 17:35:15 -07:00
Shané Winner
b849267220 Update configuration.ipynb 2019-10-01 16:08:07 -07:00
Shané Winner
9891080b70 Update configuration.ipynb 2019-10-01 16:06:35 -07:00
Shané Winner
2974e86aa0 Update configuration.ipynb 2019-10-01 15:59:06 -07:00
Shané Winner
0a18161193 Create index2.md 2019-09-12 11:32:41 -07:00
Shane' Winner
c676cc9969 index changes 2019-08-20 11:12:45 -07:00
Shané Winner
50f4bc9643 Delete index.md 2019-08-19 14:42:27 -07:00
Shané Winner
f3c7072735 Add files via upload 2019-08-19 14:41:56 -07:00
Shané Winner
44295d9e16 Delete build_nb_index.py 2019-08-19 14:39:02 -07:00
Shane' Winner
710fc0bb4b added more metadata 2019-08-19 14:34:36 -07:00
Shane' Winner
c44dba427f fixed error 2019-08-19 14:22:08 -07:00
Shane' Winner
8066a9263c added a datadrift folder 2019-08-19 13:53:50 -07:00
Shane' Winner
054aadffed index test 2019-08-18 17:27:37 -07:00
Ilya Matiach
8f418b216d Merge pull request #526 from imatiach-msft/ilmat/remove-old-explain-dirs
removing old explain model directories
2019-08-13 12:37:00 -04:00
Ilya Matiach
2d549ecad3 removing old directories 2019-08-13 12:31:51 -04:00
Josée Martens
4dbb024529 Update issue templates 2019-08-11 18:02:17 -05:00
Josée Martens
142a1a510e Update issue templates 2019-08-11 18:00:12 -05:00
vizhur
2522486c26 Merge pull request #519 from wamartin-aml/master
Add dataprep dependency
2019-08-08 09:34:36 -04:00
Walter Martin
6d5226e47c Add dataprep dependency 2019-08-08 09:31:18 -04:00
Shané Winner
e7676d7cdc Delete README.md 2019-08-07 13:14:39 -07:00
Shané Winner
a84f6636f1 Delete README.md 2019-08-07 13:14:24 -07:00
Roope Astala
41be10d1c1 Delete authentication-in-azure-ml.ipynb 2019-08-07 10:12:48 -04:00
vizhur
429eb43914 Merge pull request #513 from Azure/release_update/Release-139
update samples from Release-139 as a part of 1.0.55 SDK release
2019-08-05 16:22:25 -04:00
vizhur
c0dae0c645 update samples from Release-139 as a part of 1.0.55 SDK release 2019-08-05 18:39:19 +00:00
Shané Winner
e4d9a2b4c5 Delete score.py 2019-07-29 09:33:11 -07:00
Shané Winner
7648e8f516 Delete readme.md 2019-07-29 09:32:55 -07:00
Shané Winner
b5ed94b4eb Delete azure-ml-datadrift.ipynb 2019-07-29 09:32:47 -07:00
Shané Winner
85e487f74f Delete new-york-taxi_scale-out.ipynb 2019-07-28 00:38:05 -07:00
Shané Winner
c0a5b2de79 Delete new-york-taxi.ipynb 2019-07-28 00:37:56 -07:00
Shané Winner
0a9e076e5f Delete stream-path.csv 2019-07-28 00:37:44 -07:00
Shané Winner
e3b974811d Delete secrets.dprep 2019-07-28 00:37:33 -07:00
Shané Winner
381d1a6f35 Delete parquet.parquet 2019-07-28 00:37:20 -07:00
Shané Winner
adaa55675e Delete median_income_transformed.csv 2019-07-28 00:37:12 -07:00
Shané Winner
5e3c592d4b Delete median_income.csv 2019-07-28 00:37:02 -07:00
Shané Winner
9c6f1e2571 Delete map_func.py 2019-07-28 00:36:52 -07:00
Shané Winner
bd1bedd563 Delete large_dflow.json 2019-07-28 00:36:43 -07:00
Shané Winner
9716f3614e Delete json.json 2019-07-28 00:36:30 -07:00
Shané Winner
d2c72ca149 Delete crime_multiple_separators.csv 2019-07-28 00:36:19 -07:00
Shané Winner
4f62f64207 Delete crime_fixed_width_file.txt 2019-07-28 00:36:10 -07:00
Shané Winner
16473eb33e Delete crime_duplicate_headers.csv 2019-07-28 00:36:01 -07:00
Shané Winner
d10474c249 Delete crime.zip 2019-07-28 00:35:51 -07:00
Shané Winner
6389cc16f9 Delete crime.xlsx 2019-07-28 00:35:41 -07:00
Shané Winner
bc0a8e0152 Delete crime.txt 2019-07-28 00:35:30 -07:00
Shané Winner
39384aea52 Delete crime.parquet 2019-07-28 00:35:20 -07:00
Shané Winner
5bf4b0bafe Delete crime.dprep 2019-07-28 00:35:11 -07:00
Shané Winner
f22adb7949 Delete crime-winter.csv 2019-07-28 00:35:00 -07:00
Shané Winner
8409ab7133 Delete crime-spring.csv 2019-07-28 00:34:50 -07:00
Shané Winner
32acd55774 Delete crime-full.csv 2019-07-28 00:34:39 -07:00
Shané Winner
7f65c1a255 Delete crime-dirty.csv 2019-07-28 00:34:27 -07:00
Shané Winner
bc7ccc7ef3 Delete chicago-aldermen-2015.csv 2019-07-28 00:34:17 -07:00
Shané Winner
1cc79a71e9 Delete adls-dpreptestfiles.crt 2019-07-28 00:34:05 -07:00
Shané Winner
c0bec5f110 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:51 -07:00
Shané Winner
77e5664482 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:38 -07:00
Shané Winner
e2eb64372a Delete part-00007-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:23 -07:00
Shané Winner
03cbb6a3a2 Delete part-00006-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:12 -07:00
Shané Winner
44d3d998a8 Delete part-00005-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:00 -07:00
Shané Winner
c626f37057 Delete part-00004-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:48 -07:00
Shané Winner
0175574864 Delete part-00003-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:37 -07:00
Shané Winner
f6e8d57da3 Delete part-00002-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:25 -07:00
Shané Winner
01cd31ce44 Delete part-00001-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:13 -07:00
Shané Winner
eb2024b3e0 Delete part-00000-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:01 -07:00
Shané Winner
6bce41b3d7 Delete _SUCCESS 2019-07-28 00:31:49 -07:00
Shané Winner
bbdabbb552 Delete writing-data.ipynb 2019-07-28 00:31:32 -07:00
Shané Winner
65343fc263 Delete working-with-file-streams.ipynb 2019-07-28 00:31:22 -07:00
Shané Winner
b6b27fded6 Delete summarize.ipynb 2019-07-28 00:26:56 -07:00
Shané Winner
7e492cbeb6 Delete subsetting-sampling.ipynb 2019-07-28 00:26:41 -07:00
Shané Winner
4cc8f4c6af Delete split-column-by-example.ipynb 2019-07-28 00:26:25 -07:00
Shané Winner
9fba46821b Delete semantic-types.ipynb 2019-07-28 00:26:11 -07:00
Shané Winner
a45954a58f Delete secrets.ipynb 2019-07-28 00:25:58 -07:00
Shané Winner
f16dfb0e5b Delete replace-fill-error.ipynb 2019-07-28 00:25:45 -07:00
Shané Winner
edabbf9031 Delete replace-datasource-replace-reference.ipynb 2019-07-28 00:25:32 -07:00
Shané Winner
63d1d57dfb Delete random-split.ipynb 2019-07-28 00:25:21 -07:00
Shané Winner
10f7004161 Delete quantile-transformation.ipynb 2019-07-28 00:25:10 -07:00
Shané Winner
86ba4e7406 Delete open-save-dataflows.ipynb 2019-07-28 00:24:54 -07:00
Shané Winner
33bda032b8 Delete one-hot-encoder.ipynb 2019-07-28 00:24:43 -07:00
Shané Winner
0fd4bfbc56 Delete min-max-scaler.ipynb 2019-07-28 00:24:32 -07:00
Shané Winner
3fe08c944e Delete label-encoder.ipynb 2019-07-28 00:24:21 -07:00
Shané Winner
d587ea5676 Delete join.ipynb 2019-07-28 00:24:08 -07:00
Shané Winner
edd8562102 Delete impute-missing-values.ipynb 2019-07-28 00:23:55 -07:00
Shané Winner
5ac2c63336 Delete fuzzy-group.ipynb 2019-07-28 00:23:41 -07:00
Shané Winner
1f4e4cdda2 Delete filtering.ipynb 2019-07-28 00:23:28 -07:00
Shané Winner
2e245c1691 Delete external-references.ipynb 2019-07-28 00:23:11 -07:00
Shané Winner
e1b09f71fa Delete derive-column-by-example.ipynb 2019-07-28 00:22:54 -07:00
Shané Winner
8e2220d397 Delete datastore.ipynb 2019-07-28 00:22:43 -07:00
Shané Winner
f74ccf5048 Delete data-profile.ipynb 2019-07-28 00:22:32 -07:00
Shané Winner
97a6d9ca43 Delete data-ingestion.ipynb 2019-07-28 00:22:21 -07:00
Shané Winner
a0ff1c6b64 Delete custom-python-transforms.ipynb 2019-07-28 00:22:11 -07:00
Shané Winner
08f15ef4cf Delete column-type-transforms.ipynb 2019-07-28 00:21:58 -07:00
Shané Winner
7160416c0b Delete column-manipulations.ipynb 2019-07-28 00:21:47 -07:00
Shané Winner
218fed3d65 Delete cache.ipynb 2019-07-28 00:21:35 -07:00
Shané Winner
b8499dfb98 Delete auto-read-file.ipynb 2019-07-28 00:21:22 -07:00
Shané Winner
6bfd472cc2 Delete assertions.ipynb 2019-07-28 00:20:55 -07:00
Shané Winner
ecefb229e9 Delete append-columns-and-rows.ipynb 2019-07-28 00:20:40 -07:00
Shané Winner
883ad806ba Delete add-column-using-expression.ipynb 2019-07-28 00:20:22 -07:00
Shané Winner
848b5bc302 Delete getting-started.ipynb 2019-07-28 00:19:59 -07:00
Shané Winner
58087b53a0 Delete README.md 2019-07-28 00:19:45 -07:00
Shané Winner
ff4d5450a7 Delete README.md 2019-07-28 00:19:29 -07:00
Shané Winner
e2b2b89842 Delete datasets-tutorial.ipynb 2019-07-28 00:19:13 -07:00
Shané Winner
390be2ba24 Delete train.py 2019-07-28 00:19:00 -07:00
Shané Winner
cd1258f81d Delete Titanic.csv 2019-07-28 00:18:41 -07:00
Shané Winner
8a0b48ea48 Delete README.md 2019-07-28 00:18:14 -07:00
Roope Astala
b0dc904189 Merge pull request #502 from msdavx/patch-1
Add demo notebook for datasets diff attribute.
2019-07-26 19:16:13 -04:00
msdavx
82bede239a Add demo notebook for datasets diff attribute. 2019-07-26 11:10:37 -07:00
vizhur
774517e173 Merge pull request #500 from Azure/release_update/Release-137
update samples from Release-137 as a part of 1.0.53 SDK release
2019-07-25 16:36:25 -04:00
Shané Winner
c3ce2bc7fe Delete README.md 2019-07-25 13:28:15 -07:00
Shané Winner
5dd09a1f7c Delete README.md 2019-07-25 13:28:01 -07:00
vizhur
ee1da0ee19 update samples from Release-137 as a part of 1.0.53 SDK release 2019-07-24 22:37:36 +00:00
Paula Ledgerwood
ddfce6b24c Merge pull request #498 from Azure/revert-461-master
Revert "Finetune SSD VGG"
2019-07-24 14:25:43 -07:00
Paula Ledgerwood
31dfc3dc55 Revert "Finetune SSD VGG" 2019-07-24 14:08:00 -07:00
Paula Ledgerwood
168c45b188 Merge pull request #461 from borisneal/master
Finetune SSD VGG
2019-07-24 14:07:15 -07:00
fierval
159948db67 moving notice.txt 2019-07-24 08:50:41 -07:00
fierval
d842731a3b remove tf prereq item 2019-07-23 14:58:51 -07:00
fierval
7822fd4c13 notice + attribution for anchors 2019-07-23 14:49:20 -07:00
fierval
d9fbe4cd87 new folder structure 2019-07-22 10:31:22 -07:00
Shané Winner
a64f4d331a Merge pull request #488 from trevorbye/master
adding new notebook
2019-07-18 10:40:36 -07:00
Trevor Bye
c41f449208 adding new notebook 2019-07-18 10:27:21 -07:00
vizhur
4fe8c1702d Merge pull request #486 from Azure/release_update/Release-22
Fix for automl remote env
2019-07-12 19:18:13 -04:00
vizhur
18cd152591 update samples - test 2019-07-12 22:51:17 +00:00
vizhur
4170a394ed Merge pull request #474 from Azure/release_update/Release-132
update samples from Release-132 as a part of 1.0.48 SDK release
2019-07-09 19:14:29 -04:00
vizhur
475ea36106 update samples from Release-132 as a part of 1.0.48 SDK release 2019-07-09 22:02:57 +00:00
Roope Astala
9e0fc4f0e7 Merge pull request #459 from datashinobi/yassine/datadrift2
fix link to config nb & settingwithcopywarning
2019-07-03 12:41:31 -04:00
fierval
b025816c92 remove config.json 2019-07-02 17:32:56 -07:00
fierval
c75e820107 ssd vgg 2019-07-02 17:23:56 -07:00
Yassine Khelifi
e97e4742ba fix link to config nb & settingwithcopywarning 2019-07-02 16:56:21 +00:00
Roope Astala
14ecfb0bf3 Merge pull request #448 from jeff-shepherd/master
Update new notebooks to use dataprep and add sql files
2019-06-27 09:07:47 -04:00
Jeff Shepherd
61b396be4f Added sql files 2019-06-26 14:26:01 -07:00
Jeff Shepherd
3d2552174d Updated notebooks to use dataprep 2019-06-26 14:23:20 -07:00
Roope Astala
cd3c980a6e Merge pull request #447 from Azure/release-1.0.45
Merged notebook changes from release 1.0.45
2019-06-26 16:32:09 -04:00
Heather Shapiro
249bcac3c7 Merged notebook changes from release 1.0.45 2019-06-26 14:39:09 -04:00
Roope Astala
4a6bcebccc Update configuration.ipynb 2019-06-21 09:35:13 -04:00
Roope Astala
56e0ebc5ac Merge pull request #438 from rastala/master
add pipeline scripts
2019-06-19 18:56:42 -04:00
rastala
2aa39f2f4a add pipeline scripts 2019-06-19 18:55:32 -04:00
Roope Astala
4d247c1877 Merge pull request #437 from rastala/master
pytorch with mlflow
2019-06-19 17:23:06 -04:00
rastala
f6682f6f6d pytorch with mlflow 2019-06-19 17:21:52 -04:00
Roope Astala
26ecf25233 Merge pull request #436 from rastala/master
Update readme
2019-06-19 11:52:23 -04:00
Roope Astala
44c3a486c0 update readme 2019-06-19 11:49:49 -04:00
Roope Astala
c574f429b8 update readme 2019-06-19 11:48:52 -04:00
Roope Astala
77d557a5dc Merge pull request #435 from ganzhi/jamgan/drift
Add demo notebook for AML Data Drift
2019-06-17 16:39:46 -04:00
James Gan
13dedec4a4 Make it in same folder as internal repo 2019-06-17 13:38:27 -07:00
James Gan
6f5c52676f Add notebook to demo data drift 2019-06-17 13:33:30 -07:00
James Gan
90c105537c Add demo notebook for AML Data Drift 2019-06-17 13:31:08 -07:00
Roope Astala
ef264b1073 Merge pull request #434 from rastala/master
update pytorch
2019-06-17 11:57:29 -04:00
Roope Astala
824ac5e021 update pytorch 2019-06-17 11:56:42 -04:00
327 changed files with 22224 additions and 7937 deletions

30
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,30 @@
---
name: Bug report
about: Create a report to help us improve
title: "[Notebook issue]"
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
Provide the following if applicable:
+ Your Python & SDK version
+ Python Scripts or the full notebook name
+ Pipeline definition
+ Environment definition
+ Example data
+ Any log files.
+ Run and Workspace Id
**To Reproduce**
Steps to reproduce the behavior:
1.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Additional context**
Add any other context about the problem here.

View File

@@ -0,0 +1,30 @@
---
name: Notebook issue
about: Create a report to help us improve
title: "[Notebook issue]"
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
Provide the following if applicable:
+ Your Python & SDK version
+ Python Scripts or the full notebook name
+ Pipeline definition
+ Environment definition
+ Example data
+ Any log files.
+ Run and Workspace Id
**To Reproduce**
Steps to reproduce the behavior:
1.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Additional context**
Add any other context about the problem here.

View File

@@ -38,6 +38,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring - [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions - [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks - [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
--- ---
## Documentation ## Documentation

215
build_nb_index.py Normal file
View File

@@ -0,0 +1,215 @@
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
### USAGE
#
# 1. Add following metadata elements to the notebook
#
# "friendly_name": "string", friendly name for notebook
# "exclude_from_index": true/false, setting true excludes the notebook from index
# "order_index": integer, smaller value moves notebook closer to beginning
# "category": "starter", "tutorial", "training", "deployment" or "other"
# "tags": [ "featured" ], optional, only supported tag to highlight notebook with :star: symbol
# "task": "string", description of notebook task
# "datasets": [ "dataset 1", "dataset 2"], list of datasets, can be ["None"]
# "compute": [ "compute 1", "compute 2" ], list of computes, can be ["None"]
# "deployment": ["deployment 1", "deployment 2"], list of deployment targets, can be ["None"]
# "framework": ["fw 1", "fw2"], list of ml framework, can be ["None"]
#
# 2. Then run
#
# build_nb_index.py <root folder of notebooks>
#
# 3. The script should produce index.md file with tables of notebook indices
### Example metadata section
'''
"metadata": {
"authors": [
{
"name": "cforbe"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"msauthor": "trbye",
"friendly_name": "Prepare data for regression modeling",
"exclude_from_index": false,
"order_index": 1,
"category": "tutorial",
"tags": [
"featured"
],
"task": "Regression",
"datasets": [
"NYC Taxi"
],
"compute": [
"local"
],
"deployment": [
"None"
],
"framework": [
"Azure ML AutoML"
]
}
'''
import os, json, sys
from shutil import copyfile, copytree, rmtree
# Index building walk over notebook folder
def post_process(notebooks_dir):
indexer = NotebookIndex()
n_dest = len(notebooks_dir)
for r, d, f in os.walk(notebooks_dir):
for file in f:
# Handle only notebooks
if file.endswith(".ipynb") and not file.endswith('checkpoint.ipynb'):
try:
file_path = os.path.join(r, file)
with open(file_path, 'r') as fin:
content = json.load(fin)
print(file)
indexer.add_to_index(os.path.join(r[n_dest:],file), content["metadata"])
except Exception as e:
print("Problem: ",str(e))
indexer.write_index("./index.md")
### Customize these make index look different
index_template = '''
# Index
Azure Machine Learning is a cloud service that you use to train, deploy, automate, and manage machine learning models. This index should assist in navigating the Azure Machine Learning notebook samples and encourage efficient retrieval of topics and content.
## Getting Started
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|
GETTING_STARTED_NBS
## Tutorials
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|
TUTORIAL_NBS
## Training
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|
TRAINING_NBS
## Deployment
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|
DEPLOYMENT_NBS
## Other Notebooks
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|
OTHER_NBS
'''
index_row = '''| NB_SYMBOL[NB_NAME](NB_PATH) | NB_TASK | NB_DATASET | NB_COMPUTE | NB_DEPLOYMENT | NB_FRAMEWORK |'''
index_file = "index.md"
nb_types = ["starter", "tutorial", "training", "deployment", "other"]
replace_strings = ["GETTING_STARTED_NBS", "TUTORIAL_NBS", "TRAINING_NBS", "DEPLOYMENT_NBS", "OTHER_NBS"]
class NotebookIndex:
def __init__(self):
self.index = index_template
self.nb_rows = {}
for elem in nb_types:
self.nb_rows[elem] = []
def add_to_index(self, path_to_notebook, metadata):
repo_url = "https://github.com/Azure/MachineLearningNotebooks/blob/master/"
if "exclude_from_index" in metadata:
if metadata["exclude_from_index"]:
return
if "friendly_name" in metadata:
this_row = index_row.replace("NB_NAME",metadata["friendly_name"])
else:
this_name = os.path.basename(path_to_notebook)
this_row = index_row.replace("NB_NAME", this_name[:-6])
path_to_notebook = path_to_notebook.replace("\\","/")
this_row = this_row.replace("NB_PATH", repo_url + path_to_notebook)
if "task" in metadata:
this_row = this_row.replace("NB_TASK", metadata["task"])
if "datasets" in metadata:
this_row = this_row.replace("NB_DATASET", ", ".join(metadata["datasets"]))
if "compute" in metadata:
this_row = this_row.replace("NB_COMPUTE", ", ".join(metadata["compute"]))
if "deployment" in metadata:
this_row = this_row.replace("NB_DEPLOYMENT", ", ".join(metadata["deployment"]))
if "framework" in metadata:
this_row = this_row.replace("NB_FRAMEWORK", ", ".join(metadata["framework"]))
## Fall back
this_row = this_row.replace("NB_TASK","")
this_row = this_row.replace("NB_DATASET","")
this_row = this_row.replace("NB_COMPUTE","")
this_row = this_row.replace("NB_DEPLOYMENT","")
this_row = this_row.replace("NB_FRAMEWORK","")
if "tags" in metadata:
if "featured" in metadata["tags"]:
this_row = this_row.replace("NB_SYMBOL",":star:")
## Fall back
this_row =this_row.replace("NB_SYMBOL","")
index_order = 9999999
if "index_order" in metadata:
index_order = metadata["index_order"]
if "category" in metadata:
self.nb_rows[metadata["category"]].append((index_order, this_row))
else:
self.nb_rows["other"].append((index_order, this_row))
def sort_and_stringify(self,section):
sorted_index = sorted(self.nb_rows[section], key = lambda x: x[0])
sorted_index = [x[1] for x in sorted_index]
## TODO: Make this portable
return "\n".join(sorted_index)
def write_index(self, index_file):
for nb_type, replace_string in zip(nb_types, replace_strings):
nb_string = self.sort_and_stringify(nb_type)
self.index = self.index.replace(replace_string, nb_string)
with open(index_file,"w") as fin:
fin.write(self.index)
try:
dest_repo = sys.argv[1]
except:
dest_repo = "./MachineLearningNotebooks"
post_process(dest_repo)

View File

@@ -58,7 +58,7 @@
"\n", "\n",
"### What is an Azure Machine Learning workspace\n", "### What is an Azure Machine Learning workspace\n",
"\n", "\n",
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inferencing, and the monitoring of deployed models." "An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models."
] ]
}, },
{ {
@@ -103,7 +103,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.0.43 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.0.55 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -214,7 +214,8 @@
"* You do not have permission to create a resource group if it's non-existing.\n", "* You do not have permission to create a resource group if it's non-existing.\n",
"* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n", "* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
"\n", "\n",
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources." "If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources.\n",
"To learn more about the Enterprise SKU, please visit the Pricing and SKU details page."
] ]
}, },
{ {
@@ -230,11 +231,14 @@
"from azureml.core import Workspace\n", "from azureml.core import Workspace\n",
"\n", "\n",
"# Create the workspace using the specified parameters\n", "# Create the workspace using the specified parameters\n",
"# To create an Enterprise workspace, please specify the sku = enterprise\n",
"ws = Workspace.create(name = workspace_name,\n", "ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n", " subscription_id = subscription_id,\n",
" resource_group = resource_group, \n", " resource_group = resource_group, \n",
" location = workspace_region,\n", " location = workspace_region,\n",
" create_resource_group = True,\n", " create_resource_group = True,\n",
" sku = basic,\n",
" exist_ok = True)\n", " exist_ok = True)\n",
"ws.get_details()\n", "ws.get_details()\n",
"\n", "\n",
@@ -258,7 +262,7 @@
"```shell\n", "```shell\n",
"az vm list-skus -o tsv\n", "az vm list-skus -o tsv\n",
"```\n", "```\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while note in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n", "* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while not in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n", "* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
"\n", "\n",
"\n", "\n",
@@ -380,4 +384,4 @@
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }

4
configuration.yml Normal file
View File

@@ -0,0 +1,4 @@
name: configuration
dependencies:
- pip:
- azureml-sdk

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,723 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Track Data Drift between Training and Inference Data in Production \n",
"\n",
"With this notebook, you will learn how to enable the DataDrift service to automatically track and determine whether your inference data is drifting from the data your model was initially trained on. The DataDrift service provides metrics and visualizations to help stakeholders identify which specific features cause the concept drift to occur.\n",
"\n",
"Please email driftfeedback@microsoft.com with any issues. A member from the DataDrift team will respond shortly. \n",
"\n",
"The DataDrift Public Preview API can be found [here](https://docs.microsoft.com/en-us/python/api/azureml-contrib-datadrift/?view=azure-ml-py). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/datadrift/azureml-datadrift.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prerequisites and Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install the DataDrift package\n",
"\n",
"Install the azureml-contrib-datadrift, azureml-opendatasets and lightgbm packages before running this notebook.\n",
"```\n",
"pip install azureml-contrib-datadrift\n",
"pip install lightgbm\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"import time\n",
"from datetime import datetime, timedelta\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import requests\n",
"from azureml.contrib.datadrift import DataDriftDetector, AlertConfiguration\n",
"from azureml.opendatasets import NoaaIsdWeather\n",
"from azureml.core import Dataset, Workspace, Run\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.image import ContainerImage\n",
"from azureml.core.model import Model\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.widgets import RunDetails\n",
"from sklearn.externals import joblib\n",
"from sklearn.model_selection import train_test_split\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up Configuraton and Create Azure ML Workspace\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Please type in your initials/alias. The prefix is prepended to the names of resources created by this notebook. \n",
"prefix = \"dd\"\n",
"\n",
"# NOTE: Please do not change the model_name, as it's required by the score.py file\n",
"model_name = \"driftmodel\"\n",
"image_name = \"{}driftimage\".format(prefix)\n",
"service_name = \"{}driftservice\".format(prefix)\n",
"\n",
"# optionally, set email address to receive an email alert for DataDrift\n",
"email_address = \"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate Train/Testing Data\n",
"\n",
"For this demo, we will use NOAA weather data from [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/). You may replace this step with your own dataset. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"usaf_list = ['725724', '722149', '723090', '722159', '723910', '720279',\n",
" '725513', '725254', '726430', '720381', '723074', '726682',\n",
" '725486', '727883', '723177', '722075', '723086', '724053',\n",
" '725070', '722073', '726060', '725224', '725260', '724520',\n",
" '720305', '724020', '726510', '725126', '722523', '703333',\n",
" '722249', '722728', '725483', '722972', '724975', '742079',\n",
" '727468', '722193', '725624', '722030', '726380', '720309',\n",
" '722071', '720326', '725415', '724504', '725665', '725424',\n",
" '725066']\n",
"\n",
"columns = ['usaf', 'wban', 'datetime', 'latitude', 'longitude', 'elevation', 'windAngle', 'windSpeed', 'temperature', 'stationName', 'p_k']\n",
"\n",
"\n",
"def enrich_weather_noaa_data(noaa_df):\n",
" hours_in_day = 23\n",
" week_in_year = 52\n",
" \n",
" noaa_df[\"hour\"] = noaa_df[\"datetime\"].dt.hour\n",
" noaa_df[\"weekofyear\"] = noaa_df[\"datetime\"].dt.week\n",
" \n",
" noaa_df[\"sine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.sin((2*np.pi*x.dt.week-1)/week_in_year))\n",
" noaa_df[\"cosine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.cos((2*np.pi*x.dt.week-1)/week_in_year))\n",
"\n",
" noaa_df[\"sine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.sin(2*np.pi*x.dt.hour/hours_in_day))\n",
" noaa_df[\"cosine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.cos(2*np.pi*x.dt.hour/hours_in_day))\n",
" \n",
" return noaa_df\n",
"\n",
"def add_window_col(input_df):\n",
" shift_interval = pd.Timedelta('-7 days') # your X days interval\n",
" df_shifted = input_df.copy()\n",
" df_shifted['datetime'] = df_shifted['datetime'] - shift_interval\n",
" df_shifted.drop(list(input_df.columns.difference(['datetime', 'usaf', 'wban', 'sine_hourofday', 'temperature'])), axis=1, inplace=True)\n",
"\n",
" # merge, keeping only observations where -1 lag is present\n",
" df2 = pd.merge(input_df,\n",
" df_shifted,\n",
" on=['datetime', 'usaf', 'wban', 'sine_hourofday'],\n",
" how='inner', # use 'left' to keep observations without lags\n",
" suffixes=['', '-7'])\n",
" return df2\n",
"\n",
"def get_noaa_data(start_time, end_time, cols, station_list):\n",
" isd = NoaaIsdWeather(start_time, end_time, cols=cols)\n",
" # Read into Pandas data frame.\n",
" noaa_df = isd.to_pandas_dataframe()\n",
" noaa_df = noaa_df.rename(columns={\"stationName\": \"station_name\"})\n",
" \n",
" df_filtered = noaa_df[noaa_df[\"usaf\"].isin(station_list)]\n",
" df_filtered.reset_index(drop=True)\n",
" \n",
" # Enrich with time features\n",
" df_enriched = enrich_weather_noaa_data(df_filtered)\n",
" \n",
" return df_enriched\n",
"\n",
"def get_featurized_noaa_df(start_time, end_time, cols, station_list):\n",
" df_1 = get_noaa_data(start_time - timedelta(days=7), start_time - timedelta(seconds=1), cols, station_list)\n",
" df_2 = get_noaa_data(start_time, end_time, cols, station_list)\n",
" noaa_df = pd.concat([df_1, df_2])\n",
" \n",
" print(\"Adding window feature\")\n",
" df_window = add_window_col(noaa_df)\n",
" \n",
" cat_columns = df_window.dtypes == object\n",
" cat_columns = cat_columns[cat_columns == True]\n",
" \n",
" print(\"Encoding categorical columns\")\n",
" df_encoded = pd.get_dummies(df_window, columns=cat_columns.keys().tolist())\n",
" \n",
" print(\"Dropping unnecessary columns\")\n",
" df_featurized = df_encoded.drop(['windAngle', 'windSpeed', 'datetime', 'elevation'], axis=1).dropna().drop_duplicates()\n",
" \n",
" return df_featurized"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Train model on Jan 1 - 14, 2009 data\n",
"df = get_featurized_noaa_df(datetime(2009, 1, 1), datetime(2009, 1, 14, 23, 59, 59), columns, usaf_list)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label = \"temperature\"\n",
"x_df = df.drop(label, axis=1)\n",
"y_df = df[[label]]\n",
"x_train, x_test, y_train, y_test = train_test_split(df, y_df, test_size=0.2, random_state=223)\n",
"print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)\n",
"\n",
"training_dir = 'outputs/training'\n",
"training_file = \"training.csv\"\n",
"\n",
"# Generate training dataframe to register as Training Dataset\n",
"os.makedirs(training_dir, exist_ok=True)\n",
"training_df = pd.merge(x_train.drop(label, axis=1), y_train, left_index=True, right_index=True)\n",
"training_df.to_csv(training_dir + \"/\" + training_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create/Register Training Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset_name = \"dataset\"\n",
"name_suffix = datetime.utcnow().strftime(\"%Y-%m-%d-%H-%M-%S\")\n",
"snapshot_name = \"snapshot-{}\".format(name_suffix)\n",
"\n",
"dstore = ws.get_default_datastore()\n",
"dstore.upload(training_dir, \"data/training\", show_progress=True)\n",
"dpath = dstore.path(\"data/training/training.csv\")\n",
"trainingDataset = Dataset.auto_read_files(dpath, include_path=True)\n",
"trainingDataset = trainingDataset.register(workspace=ws, name=dataset_name, description=\"dset\", exist_ok=True)\n",
"\n",
"datasets = [(Dataset.Scenario.TRAINING, trainingDataset)]\n",
"print(\"dataset registration done.\\n\")\n",
"datasets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train and Save Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import lightgbm as lgb\n",
"\n",
"train = lgb.Dataset(data=x_train, \n",
" label=y_train)\n",
"\n",
"test = lgb.Dataset(data=x_test, \n",
" label=y_test,\n",
" reference=train)\n",
"\n",
"params = {'learning_rate' : 0.1,\n",
" 'boosting' : 'gbdt',\n",
" 'metric' : 'rmse',\n",
" 'feature_fraction' : 1,\n",
" 'bagging_fraction' : 1,\n",
" 'max_depth': 6,\n",
" 'num_leaves' : 31,\n",
" 'objective' : 'regression',\n",
" 'bagging_freq' : 1,\n",
" \"verbose\": -1,\n",
" 'min_data_per_leaf': 100}\n",
"\n",
"model = lgb.train(params, \n",
" num_boost_round=500,\n",
" train_set=train,\n",
" valid_sets=[train, test],\n",
" verbose_eval=50,\n",
" early_stopping_rounds=25)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_file = 'outputs/{}.pkl'.format(model_name)\n",
"\n",
"os.makedirs('outputs', exist_ok=True)\n",
"joblib.dump(model, model_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = Model.register(model_path=model_file,\n",
" model_name=model_name,\n",
" workspace=ws,\n",
" datasets=datasets)\n",
"\n",
"print(model_name, image_name, service_name, model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy Model To AKS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn', 'joblib', 'lightgbm', 'pandas'],\n",
" pip_packages=['azureml-monitoring', 'azureml-sdk[automl]'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Image creation may take up to 15 minutes.\n",
"\n",
"image_name = image_name + str(model.version)\n",
"\n",
"if not image_name in ws.images:\n",
" # Use the score.py defined in this directory as the execution script\n",
" # NOTE: The Model Data Collector must be enabled in the execution script for DataDrift to run correctly\n",
" image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
" runtime=\"python\",\n",
" conda_file=\"myenv.yml\",\n",
" description=\"Image with weather dataset model\")\n",
" image = ContainerImage.create(name=image_name,\n",
" models=[model],\n",
" image_config=image_config,\n",
" workspace=ws)\n",
"\n",
" image.wait_for_creation(show_output=True)\n",
"else:\n",
" image = ws.images[image_name]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Compute Target"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_name = 'dd-demo-e2e'\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"if not aks_name in ws.compute_targets:\n",
" aks_target = ComputeTarget.create(workspace=ws,\n",
" name=aks_name,\n",
" provisioning_configuration=prov_config)\n",
"\n",
" aks_target.wait_for_completion(show_output=True)\n",
" print(aks_target.provisioning_state)\n",
" print(aks_target.provisioning_errors)\n",
"else:\n",
" aks_target=ws.compute_targets[aks_name]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service_name = service_name\n",
"\n",
"if not aks_service_name in ws.webservices:\n",
" aks_config = AksWebservice.deploy_configuration(collect_model_data=True, enable_app_insights=True)\n",
" aks_service = Webservice.deploy_from_image(workspace=ws,\n",
" name=aks_service_name,\n",
" image=image,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target)\n",
" aks_service.wait_for_deployment(show_output=True)\n",
" print(aks_service.state)\n",
"else:\n",
" aks_service = ws.webservices[aks_service_name]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run DataDrift Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Send Scoring Data to Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download Scoring Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Score Model on March 15, 2016 data\n",
"scoring_df = get_noaa_data(datetime(2016, 3, 15) - timedelta(days=7), datetime(2016, 3, 16), columns, usaf_list)\n",
"# Add the window feature column\n",
"scoring_df = add_window_col(scoring_df)\n",
"\n",
"# Drop features not used by the model\n",
"print(\"Dropping unnecessary columns\")\n",
"scoring_df = scoring_df.drop(['windAngle', 'windSpeed', 'datetime', 'elevation'], axis=1).dropna()\n",
"scoring_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# One Hot Encode the scoring dataset to match the training dataset schema\n",
"columns_dict = model.datasets[\"training\"][0].get_profile().columns\n",
"extra_cols = ('Path', 'Column1')\n",
"for k in extra_cols:\n",
" columns_dict.pop(k, None)\n",
"training_columns = list(columns_dict.keys())\n",
"\n",
"categorical_columns = scoring_df.dtypes == object\n",
"categorical_columns = categorical_columns[categorical_columns == True]\n",
"\n",
"test_df = pd.get_dummies(scoring_df[categorical_columns.keys().tolist()])\n",
"encoded_df = scoring_df.join(test_df)\n",
"\n",
"# Populate missing OHE columns with 0 values to match traning dataset schema\n",
"difference = list(set(training_columns) - set(encoded_df.columns.tolist()))\n",
"for col in difference:\n",
" encoded_df[col] = 0\n",
"encoded_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Serialize dataframe to list of row dictionaries\n",
"encoded_dict = encoded_df.to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit Scoring Data to Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"# retreive the API keys. AML generates two keys.\n",
"key1, key2 = aks_service.get_keys()\n",
"\n",
"total_count = len(scoring_df)\n",
"i = 0\n",
"load = []\n",
"for row in encoded_dict:\n",
" load.append(row)\n",
" i = i + 1\n",
" if i % 100 == 0:\n",
" payload = json.dumps({\"data\": load})\n",
" \n",
" # construct raw HTTP request and send to the service\n",
" payload_binary = bytes(payload,encoding = 'utf8')\n",
" headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
" resp = requests.post(aks_service.scoring_uri, payload_binary, headers=headers)\n",
" \n",
" print(\"prediction:\", resp.content, \"Progress: {}/{}\".format(i, total_count)) \n",
"\n",
" load = []\n",
" time.sleep(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We need to wait up to 10 minutes for the Model Data Collector to dump the model input and inference data to storage in the Workspace, where it's used by the DataDriftDetector job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time.sleep(600)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure DataDrift"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"services = [service_name]\n",
"start = datetime.now() - timedelta(days=2)\n",
"end = datetime(year=2020, month=1, day=22, hour=15, minute=16)\n",
"feature_list = ['usaf', 'wban', 'latitude', 'longitude', 'station_name', 'p_k', 'sine_hourofday', 'cosine_hourofday', 'temperature-7']\n",
"alert_config = AlertConfiguration([email_address]) if email_address else None\n",
"\n",
"# there will be an exception indicating using get() method if DataDrift object already exist\n",
"try:\n",
" datadrift = DataDriftDetector.create(ws, model.name, model.version, services, frequency=\"Day\", alert_config=alert_config)\n",
"except KeyError:\n",
" datadrift = DataDriftDetector.get(ws, model.name, model.version)\n",
" \n",
"print(\"Details of DataDrift Object:\\n{}\".format(datadrift))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run an Adhoc DataDriftDetector Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_date = datetime.today()\n",
"run = datadrift.run(target_date, services, feature_list=feature_list, create_compute_target=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp = Experiment(ws, datadrift._id)\n",
"dd_run = Run(experiment=exp, run_id=run)\n",
"RunDetails(dd_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Drift Analysis Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(dd_run.get_children())\n",
"for child in children:\n",
" child.wait_for_completion()\n",
"\n",
"drift_metrics = datadrift.get_output(start_time=start, end_time=end)\n",
"drift_metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Show all drift figures, one per serivice.\n",
"# If setting with_details is False (by default), only drift will be shown; if it's True, all details will be shown.\n",
"\n",
"drift_figures = datadrift.show(with_details=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enable DataDrift Schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datadrift.enable_schedule()"
]
}
],
"metadata": {
"authors": [
{
"name": "rafarmah"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: azure-ml-datadrift
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-datadrift
- azureml-opendatasets
- lightgbm
- azureml-widgets

View File

@@ -0,0 +1,58 @@
import pickle
import json
import numpy
import azureml.train.automl
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
from azureml.core.run import Run
from azureml.monitoring import ModelDataCollector
import time
import pandas as pd
def init():
global model, inputs_dc, prediction_dc, feature_names, categorical_features
print("Model is initialized" + time.strftime("%H:%M:%S"))
model_path = Model.get_model_path(model_name="driftmodel")
model = joblib.load(model_path)
feature_names = ["usaf", "wban", "latitude", "longitude", "station_name", "p_k",
"sine_weekofyear", "cosine_weekofyear", "sine_hourofday", "cosine_hourofday",
"temperature-7"]
categorical_features = ["usaf", "wban", "p_k", "station_name"]
inputs_dc = ModelDataCollector(model_name="driftmodel",
identifier="inputs",
feature_names=feature_names)
prediction_dc = ModelDataCollector("driftmodel",
identifier="predictions",
feature_names=["temperature"])
def run(raw_data):
global inputs_dc, prediction_dc
try:
data = json.loads(raw_data)["data"]
data = pd.DataFrame(data)
# Remove the categorical features as the model expects OHE values
input_data = data.drop(categorical_features, axis=1)
result = model.predict(input_data)
# Collect the non-OHE dataframe
collected_df = data[feature_names]
inputs_dc.collect(collected_df.values)
prediction_dc.collect(result)
return result.tolist()
except Exception as e:
error = str(e)
print(error + time.strftime("%H:%M:%S"))
return error

View File

@@ -175,10 +175,39 @@ jupyter notebook
- Example of training an automated ML forecasting model on multiple time-series - Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-classification-with-onnx.ipynb](classification-with-onnx/auto-ml-classification-with-onnx.ipynb) - [auto-ml-classification-with-onnx.ipynb](classification-with-onnx/auto-ml-classification-with-onnx.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits) - Dataset: scikit learn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html)
- Simple example of using automated ML for classification with ONNX models - Simple example of using automated ML for classification with ONNX models
- Uses local compute for training - Uses local compute for training
- [auto-ml-remote-amlcompute-with-onnx.ipynb](remote-amlcompute-with-onnx/auto-ml-remote-amlcompute-with-onnx.ipynb)
- Dataset: scikit learn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html)
- Example of using automated ML for classification using remote AmlCompute for training
- Train the models with ONNX compatible config on
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving the ONNX models and do the inference with them
- [auto-ml-bank-marketing-subscribers-with-deployment.ipynb](bank-marketing-subscribers-with-deployment/auto-ml-bank-marketing-with-deployment.ipynb)
- Dataset: UCI's [bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
- Simple example of using automated ML for classification to predict term deposit subscriptions for a bank
- Uses azure compute for training
- [auto-ml-creditcard-with-deployment.ipynb](credit-card-fraud-detection-with-deployment/auto-ml-creditcard-with-deployment.ipynb)
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- Simple example of using automated ML for classification to fraudulent credit card transactions
- Uses azure compute for training
- [auto-ml-hardware-performance-with-deployment.ipynb](hardware-performance-prediction-with-deployment/auto-ml-hardware-performance-with-deployment.ipynb)
- Dataset: UCI's [computer hardware dataset](https://archive.ics.uci.edu/ml/datasets/Computer+Hardware)
- Simple example of using automated ML for regression to predict the performance of certain combinations of hardware components
- Uses azure compute for training
- [auto-ml-concrete-strength-with-deployment.ipynb](predicting-concrete-strength-with-deployment/auto-ml-concrete-strength-with-deployment.ipynb)
- Dataset: UCI's [concrete compressive strength dataset](https://www.kaggle.com/pavanraj159/concrete-compressive-strength-data-set)
- Simple example of using automated ML for regression to predict the strength predict the compressive strength of concrete based off of different ingredient combinations and quantities of those ingredients
- Uses azure compute for training
<a name="documentation"></a> <a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments. See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.

View File

@@ -2,6 +2,7 @@ name: azure_automl
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip
- python>=3.5.2,<3.6.8 - python>=3.5.2,<3.6.8
- nb_conda - nb_conda
- matplotlib==2.1.0 - matplotlib==2.1.0

View File

@@ -2,6 +2,7 @@ name: azure_automl
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip
- nomkl - nomkl
- python>=3.5.2,<3.6.8 - python>=3.5.2,<3.6.8
- nb_conda - nb_conda

View File

@@ -9,6 +9,8 @@ IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing IF NOT EXIST %automl_env_file% GOTO YmlMissing
IF "%CONDA_EXE%"=="" GOTO CondaMissing
call conda activate %conda_env_name% 2>nul: call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 ( if not errorlevel 1 (
@@ -42,6 +44,15 @@ IF NOT "%options%"=="nolaunch" (
goto End goto End
:CondaMissing
echo Please run this script from an Anaconda Prompt window.
echo You can start an Anaconda Prompt window by
echo typing Anaconda Prompt on the Start menu.
echo If you don't see the Anaconda Prompt app, install Miniconda.
echo If you are running an older version of Miniconda or Anaconda,
echo you can upgrade using the command: conda update conda
goto End
:YmlMissing :YmlMissing
echo File %automl_env_file% not found. echo File %automl_env_file% not found.

View File

@@ -0,0 +1,224 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-bank-marketing/auto-ml-classification-bank-marketing.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Unique Descriptive Title\n",
"_**Unique Subtitle**_\n",
"\n",
"Introduction that describes in a customer friendly language, what they will do and accomplish.\n".
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Prerequisites](#Prerequisites)\n",
"1. [Configuration and Setup](#Setup)\n",
"1. [Working with Data](#Working with Data)\n",
"1. [Training](#Training)\n",
"1. [Productionizing](#Productionizing)\n",
"1. [Model Monitoring](#Model Monitoring)\n",
"1. [Clean up resources](#Clean up resources)\n",
"1. [Next Steps](#Next Steps)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"Please note that a Basic edition workspace is created by default in the configuration.ipynb file.\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object....\n",
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tenant_id = os.environ['TENANT_ID]\n",
"client_id = os.environ['CLIENT_ID]\n",
"run = Run.get_context()\n",
"secret_name = “{0}-secret”.format(client_id)\n",
"secret = run.get_secret(name=secret_name)\n",
"sp_auth = ServicePrincipalAuthentication(tenant_id, client_id, secret)\n",
"ws = Workspace.from_config(auth=sp_auth)\n",
"\n",
"# choose a unique name for experiment\n",
"experiment_name = 'unique-name'\n",
"# project folder\n",
"project_folder = './sample_projects/test'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Working with Data\n",
"\n",
"Here you would learn how to perform Data labeling and use Open Datasets etc..\n",
"To do this first load....\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training\n",
"\n",
"Here you would learn how to train a DNN using...\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Productionizing\n",
"\n",
"Here you would learn how to deploy your model to ACI to perform...\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model Monitoring\n",
"\n",
"Here you would learn how to detect datadrift etc...\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up resources\n",
"\n",
"Now, let's clean up the resources we created...\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next Steps\n",
"\n",
"In this notebook, youve done x, y, z. You can learn more with these resources:\n",
"+ [SDK reference documentation for `MyClass`]()\n",
"+ [About this feature](https://docs.microsoft.com/azure/machine-learning/service/thisfeature)\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This dataset is made available under the Creative Commons (CCO: Public Domain) License: https://creativecommons.org/publicdomain/zero/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: https://creativecommons.org/publicdomain/zero/1.0/ and is available at: https://www.kaggle.com/janiobachmann/bank-marketing-dataset .\n",
"\n",
"_**Acknowledgements**_\n",
"This dataset is originally available within the UCI Machine Learning Database: https://archive.ics.uci.edu/ml/datasets/bank+marketing\n",
"\n",
"[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014"
]
}
],
"metadata": {
"authors": [
{
"name": "YOUR ALIAS"
}
],
"category": "tutorial",
"compute": [
"AML Compute"
],
"datasets": [
"MNIST"
],
"deployment": [
"AKS"
],
"exclude_from_index": false,
"framework": [
"PyTorch"
],
"friendly_name": "How to use ModuleStep with AML Pipelines",
},
"order_index": 14,
"star_tag": [],
"tags": [
"Pipeline Builder"
],
"task": "Demonstrates the use of ModuleStep"
},
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-classification-bank-marketing
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,714 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Deployment using Credit Card Dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Deploy](#Deploy)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if a creditcard transaction is or is not considered a fraudulent charge.\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Register the model.\n",
"6. Create a container image.\n",
"7. Create an Azure Container Instance (ACI) service.\n",
"8. Test the ACI service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"from sklearn.model_selection import train_test_split\n",
"import azureml.dataprep as dprep\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-ccard'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-creditcard'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the credit card dataset into cards and store the Class column (y) in the y variable and store the remaining data in the x variable. Next split the data using train_test_split and return X_train and y_train for training the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dflow = dprep.read_csv(data, infer_column_types=True)\n",
"dflow.get_profile()\n",
"X = dflow.drop_columns(columns=['Class'])\n",
"y = dflow.keep_columns(columns=['Class'], validate_column_exists=True)\n",
"X_train, X_test = X.random_split(percentage=0.8, seed=223)\n",
"y_train, y_test = y.random_split(percentage=0.8, seed=223)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### If you would like to see even better results increase \"iteration_time_out minutes\" to 10+ mins and increase \"iterations\" to a minimum of 30"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 5,\n",
" \"iterations\": 10,\n",
" \"n_cross_validations\": 2,\n",
" \"primary_metric\": 'average_precision_score_weighted',\n",
" \"preprocess\": True,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors_20190417.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Fitted Model for Deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = remote_run.register_model(description = description, tags = tags)\n",
"\n",
"print(remote_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Scoring Script\n",
"The scoring script is required to generate the image for deployment. It contains the code to do the predictions on input data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a YAML File for the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dependencies = remote_run.get_run_sdk_dependencies(iteration = 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
" pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"script_file_name = 'score.py'\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', remote_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image\n",
"\n",
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
"or when testing a model that is under development."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'area': \"cards\", 'type': \"automl_classification\"},\n",
" description = \"Image for automl classification sample\")\n",
"\n",
"image = Image.create(name = \"automlsampleimage\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance\n",
"\n",
"Deploy an image that contains the model and other assets needed by the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"cards\", 'type': \"automl_classification\"}, \n",
" description = 'sample service for Automl Classification')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-sample-creditcard'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service\n",
"\n",
"Gets logs from a deployed web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select and test\n",
"X_test = X_test.to_pandas_dataframe()\n",
"y_test = y_test.to_pandas_dataframe()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select and test\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred, color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00e2\u20ac\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00e2\u20ac\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\u00e2\u20ac\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\u00e2\u20ac\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\u00e2\u20ac\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
]
}
],
"metadata": {
"authors": [
{
"name": "v-rasav"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -41,6 +41,8 @@
"\n", "\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n", "\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace#upgrade).\n",
"In this notebook you will learn how to:\n", "In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n", "1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n", "2. Configure AutoML using `AutoMLConfig`.\n",
@@ -61,61 +63,13 @@
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments." "As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-deployment'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-deployment'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Train\n", "## Train\n",
"\n", "\n",
"The following steps require an Enterprise workspace to gain access to these features.To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace#upgrade).\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n", "Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n", "\n",
"|Property|Description|\n", "|Property|Description|\n",
@@ -484,7 +438,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "savitam" "name": "shwinne"
} }
], ],
"kernelspec": { "kernelspec": {
@@ -507,4 +461,4 @@
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }

View File

@@ -0,0 +1,8 @@
name: auto-ml-classification-with-deployment
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -29,7 +29,6 @@
"1. [Data](#Data)\n", "1. [Data](#Data)\n",
"1. [Train](#Train)\n", "1. [Train](#Train)\n",
"1. [Results](#Results)\n", "1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n" "\n"
] ]
}, },
@@ -39,7 +38,7 @@
"source": [ "source": [
"## Introduction\n", "## Introduction\n",
"\n", "\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n", "In this example we use the scikit-learn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) to showcase how you can use AutoML for a simple classification problem.\n",
"\n", "\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n", "\n",
@@ -49,7 +48,8 @@
"1. Create an `Experiment` in an existing `Workspace`.\n", "1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n", "2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute with ONNX compatible config on.\n", "3. Train the model using local compute with ONNX compatible config on.\n",
"4. Explore the results and save the ONNX model." "4. Explore the results and save the ONNX model.\n",
"5. Inference with the ONNX model."
] ]
}, },
{ {
@@ -129,6 +129,22 @@
" test_size=0.2, \n", " test_size=0.2, \n",
" random_state=0)\n", " random_state=0)\n",
"\n", "\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ensure the x_train and x_test are pandas DataFrame."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert the X_train and X_test to pandas DataFrame and set column names,\n", "# Convert the X_train and X_test to pandas DataFrame and set column names,\n",
"# This is needed for initializing the input variable names of ONNX model, \n", "# This is needed for initializing the input variable names of ONNX model, \n",
"# and the prediction with the ONNX model using the inference helper.\n", "# and the prediction with the ONNX model using the inference helper.\n",
@@ -140,11 +156,11 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Train with enable ONNX compatible models config on\n", "## Train\n",
"\n", "\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n", "Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n", "\n",
"Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n", "**Note:** Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
"\n", "\n",
"|Property|Description|\n", "|Property|Description|\n",
"|-|-|\n", "|-|-|\n",
@@ -158,6 +174,13 @@
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|" "|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set the preprocess=True, currently the InferenceHelper only supports this mode."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@@ -299,7 +322,7 @@
" onnxrt_present = False\n", " onnxrt_present = False\n",
"\n", "\n",
"def get_onnx_res(run):\n", "def get_onnx_res(run):\n",
" res_path = '_debug_y_trans_converter.json'\n", " res_path = 'onnx_resource.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n", " run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n", " with open(res_path) as f:\n",
" onnx_res = json.load(f)\n", " onnx_res = json.load(f)\n",
@@ -316,7 +339,7 @@
" print(pred_prob_onnx)\n", " print(pred_prob_onnx)\n",
"else:\n", "else:\n",
" if not python_version_compatible:\n", " if not python_version_compatible:\n",
" print('Please use Python version 3.6 to run the inference helper.') \n", " print('Please use Python version 3.6 or 3.7 to run the inference helper.') \n",
" if not onnxrt_present:\n", " if not onnxrt_present:\n",
" print('Please install the onnxruntime package to do the prediction with ONNX model.')" " print('Please install the onnxruntime package to do the prediction with ONNX model.')"
] ]

View File

@@ -0,0 +1,9 @@
name: auto-ml-classification-with-onnx
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- onnxruntime

View File

@@ -41,7 +41,7 @@
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n", "In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n", "\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"This notebooks shows how can automl can be trained on a a selected list of models,see the readme.md for the models.\n", "This notebooks shows how can automl can be trained on a selected list of models, see the readme.md for the models.\n",
"This trains the model exclusively on tensorflow based models.\n", "This trains the model exclusively on tensorflow based models.\n",
"\n", "\n",
"In this notebook you will learn how to:\n", "In this notebook you will learn how to:\n",

View File

@@ -0,0 +1,8 @@
name: auto-ml-classification-with-whitelisting
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -258,7 +258,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {
"tags": [
"widget-rundetails-sample"
]
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.widgets import RunDetails\n", "from azureml.widgets import RunDetails\n",
@@ -475,7 +479,27 @@
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.6" "version": "3.6.6"
} },
"friendly_name": "Testing index",
"exclude_from_index": false,
"order_index": 1,
"category": "tutorial",
"tags": [
"featured"
],
"task": "Regression",
"datasets": [
"NYC Taxi"
],
"compute": [
"local"
],
"deployment": [
"None"
],
"framework": [
"Azure ML AutoML"
],
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2

View File

@@ -0,0 +1,8 @@
name: auto-ml-classification
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -21,7 +21,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Automated Machine Learning\n", "# Automated Machine Learning\n",
"_**Prepare Data using `azureml.dataprep` for Remote Execution (DSVM)**_\n", "_**Prepare Data using `azureml.dataprep` for Remote Execution (AmlCompute)**_\n",
"\n", "\n",
"## Contents\n", "## Contents\n",
"1. [Introduction](#Introduction)\n", "1. [Introduction](#Introduction)\n",
@@ -128,7 +128,7 @@
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n", "# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n", "# and convert column types manually.\n",
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n", "example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n", "dflow = dprep.read_csv(example_data, infer_column_types=True)\n",
"dflow.get_profile()" "dflow.get_profile()"
] ]
}, },
@@ -241,6 +241,7 @@
"source": [ "source": [
"from azureml.core.runconfig import RunConfiguration\n", "from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n", "from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n", "\n",
"# create a new RunConfig object\n", "# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n", "conda_run_config = RunConfiguration(framework=\"python\")\n",
@@ -250,7 +251,9 @@
"conda_run_config.environment.docker.enabled = True\n", "conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n", "conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n", "\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n", "dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd" "conda_run_config.environment.python.conda_dependencies = cd"
] ]
}, },

View File

@@ -0,0 +1,8 @@
name: auto-ml-dataprep-remote-execution
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -1,5 +1,12 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.png)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@@ -9,13 +16,6 @@
"Licensed under the MIT License." "Licensed under the MIT License."
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.png)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,8 @@
name: auto-ml-dataprep
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -197,12 +197,12 @@
"display(HTML('<h3>Iterations</h3>'))\n", "display(HTML('<h3>Iterations</h3>'))\n",
"RunDetails(ml_run).show() \n", "RunDetails(ml_run).show() \n",
"\n", "\n",
"children = list(ml_run.get_children())\n", "all_metrics = ml_run.get_metrics(recursive=True)\n",
"metricslist = {}\n", "metricslist = {}\n",
"for run in children:\n", "for run_id, metrics in all_metrics.items():\n",
" properties = run.get_properties()\n", " iteration = int(run_id.split('_')[-1])\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n", " float_metrics = {k: v for k, v in metrics.items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n", " metricslist[iteration] = float_metrics\n",
"\n", "\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n", "rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"display(HTML('<h3>Metrics</h3>'))\n", "display(HTML('<h3>Metrics</h3>'))\n",

View File

@@ -0,0 +1,8 @@
name: auto-ml-exploring-previous-runs
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -36,19 +36,17 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Introduction\n", "## Introduction\n",
"In this example, we show how AutoML can be used for bike share forecasting.\n", "This notebook demonstrates demand forecasting for a bike-sharing service using AutoML.\n",
"\n", "\n",
"The purpose is to demonstrate how to take advantage of the built-in holiday featurization, access the feature names, and further demonstrate how to work with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n", "AutoML highlights here include built-in holiday featurization, accessing engineered feature names, and working with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n", "\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n", "\n",
"In this notebook you would see\n", "Notebook synopsis:\n",
"1. Creating an Experiment in an existing Workspace\n", "1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n", "2. Configuration and local run of AutoML for a time-series model with lag and holiday features \n",
"3. Training the Model using local compute\n", "3. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"4. Exploring the results\n", "4. Evaluating the fitted model using a rolling test "
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
] ]
}, },
{ {
@@ -69,10 +67,12 @@
"import numpy as np\n", "import numpy as np\n",
"import logging\n", "import logging\n",
"import warnings\n", "import warnings\n",
"\n",
"from pandas.tseries.frequencies import to_offset\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n", "# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n", "warnings.showwarning = lambda *args, **kwargs: None\n",
"\n", "\n",
"\n",
"from azureml.core.workspace import Workspace\n", "from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n", "from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n", "from azureml.train.automl import AutoMLConfig\n",
@@ -84,7 +84,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments." "As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
] ]
}, },
{ {
@@ -129,14 +129,15 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"data = pd.read_csv('bike-no.csv', parse_dates=['date'])" "data = pd.read_csv('bike-no.csv', parse_dates=['date'])\n",
"data.head()"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Let's set up what we know abou the dataset. \n", "Let's set up what we know about the dataset. \n",
"\n", "\n",
"**Target column** is what we want to forecast.\n", "**Target column** is what we want to forecast.\n",
"\n", "\n",
@@ -194,8 +195,7 @@
"source": [ "source": [
"### Setting forecaster maximum horizon \n", "### Setting forecaster maximum horizon \n",
"\n", "\n",
"Assuming your test data forms a full and regular time series(regular time intervals and no holes), \n", "The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 14 periods (i.e. 14 days). Notice that this is much shorter than the number of days in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
"the maximum horizon you will need to forecast is the length of the longest grain in your test set."
] ]
}, },
{ {
@@ -204,10 +204,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"if len(grain_column_names) == 0:\n", "max_horizon = 14"
" max_horizon = len(X_test)\n",
"else:\n",
" max_horizon = X_test.groupby(grain_column_names)[time_column_name].count().max()"
] ]
}, },
{ {
@@ -237,26 +234,25 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"time_column_name = 'date'\n",
"automl_settings = {\n", "automl_settings = {\n",
" \"time_column_name\": time_column_name,\n", " 'time_column_name': time_column_name,\n",
" # these columns are a breakdown of the total and therefore a leak\n", " 'max_horizon': max_horizon,\n",
" \"drop_column_names\": ['casual', 'registered'],\n",
" # knowing the country/region allows Automated ML to bring in holidays\n", " # knowing the country/region allows Automated ML to bring in holidays\n",
" \"country_or_region\" : 'US',\n", " 'country_or_region': 'US',\n",
" \"max_horizon\" : max_horizon,\n", " 'target_lags': 1,\n",
" \"target_lags\": 1 \n", " # these columns are a breakdown of the total and therefore a leak\n",
" 'drop_column_names': ['casual', 'registered']\n",
"}\n", "}\n",
"\n", "\n",
"automl_config = AutoMLConfig(task = 'forecasting', \n", "automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n", " primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n", " iterations=10,\n",
" iteration_timeout_minutes = 5,\n", " iteration_timeout_minutes=5,\n",
" X = X_train,\n", " X=X_train,\n",
" y = y_train,\n", " y=y_train,\n",
" n_cross_validations = 3, \n", " n_cross_validations=3, \n",
" path=project_folder,\n", " path=project_folder,\n",
" verbosity = logging.INFO,\n", " verbosity=logging.INFO,\n",
" **automl_settings)" " **automl_settings)"
] ]
}, },
@@ -264,7 +260,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"We will now run the experiment, starting with 10 iterations of model search. Experiment can be continued for more iterations if the results are not yet good. You will see the currently running iterations printing to the console." "We will now run the experiment, starting with 10 iterations of model search. The experiment can be continued for more iterations if more accurate results are required. You will see the currently running iterations printing to the console."
] ]
}, },
{ {
@@ -349,18 +345,26 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()" "# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Test the Best Fitted Model\n", "## Evaluate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. \n",
"\n", "\n",
"Predict on training and test set, and calculate residual values.\n", "We always score on the original dataset whose schema matches the training set schema."
"\n",
"We always score on the original dataset whose schema matches the scheme of the training dataset."
] ]
}, },
{ {
@@ -372,21 +376,12 @@
"X_test.head()" "X_test.head()"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.NaN)\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"We now define some functions for aligning output to input and for producing rolling forecasts over the full test set. As previously stated, the forecast horizon of 14 days is shorter than the length of the test set - which is about 120 days. To get predictions over the full test set, we iterate over the test set, making forecasts 14 days at a time and combining the results. We also make sure that each 14-day forecast uses up-to-date actuals - the current context - to construct lag features. \n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows." "It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
] ]
}, },
@@ -396,7 +391,8 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n", "def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name='predicted',\n",
" horizon_colname='horizon_origin'):\n",
" \"\"\"\n", " \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n", " Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n", " using pandas indexes. Helps understand what happened if\n",
@@ -408,7 +404,8 @@
" * model was asked to predict past max_horizon -> increase max horizon\n", " * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n", " * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n", " \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n", " df_fcst = pd.DataFrame({predicted_column_name : y_predicted,\n",
" horizon_colname: X_trans[horizon_colname]})\n",
" # y and X outputs are aligned by forecast() function contract\n", " # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n", " df_fcst.index = X_trans.index\n",
" \n", " \n",
@@ -427,7 +424,49 @@
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n", " clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n", " return(clean)\n",
"\n", "\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n" "def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):\n",
" \"\"\"\n",
" Produce forecasts on a rolling origin over the given test set.\n",
" \n",
" Each iteration makes a forecast for the next 'max_horizon' periods \n",
" with respect to the current origin, then advances the origin by the horizon time duration. \n",
" The prediction context for each forecast is set so that the forecaster uses \n",
" the actual target values prior to the current origin time for constructing lag features.\n",
" \n",
" This function returns a concatenated DataFrame of rolling forecasts.\n",
" \"\"\"\n",
" df_list = []\n",
" origin_time = X_test[time_column_name].min()\n",
" while origin_time <= X_test[time_column_name].max():\n",
" # Set the horizon time - end date of the forecast\n",
" horizon_time = origin_time + max_horizon * to_offset(freq)\n",
" \n",
" # Extract test data from an expanding window up-to the horizon \n",
" expand_wind = (X_test[time_column_name] < horizon_time)\n",
" X_test_expand = X_test[expand_wind]\n",
" y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)\n",
" y_query_expand.fill(np.NaN)\n",
" \n",
" if origin_time != X_test[time_column_name].min():\n",
" # Set the context by including actuals up-to the origin time\n",
" test_context_expand_wind = (X_test[time_column_name] < origin_time)\n",
" context_expand_wind = (X_test_expand[time_column_name] < origin_time)\n",
" y_query_expand[context_expand_wind] = y_test[test_context_expand_wind]\n",
" \n",
" # Make a forecast out to the maximum horizon\n",
" y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)\n",
" \n",
" # Align forecast with test set for dates within the current rolling window \n",
" trans_tindex = X_trans.index.get_level_values(time_column_name)\n",
" trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)\n",
" test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)\n",
" df_list.append(align_outputs(y_fcst[trans_roll_wind], X_trans[trans_roll_wind],\n",
" X_test[test_roll_wind], y_test[test_roll_wind]))\n",
" \n",
" # Advance the origin time\n",
" origin_time = horizon_time\n",
" \n",
" return pd.concat(df_list, ignore_index=True)"
] ]
}, },
{ {
@@ -436,6 +475,30 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"df_all = do_rolling_forecast(fitted_model, X_test, y_test, max_horizon)\n",
"df_all"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now calculate some error metrics for the forecasts and vizualize the predictions vs. the actuals."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def APE(actual, pred):\n",
" \"\"\"\n",
" Calculate absolute percentage error.\n",
" Returns a vector of APE values with same length as actual/pred.\n",
" \"\"\"\n",
" return 100*np.abs((actual - pred)/actual)\n",
"\n",
"def MAPE(actual, pred):\n", "def MAPE(actual, pred):\n",
" \"\"\"\n", " \"\"\"\n",
" Calculate mean absolute percentage error.\n", " Calculate mean absolute percentage error.\n",
@@ -445,8 +508,7 @@
" not_zero = ~np.isclose(actual, 0.0)\n", " not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n", " actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n", " pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n", " return np.mean(APE(actual_safe, pred_safe))"
" return np.mean(APE)"
] ]
}, },
{ {
@@ -463,18 +525,63 @@
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n", "print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n", "\n",
"# Plot outputs\n", "# Plot outputs\n",
"%matplotlib notebook\n", "%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n", "test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n", "test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n", "plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()" "plt.show()"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The MAPE seems high; it is being skewed by an actual with a small absolute value. For a more informative evaluation, we can calculate the metrics by forecast horizon:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_all.groupby('horizon_origin').apply(\n",
" lambda df: pd.Series({'MAPE': MAPE(df[target_column_name], df['predicted']),\n",
" 'RMSE': np.sqrt(mean_squared_error(df[target_column_name], df['predicted'])),\n",
" 'MAE': mean_absolute_error(df[target_column_name], df['predicted'])}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It's also interesting to see the distributions of APE (absolute percentage error) by horizon. On a log scale, the outlying APE in the horizon-3 group is clear."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_all_APE = df_all.assign(APE=APE(df_all[target_column_name], df_all['predicted']))\n",
"APEs = [df_all_APE[df_all['horizon_origin'] == h].APE.values for h in range(1, max_horizon + 1)]\n",
"\n",
"%matplotlib inline\n",
"plt.boxplot(APEs)\n",
"plt.yscale('log')\n",
"plt.xlabel('horizon')\n",
"plt.ylabel('APE (%)')\n",
"plt.title('Absolute Percentage Errors by Forecast Horizon')\n",
"\n",
"plt.show()"
]
} }
], ],
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "xiaga@microsoft.com, tosingli@microsoft.com" "name": "erwright"
} }
], ],
"kernelspec": { "kernelspec": {
@@ -492,7 +599,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.7" "version": "3.6.8"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -0,0 +1,9 @@
name: auto-ml-forecasting-bike-share
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels

View File

@@ -35,17 +35,16 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Introduction\n", "## Introduction\n",
"In this example, we show how AutoML can be used for energy demand forecasting.\n", "In this example, we show how AutoML can be used to forecast a single time-series in the energy demand application area. \n",
"\n", "\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n", "\n",
"In this notebook you would see\n", "Notebook synopsis:\n",
"1. Creating an Experiment in an existing Workspace\n", "1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n", "2. Configuration and local run of AutoML for a simple time-series model\n",
"3. Training the Model using local compute\n", "3. View engineered features and prediction results\n",
"4. Exploring the results\n", "4. Configuration and local run of AutoML for a time-series model with lag and rolling window features\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n", "5. Estimate feature importance"
"6. Testing the fitted model"
] ]
}, },
{ {
@@ -66,10 +65,10 @@
"import numpy as np\n", "import numpy as np\n",
"import logging\n", "import logging\n",
"import warnings\n", "import warnings\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n", "# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n", "warnings.showwarning = lambda *args, **kwargs: None\n",
"\n", "\n",
"\n",
"from azureml.core.workspace import Workspace\n", "from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n", "from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n", "from azureml.train.automl import AutoMLConfig\n",
@@ -81,7 +80,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments." "As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
] ]
}, },
{ {
@@ -117,7 +116,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Data\n", "## Data\n",
"Read energy demanding data from file, and preview data." "We will use energy consumption data from New York City for model training. The data is stored in a tabular format and includes energy demand and basic weather data at an hourly frequency. Pandas CSV reader is used to read the file into memory. Special attention is given to the \"timeStamp\" column in the data since it contains text which should be parsed as datetime-type objects. "
] ]
}, },
{ {
@@ -130,13 +129,20 @@
"data.head()" "data.head()"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We must now define the schema of this dataset. Every time-series must have a time column and a target. The target quantity is what will be eventually forecasted by a trained model. In this case, the target is the \"demand\" column. The other columns, \"temp\" and \"precip,\" are implicitly designated as features."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# let's take note of what columns means what in the data\n", "# Dataset schema\n",
"time_column_name = 'timeStamp'\n", "time_column_name = 'timeStamp'\n",
"target_column_name = 'demand'" "target_column_name = 'demand'"
] ]
@@ -145,7 +151,14 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Split the data into train and test sets\n" "### Forecast Horizon\n",
"\n",
"In addition to the data schema, we must also specify the forecast horizon. A forecast horizon is a time span into the future (or just beyond the latest date in the training data) where forecasts of the target quantity are needed. Choosing a forecast horizon is application specific, but a rule-of-thumb is that **the horizon should be the time-frame where you need actionable decisions based on the forecast.** The horizon usually has a strong relationship with the frequency of the time-series data, that is, the sampling interval of the target quantity and the features. For instance, the NYC energy demand data has an hourly frequency. A decision that requires a demand forecast to the hour is unlikely to be made weeks or months in advance, particularly if we expect weather to be a strong determinant of demand. We may have fairly accurate meteorological forecasts of the hourly temperature and precipitation on a the time-scale of a day or two, however.\n",
"\n",
"Given the above discussion, we generally recommend that users set forecast horizons to less than 100 time periods (i.e. less than 100 hours in the NYC energy example). Furthermore, **AutoML's memory use and computation time increase in proportion to the length of the horizon**, so the user should consider carefully how they set this value. If a long horizon forecast really is necessary, it may be good practice to aggregate the series to a coarser time scale. \n",
"\n",
"\n",
"Forecast horizons in AutoML are given as integer multiples of the time-series frequency. In this example, we set the horizon to 48 hours."
] ]
}, },
{ {
@@ -154,8 +167,32 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"X_train = data[data[time_column_name] < '2017-02-01']\n", "max_horizon = 48"
"X_test = data[data[time_column_name] >= '2017-02-01']\n", ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the data into train and test sets\n",
"We now split the data into a train and a test set so that we may evaluate model performance. We note that the tail of the dataset contains a large number of NA values in the target column, so we designate the test set as the 48 hour window ending on the latest date of known energy demand. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Find time point to split on\n",
"latest_known_time = data[~pd.isnull(data[target_column_name])][time_column_name].max()\n",
"split_time = latest_known_time - pd.Timedelta(hours=max_horizon)\n",
"\n",
"# Split into train/test sets\n",
"X_train = data[data[time_column_name] <= split_time]\n",
"X_test = data[(data[time_column_name] > split_time) & (data[time_column_name] <= latest_known_time)]\n",
"\n",
"# Move the target values into their own arrays \n",
"y_train = X_train.pop(target_column_name).values\n", "y_train = X_train.pop(target_column_name).values\n",
"y_test = X_test.pop(target_column_name).values" "y_test = X_test.pop(target_column_name).values"
] ]
@@ -166,7 +203,7 @@
"source": [ "source": [
"## Train\n", "## Train\n",
"\n", "\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n", "We now instantiate an AutoMLConfig object. This config defines the settings and data used to run the experiment. For forecasting tasks, we must provide extra configuration related to the time-series data schema and forecasting context. Here, only the name of the time column and the maximum forecast horizon are needed. Other settings are described below:\n",
"\n", "\n",
"|Property|Description|\n", "|Property|Description|\n",
"|-|-|\n", "|-|-|\n",
@@ -176,7 +213,7 @@
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n", "|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n", "|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n", "|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n", "|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. " "|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
] ]
}, },
@@ -186,22 +223,22 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"automl_settings = {\n", "time_series_settings = {\n",
" \"time_column_name\": time_column_name \n", " 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon\n",
"}\n", "}\n",
"\n", "\n",
"\n", "automl_config = AutoMLConfig(task='forecasting',\n",
"automl_config = AutoMLConfig(task = 'forecasting',\n", " debug_log='automl_nyc_energy_errors.log',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n", " primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n", " iterations=10,\n",
" iteration_timeout_minutes = 5,\n", " iteration_timeout_minutes=5,\n",
" X = X_train,\n", " X=X_train,\n",
" y = y_train,\n", " y=y_train,\n",
" n_cross_validations = 3,\n", " n_cross_validations=3,\n",
" path=project_folder,\n", " path=project_folder,\n",
" verbosity = logging.INFO,\n", " verbosity = logging.INFO,\n",
" **automl_settings)" " **time_series_settings)"
] ]
}, },
{ {
@@ -358,7 +395,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Calculate accuracy metrics\n" "### Calculate accuracy metrics\n",
"Finally, we calculate some accuracy metrics for the forecast and plot the predictions vs. the actuals over the time range in the test set."
] ]
}, },
{ {
@@ -394,10 +432,13 @@
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n", "print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n", "\n",
"# Plot outputs\n", "# Plot outputs\n",
"%matplotlib notebook\n", "%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n", "pred, = plt.plot(df_all[time_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n", "actual, = plt.plot(df_all[time_column_name], df_all[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n", "plt.xticks(fontsize=8)\n",
"plt.legend((pred, actual), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.title('Prediction vs. Actual Time-Series')\n",
"\n",
"plt.show()" "plt.show()"
] ]
}, },
@@ -412,16 +453,16 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Using lags and rolling window features to improve the forecast" "### Using lags and rolling window features"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data.\n", "We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation.\n",
"\n", "\n",
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features." "Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must still specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features."
] ]
}, },
{ {
@@ -430,27 +471,32 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"automl_settings_lags = {\n", "time_series_settings_with_lags = {\n",
" 'time_column_name': time_column_name,\n", " 'time_column_name': time_column_name,\n",
" 'target_lags': 1,\n", " 'max_horizon': max_horizon,\n",
" 'target_rolling_window_size': 5,\n", " 'target_lags': 12,\n",
" # you MUST set the max_horizon when using lags and rolling windows\n", " 'target_rolling_window_size': 4\n",
" # it is optional when looking-back features are not used \n",
" 'max_horizon': len(y_test), # only one grain\n",
"}\n", "}\n",
"\n", "\n",
"\n", "automl_config_lags = AutoMLConfig(task='forecasting',\n",
"automl_config_lags = AutoMLConfig(task = 'forecasting',\n", " debug_log='automl_nyc_energy_errors.log',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n", " primary_metric='normalized_root_mean_squared_error',\n",
" primary_metric='normalized_root_mean_squared_error',\n", " blacklist_models=['ElasticNet'],\n",
" iterations = 10,\n", " iterations=10,\n",
" iteration_timeout_minutes = 5,\n", " iteration_timeout_minutes=10,\n",
" X = X_train,\n", " X=X_train,\n",
" y = y_train,\n", " y=y_train,\n",
" n_cross_validations = 3,\n", " n_cross_validations=3,\n",
" path=project_folder,\n", " path=project_folder,\n",
" verbosity = logging.INFO,\n", " verbosity=logging.INFO,\n",
" **automl_settings_lags)" " **time_series_settings_with_lags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now start a new local run, this time with lag and rolling window featurization. AutoML applies featurizations in the setup stage, prior to iterating over ML models. The full training set is featurized first, followed by featurization of each of the CV splits. Lag and rolling window features introduce additional complexity, so the run will take longer than in the previous example that lacked these featurizations."
] ]
}, },
{ {
@@ -497,10 +543,11 @@
"print('MAPE: %.2f' % MAPE(df_lags[target_column_name], df_lags['predicted']))\n", "print('MAPE: %.2f' % MAPE(df_lags[target_column_name], df_lags['predicted']))\n",
"\n", "\n",
"# Plot outputs\n", "# Plot outputs\n",
"%matplotlib notebook\n", "%matplotlib inline\n",
"test_pred = plt.scatter(df_lags[target_column_name], df_lags['predicted'], color='b')\n", "pred, = plt.plot(df_lags[time_column_name], df_lags['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n", "actual, = plt.plot(df_lags[time_column_name], df_lags[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n", "plt.xticks(fontsize=8)\n",
"plt.legend((pred, actual), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()" "plt.show()"
] ]
}, },
@@ -520,8 +567,8 @@
"from azureml.train.automl.automlexplainer import explain_model\n", "from azureml.train.automl.automlexplainer import explain_model\n",
"\n", "\n",
"# feature names are everything in the transformed data except the target\n", "# feature names are everything in the transformed data except the target\n",
"features = X_trans.columns[:-1]\n", "features = X_trans_lags.columns[:-1]\n",
"expl = explain_model(fitted_model, X_train, X_test, features = features, best_run=best_run_lags, y_train = y_train)\n", "expl = explain_model(fitted_model_lags, X_train.copy(), X_test.copy(), features=features, best_run=best_run_lags, y_train=y_train)\n",
"# unpack the tuple\n", "# unpack the tuple\n",
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n", "shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
"best_run_lags" "best_run_lags"
@@ -540,7 +587,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "xiaga, tosingli" "name": "erwright"
} }
], ],
"kernelspec": { "kernelspec": {
@@ -558,7 +605,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.7" "version": "3.6.8"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -0,0 +1,10 @@
name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
- azureml-explain-model

View File

@@ -37,16 +37,10 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Introduction\n", "## Introduction\n",
"In this example, we use AutoML to find and tune a time-series forecasting model.\n", "In this example, we use AutoML to train, select, and operationalize a time-series forecasting model for multiple time-series.\n",
"\n", "\n",
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n", "Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
"\n", "\n",
"In this notebook, you will:\n",
"1. Create an Experiment in an existing Workspace\n",
"2. Instantiate an AutoMLConfig \n",
"3. Find and train a forecasting model using local compute\n",
"4. Evaluate the performance of the model\n",
"\n",
"The examples in the follow code samples use the University of Chicago's Dominick's Finer Foods dataset to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area." "The examples in the follow code samples use the University of Chicago's Dominick's Finer Foods dataset to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
] ]
}, },
@@ -68,10 +62,10 @@
"import numpy as np\n", "import numpy as np\n",
"import logging\n", "import logging\n",
"import warnings\n", "import warnings\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n", "# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n", "warnings.showwarning = lambda *args, **kwargs: None\n",
"\n", "\n",
"\n",
"from azureml.core.workspace import Workspace\n", "from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n", "from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n", "from azureml.train.automl import AutoMLConfig\n",
@@ -82,7 +76,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. " "As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem. "
] ]
}, },
{ {
@@ -236,7 +230,7 @@
"\n", "\n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n", "For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
"\n", "\n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up-to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. \n", "The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up-to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
"\n", "\n",
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *X_valid* and *y_valid* parameters of AutoMLConfig.\n", "Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *X_valid* and *y_valid* parameters of AutoMLConfig.\n",
"\n", "\n",
@@ -269,7 +263,7 @@
" 'time_column_name': time_column_name,\n", " 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n", " 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity'],\n", " 'drop_column_names': ['logQuantity'],\n",
" 'max_horizon': n_test_periods # optional\n", " 'max_horizon': n_test_periods\n",
"}\n", "}\n",
"\n", "\n",
"automl_config = AutoMLConfig(task='forecasting',\n", "automl_config = AutoMLConfig(task='forecasting',\n",
@@ -278,7 +272,7 @@
" iterations=10,\n", " iterations=10,\n",
" X=X_train,\n", " X=X_train,\n",
" y=y_train,\n", " y=y_train,\n",
" n_cross_validations=5,\n", " n_cross_validations=3,\n",
" enable_ensembling=False,\n", " enable_ensembling=False,\n",
" path=project_folder,\n", " path=project_folder,\n",
" verbosity=logging.INFO,\n", " verbosity=logging.INFO,\n",
@@ -324,7 +318,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Predict\n", "# Forecasting\n",
"\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:" "Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
] ]
}, },
@@ -468,7 +463,7 @@
"# Plot outputs\n", "# Plot outputs\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n", "\n",
"%matplotlib notebook\n", "%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n", "test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n", "test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n", "plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
@@ -834,7 +829,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "erwright, tosingli" "name": "erwright"
} }
], ],
"kernelspec": { "kernelspec": {
@@ -852,7 +847,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.7" "version": "3.6.8"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -0,0 +1,9 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels

View File

@@ -360,7 +360,10 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()" "# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['datatransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
] ]
}, },
{ {

View File

@@ -0,0 +1,8 @@
name: auto-ml-missing-data-blacklist-early-termination
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,9 @@
name: auto-ml-model-explanation
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- azureml-explain-model

View File

@@ -0,0 +1,802 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression-concrete-strength/auto-ml-regression-concrete-strength.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Deployment using Hardware Performance Dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the Predicting Compressive Strength of Concrete Dataset to showcase how you can use AutoML for a regression problem. The regression goal is to predict the compressive strength of concrete based off of different ingredient combinations and the quantities of those ingredients.\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"As part of the setup you have already created an Azure ML Workspace object. For AutoML you will need to create an Experiment object, which is a named object in a Workspace used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"from sklearn.model_selection import train_test_split\n",
"import azureml.dataprep as dprep\n",
" \n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-regression-concrete'\n",
"project_folder = './sample_projects/automl-regression-concrete'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the concrete strength dataset into the X and y variables. Next, split the data using train_test_split and return X_train and y_train for training the model. Finally, return X_train and y_train for training the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/compresive_strength_concrete.csv\"\n",
"dflow = dprep.read_csv(data, infer_column_types=True)\n",
"dflow.get_profile()\n",
"X = dflow.drop_columns(columns=['CONCRETE'])\n",
"y = dflow.keep_columns(columns=['CONCRETE'], validate_column_exists=True)\n",
"X_train, X_test = X.random_split(percentage=0.8, seed=223)\n",
"y_train, y_test = y.random_split(percentage=0.8, seed=223) \n",
"dflow.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### If you would like to see even better results increase \"iteration_time_out minutes\" to 10+ mins and increase \"iterations\" to a minimum of 30"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 5,\n",
" \"iterations\": 10,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'spearman_correlation',\n",
" \"preprocess\": True,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"Widget for Monitoring Runs\n",
"The widget will first report a \u00e2\u20ac\u0153loading status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"Note: The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on get_output allow you to retrieve the best run and fitted model for any logged metric or for a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest root_mean_squared_error value (which turned out to be the same as the one with largest spearman_correlation value):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"root_mean_squared_error\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register the Fitted Model for Deployment\n",
"If neither metric nor iteration are specified in the register_model call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = remote_run.register_model(description = description, tags = tags)\n",
"\n",
"print(remote_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Scoring Script\n",
"The scoring script is required to generate the image for deployment. It contains the code to do the predictions on input data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a YAML File for the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dependencies = remote_run.get_run_sdk_dependencies(iteration = 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"script_file_name = 'score.py'\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', remote_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image\n",
"\n",
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
"or when testing a model that is under development."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'area': \"digits\", 'type': \"automl_regression\"},\n",
" description = \"Image for automl regression sample\")\n",
"\n",
"image = Image.create(name = \"automlsampleimage\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance\n",
"\n",
"Deploy an image that contains the model and other assets needed by the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"digits\", 'type': \"automl_regression\"}, \n",
" description = 'sample service for Automl Regression')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-sample-concrete'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service\n",
"\n",
"Gets logs from a deployed web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = X_test.to_pandas_dataframe()\n",
"y_test = y_test.to_pandas_dataframe()\n",
"y_test = np.array(y_test)\n",
"y_test = y_test[:,0]\n",
"X_train = X_train.to_pandas_dataframe()\n",
"y_train = y_train.to_pandas_dataframe()\n",
"y_train = np.array(y_train)\n",
"y_train = y_train[:,0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Predict on training and test set, and calculate residual values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(X_train)\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(X_test)\n",
"y_residual_test = y_test - y_pred_test\n",
"\n",
"y_residual_train.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"# Set up a multi-plot chart.\n",
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
"f.set_figheight(6)\n",
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -200, 200])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)), fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot a histogram.\n",
"#a0.hist(y_residual_train, orientation = 'horizontal', color = ['b']*len(y_residual_train), bins = 10, histtype = 'step')\n",
"#a0.hist(y_residual_train, orientation = 'horizontal', color = ['b']*len(y_residual_train), alpha = 0.2, bins = 10)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -200, 200])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)), fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"# Plot a histogram.\n",
"#a1.hist(y_residual_test, orientation = 'horizontal', color = ['b']*len(y_residual_test), bins = 10, histtype = 'step')\n",
"#a1.hist(y_residual_test, orientation = 'horizontal', color = ['b']*len(y_residual_test), alpha = 0.2, bins = 10)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred_test, color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements\n",
"\n",
"This Predicting Compressive Strength of Concrete Dataset is made available under the CC0 1.0 Universal (CC0 1.0)\n",
"Public Domain Dedication License: https://creativecommons.org/publicdomain/zero/1.0/. Any rights in individual contents of the database are licensed under the CC0 1.0 Universal (CC0 1.0)\n",
"Public Domain Dedication License: https://creativecommons.org/publicdomain/zero/1.0/ . The dataset itself can be found here: https://www.kaggle.com/pavanraj159/concrete-compressive-strength-data-set and http://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength\n",
"\n",
"I-Cheng Yeh, \"Modeling of strength of high performance concrete using artificial neural networks,\" Cement and Concrete Research, Vol. 28, No. 12, pp. 1797-1808 (1998). \n",
"\n",
"Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science."
]
}
],
"metadata": {
"authors": [
{
"name": "v-rasav"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-regression-concrete-strength
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,802 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression-hardware-performance/auto-ml-regression-hardware-performance.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Deployment using Hardware Performance Dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"As part of the setup you have already created an Azure ML Workspace object. For AutoML you will need to create an Experiment object, which is a named object in a Workspace used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"from sklearn.model_selection import train_test_split\n",
"import azureml.dataprep as dprep\n",
" \n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-regression-hardware'\n",
"project_folder = './sample_projects/automl-remote-regression'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the hardware dataset into the X and y variables. Next split the data using train_test_split and return X_train and y_train for training the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/machineData.csv\"\n",
"dflow = dprep.read_csv(data, infer_column_types=True)\n",
"dflow.get_profile()\n",
"X = dflow.drop_columns(columns=['ERP'])\n",
"y = dflow.keep_columns(columns=['ERP'], validate_column_exists=True)\n",
"X_train, X_test = X.random_split(percentage=0.8, seed=223)\n",
"y_train, y_test = y.random_split(percentage=0.8, seed=223) \n",
"dflow.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### If you would like to see even better results increase \"iteration_time_out minutes\" to 10+ mins and increase \"iterations\" to a minimum of 30"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 5,\n",
" \"iterations\": 10,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'spearman_correlation',\n",
" \"preprocess\": True,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl_errors_20190417.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on get_output allow you to retrieve the best run and fitted model for any logged metric or for a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `root_mean_squared_error` value (which turned out to be the same as the one with largest `spearman_correlation` value):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"root_mean_squared_error\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register the Fitted Model for Deployment\n",
"If neither metric nor iteration are specified in the register_model call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = remote_run.register_model(description = description, tags = tags)\n",
"\n",
"print(remote_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Scoring Script\n",
"The scoring script is required to generate the image for deployment. It contains the code to do the predictions on input data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a YAML File for the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dependencies = remote_run.get_run_sdk_dependencies(iteration = 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"script_file_name = 'score.py'\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', remote_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image\n",
"\n",
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
"or when testing a model that is under development."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'area': \"digits\", 'type': \"automl_regression\"},\n",
" description = \"Image for automl regression sample\")\n",
"\n",
"image = Image.create(name = \"automlsampleimage\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance\n",
"\n",
"Deploy an image that contains the model and other assets needed by the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"digits\", 'type': \"automl_regression\"}, \n",
" description = 'sample service for Automl Regression')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-sample-hardware'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service\n",
"\n",
"Gets logs from a deployed web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = X_test.to_pandas_dataframe()\n",
"y_test = y_test.to_pandas_dataframe()\n",
"y_test = np.array(y_test)\n",
"y_test = y_test[:,0]\n",
"X_train = X_train.to_pandas_dataframe()\n",
"y_train = y_train.to_pandas_dataframe()\n",
"y_train = np.array(y_train)\n",
"y_train = y_train[:,0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Predict on training and test set, and calculate residual values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(X_train)\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(X_test)\n",
"y_residual_test = y_test - y_pred_test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"# Set up a multi-plot chart.\n",
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
"f.set_figheight(6)\n",
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -200, 200])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)),fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -200, 200])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)),fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred_test, color='')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements\n",
"This Predicting Hardware Performance Dataset is made available under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication License: https://creativecommons.org/publicdomain/zero/1.0/. Any rights in individual contents of the database are licensed under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication License: https://creativecommons.org/publicdomain/zero/1.0/ . The dataset itself can be found here: https://www.kaggle.com/faizunnabi/comp-hardware-performance and https://archive.ics.uci.edu/ml/datasets/Computer+Hardware\n",
"\n",
"_**Citation Found Here**_\n"
]
}
],
"metadata": {
"authors": [
{
"name": "v-rasav"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-regression-hardware-performance
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,9 @@
name: auto-ml-regression
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- paramiko<2.5.0

View File

@@ -0,0 +1,554 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/remote-amlcompute/auto-ml-remote-amlcompute.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using AmlCompute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Create or Attach existing AmlCompute to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AmlCompute with ONNX compatible config on.\n",
"5. Explore the results and save the ONNX model.\n",
"6. Inference with the ONNX model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"import azureml.dataprep as dprep"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute-with-onnx'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_iris](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iris = datasets.load_iris()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
"\n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
" iris.target, \n",
" test_size=0.2, \n",
" random_state=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ensure the x_train and x_test are pandas DataFrame."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert the X_train and X_test to pandas DataFrame and set column names,\n",
"# This is needed for initializing the input variable names of ONNX model, \n",
"# and the prediction with the ONNX model using the inference helper.\n",
"X_train = pd.DataFrame(X_train, columns=['c1', 'c2', 'c3', 'c4'])\n",
"X_test = pd.DataFrame(X_test, columns=['c1', 'c2', 'c3', 'c4'])\n",
"y_train = pd.DataFrame(y_train, columns=['label'])\n",
"\n",
"X_train.to_csv(\"data/X_train.csv\", index=False)\n",
"y_train.to_csv(\"data/y_train.csv\", index=False)\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='irisdata', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dprep reference\n",
"\n",
"Defined X and y as dprep references, which are passed to automated machine learning in the AutoMLConfig."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = dprep.read_csv(path=ds.path('irisdata/X_train.csv'), infer_column_types=True)\n",
"y = dprep.read_csv(path=ds.path('irisdata/y_train.csv'), infer_column_types=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
"\n",
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set the preprocess=True, currently the InferenceHelper only supports this mode."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 10,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X,\n",
" y = y,\n",
" enable_onnx_compatible_models=True, # This will generate ONNX compatible models.\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading executed runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best ONNX Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.\n",
"\n",
"Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, onnx_mdl = remote_run.get_output(return_onnx_model=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the best ONNX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.onnx_convert import OnnxConverter\n",
"onnx_fl_path = \"./best_model.onnx\"\n",
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict with the ONNX model, using onnxruntime package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import json\n",
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
"from azureml.train.automl import constants\n",
"\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" python_version_compatible = True\n",
"else:\n",
" python_version_compatible = False\n",
"\n",
"try:\n",
" import onnxruntime\n",
" from azureml.automl.core.onnx_convert import OnnxInferenceHelper \n",
" onnxrt_present = True\n",
"except ImportError:\n",
" onnxrt_present = False\n",
"\n",
"def get_onnx_res(run):\n",
" res_path = 'onnx_resource.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n",
" onnx_res = json.load(f)\n",
" return onnx_res\n",
"\n",
"if onnxrt_present and python_version_compatible: \n",
" mdl_bytes = onnx_mdl.SerializeToString()\n",
" onnx_res = get_onnx_res(best_run)\n",
"\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(X_test)\n",
"\n",
" print(pred_onnx)\n",
" print(pred_prob_onnx)\n",
"else:\n",
" if not python_version_compatible:\n",
" print('Please use Python version 3.6 or 3.7 to run the inference helper.') \n",
" if not onnxrt_present:\n",
" print('Please install the onnxruntime package to do the prediction with ONNX model.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,9 @@
name: auto-ml-remote-amlcompute-with-onnx
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- onnxruntime

View File

@@ -84,7 +84,8 @@
"import azureml.core\n", "import azureml.core\n",
"from azureml.core.experiment import Experiment\n", "from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n", "from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig" "from azureml.train.automl import AutoMLConfig\n",
"import azureml.dataprep as dprep"
] ]
}, },
{ {
@@ -186,18 +187,11 @@
"if not os.path.exists(project_folder):\n", "if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n", " os.makedirs(project_folder)\n",
" \n", " \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n", "pd.DataFrame(data_train.data[100:,:]).to_csv(\"data/X_train.csv\", index=False)\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n", "pd.DataFrame(data_train.target[100:]).to_csv(\"data/y_train.csv\", index=False)\n",
"\n", "\n",
"ds = ws.get_default_datastore()\n", "ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bai_data', overwrite=True, show_progress=True)\n", "ds.upload(src_dir='./data', target_path='digitsdata', overwrite=True, show_progress=True)"
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='bai_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
] ]
}, },
{ {
@@ -208,6 +202,7 @@
"source": [ "source": [
"from azureml.core.runconfig import RunConfiguration\n", "from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n", "from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n", "\n",
"# create a new RunConfig object\n", "# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n", "conda_run_config = RunConfiguration(framework=\"python\")\n",
@@ -217,28 +212,29 @@
"conda_run_config.environment.docker.enabled = True\n", "conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n", "conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n", "\n",
"# set the data reference of the run coonfiguration\n", "dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n", "\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n", "cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd" "conda_run_config.environment.python.conda_dependencies = cd"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dprep reference\n",
"\n",
"Defined X and y as dprep references, which are passed to automated machine learning in the AutoMLConfig."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%writefile $project_folder/get_data.py\n", "X = dprep.read_csv(path=ds.path('digitsdata/X_train.csv'), infer_column_types=True)\n",
"\n", "y = dprep.read_csv(path=ds.path('digitsdata/y_train.csv'), infer_column_types=True)"
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
] ]
}, },
{ {
@@ -280,7 +276,8 @@
" debug_log = 'automl_errors.log',\n", " debug_log = 'automl_errors.log',\n",
" path = project_folder,\n", " path = project_folder,\n",
" run_configuration=conda_run_config,\n", " run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n", " X = X,\n",
" y = y,\n",
" **automl_settings\n", " **automl_settings\n",
" )\n" " )\n"
] ]

View File

@@ -0,0 +1,8 @@
name: auto-ml-remote-amlcompute
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,8 @@
name: auto-ml-sample-weight
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,8 @@
name: auto-ml-sparse-data-train-test-split
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -0,0 +1,113 @@
# Table of Contents
1. [Introduction](#introduction)
1. [Setup using Azure Data Studio](#azuredatastudiosetup)
1. [Energy demand example using Azure Data Studio](#azuredatastudioenergydemand)
1. [Set using SQL Server Management Studio for SQL Server 2017 on Windows](#ssms2017)
1. [Set using SQL Server Management Studio for SQL Server 2019 on Linux](#ssms2019)
1. [Energy demand example using SQL Server Management Studio](#ssmsenergydemand)
<a name="introduction"></a>
# Introduction
SQL Server 2017 or 2019 can call Azure ML automated machine learning to create models trained on data from SQL Server.
This uses the sp_execute_external_script stored procedure, which can call Python scripts.
SQL Server 2017 and SQL Server 2019 can both run on Windows or Linux.
However, this integration is not available for SQL Server 2017 on Linux.
This folder shows how to setup the integration and has a sample that uses the integration to train and predict based on an energy demand dataset.
This integration is part of SQL Server and so can be used from any SQL client.
These instructions show using it from Azure Data Studio or SQL Server Managment Studio.
<a name="azuredatastudiosetup"></a>
## Setup using Azure Data Studio
These step show setting up the integration using Azure Data Studio.
1. If you don't already have SQL Server, you can install it from [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
1. Install Azure Data Studio from [https://docs.microsoft.com/en-us/sql/azure-data-studio/download?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/azure-data-studio/download?view=sql-server-2017)
1. Start Azure Data Studio and connect to SQL Server. [https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks?view=sql-server-2017)
1. Create a database named "automl".
1. Open the notebook how-to-use-azureml\automated-machine-learning\sql-server\setup\auto-ml-sql-setup.ipynb and follow the instructions in it.
<a name="azuredatastudioenergydemand"></a>
## Energy demand example using Azure Data Studio
Once you have completed the setup, you can try the energy demand sample in the notebook energy-demand\auto-ml-sql-energy-demand.ipynb.
This has cells to train a model, predict based on the model and show metrics for each pipeline run in training the model.
<a name="ssms2017"></a>
## Setup using SQL Server Management Studio for SQL Server 2017 on Windows
These instruction setup the integration for SQL Server 2017 on Windows.
1. If you don't already have SQL Server, you can install it from [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
2. Enable external scripts with the following commands:
```sh
sp_configure 'external scripts enabled',1
reconfigure with override
```
3. Stop SQL Server.
4. Install the automated machine learning libraries using the following commands from Administrator command prompt (If you are using a non-default SQL Server instance name, replace MSSQLSERVER in the second command with the instance name)
```sh
cd "C:\Program Files\Microsoft SQL Server"
cd "MSSQL14.MSSQLSERVER\PYTHON_SERVICES"
python.exe -m pip install azureml-sdk[automl]
python.exe -m pip install --upgrade numpy
python.exe -m pip install --upgrade sklearn
```
5. Start SQL Server and the service "SQL Server Launchpad service".
6. In Windows Firewall, click on advanced settings and in Outbound Rules, disable "Block network access for R local user accounts in SQL Server instance xxxx".
7. Execute the files in the setup folder in SQL Server Management Studio: aml_model.sql, aml_connection.sql, AutoMLGetMetrics.sql, AutoMLPredict.sql and AutoMLTrain.sql
8. Create an Azure Machine Learning Workspace. You can use the instructions at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace ](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace)
9. Create a config.json file file using the subscription id, resource group name and workspace name that you used to create the workspace. The file is described at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace)
10. Create an Azure service principal. You can do this with the commands:
```sh
az login
az account set --subscription subscriptionid
az ad sp create-for-rbac --name principlename --password password
```
11. Insert the values \<tenant\>, \<AppId\> and \<password\> returned by create-for-rbac above into the aml_connection table. Set \<path\> as the absolute path to your config.json file. Set the name to <20>Default<6C>.
<a name="ssms2019"></a>
## Setup using SQL Server Management Studio for SQL Server 2019 on Linux
1. Install SQL Server 2019 from: [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
2. Install machine learning support from: [https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproducts-allversions#ubuntu](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproducts-allversions#ubuntu)
3. Then install SQL Server management Studio from [https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017)
4. Enable external scripts with the following commands:
```sh
sp_configure 'external scripts enabled',1
reconfigure with override
```
5. Stop SQL Server.
6. Install the automated machine learning libraries using the following commands from Administrator command (If you are using a non-default SQL Server instance name, replace MSSQLSERVER in the second command with the instance name):
```sh
sudo /opt/mssql/mlservices/bin/python/python -m pip install azureml-sdk[automl]
sudo /opt/mssql/mlservices/bin/python/python -m pip install --upgrade numpy
sudo /opt/mssql/mlservices/bin/python/python -m pip install --upgrade sklearn
```
7. Start SQL Server.
8. Execute the files aml_model.sql, aml_connection.sql, AutoMLGetMetrics.sql, AutoMLPredict.sql, AutoMLForecast.sql and AutoMLTrain.sql in SQL Server Management Studio.
9. Create an Azure Machine Learning Workspace. You can use the instructions at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace)
10. Create a config.json file file using the subscription id, resource group name and workspace name that you use to create the workspace. The file is described at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace)
11. Create an Azure service principal. You can do this with the commands:
```sh
az login
az account set --subscription subscriptionid
az ad sp create-for-rbac --name principlename --password password
```
12. Insert the values \<tenant\>, \<AppId\> and \<password\> returned by create-for-rbac above into the aml_connection table. Set \<path\> as the absolute path to your config.json file. Set the name to <20>Default<6C>.
<a name="ssmsenergydemand"></a>
## Energy demand example using SQL Server Management Studio
Once you have completed the setup, you can try the energy demand sample queries.
First you need to load the sample data in the database.
1. In SQL Server Management Studio, you can right-click the database, select Tasks, then Import Flat file.
1. Select the file MachineLearningNotebooks\notebooks\how-to-use-azureml\automated-machine-learning\forecasting-energy-demand\nyc_energy.csv.
1. When you get to the column definition page, allow nulls for all columns.
You can then run the queries in the energy-demand folder:
* TrainEnergyDemand.sql runs AutoML, trains multiple models on data and selects the best model.
* ForecastEnergyDemand.sql forecasts based on the most recent training run.
* GetMetrics.sql returns all the metrics for each model in the most recent training run.

View File

@@ -0,0 +1,23 @@
-- This shows using the AutoMLForecast stored procedure to predict using a forecasting model for the nyc_energy dataset.
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
WHERE ExperimentName = 'automl-sql-forecast'
ORDER BY CreatedDate DESC)
DECLARE @max_horizon INT = 48
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
DECLARE @TestDataQuery NVARCHAR(MAX) = '
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
demand,
precip,
temp
FROM nyc_energy
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
AND timeStamp > ''' + @split_time + ''''
EXEC dbo.AutoMLForecast @input_query=@TestDataQuery,
@label_column='demand',
@time_column_name='timeStamp',
@model=@model
WITH RESULT SETS ((timeStamp DATETIME, grain NVARCHAR(255), predicted_demand FLOAT, precip FLOAT, temp FLOAT, actual_demand FLOAT))

View File

@@ -0,0 +1,10 @@
-- This lists all the metrics for all iterations for the most recent run.
DECLARE @RunId NVARCHAR(43)
DECLARE @ExperimentName NVARCHAR(255)
SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)
FROM aml_model
ORDER BY CreatedDate DESC
EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName

View File

@@ -0,0 +1,17 @@
-- This shows using the AutoMLPredict stored procedure to predict using a forecasting model for the nyc_energy dataset.
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
WHERE ExperimentName = 'automl-sql-forecast'
ORDER BY CreatedDate DESC)
EXEC dbo.AutoMLPredict @input_query='
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
demand,
precip,
temp
FROM nyc_energy
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
AND timeStamp >= ''2017-02-01''',
@label_column='demand',
@model=@model
WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))

View File

@@ -0,0 +1,25 @@
-- This shows using the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset.
DECLARE @max_horizon INT = 48
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
DECLARE @TrainDataQuery NVARCHAR(MAX) = '
SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,
demand,
precip,
temp
FROM nyc_energy
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
and timeStamp < ''' + @split_time + ''''
INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
EXEC dbo.AutoMLTrain @input_query= @TrainDataQuery,
@label_column='demand',
@task='forecasting',
@iterations=10,
@iteration_timeout_minutes=5,
@time_column_name='timeStamp',
@max_horizon=@max_horizon,
@experiment_name='automl-sql-forecast',
@primary_metric='normalized_root_mean_squared_error'

View File

@@ -0,0 +1,141 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train a model and use it for prediction\r\n",
"\r\n",
"Before running this notebook, run the auto-ml-sql-setup.ipynb notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the default database"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"USE [automl]\r\n",
"GO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"EXEC dbo.AutoMLTrain @input_query='\r\n",
"SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,\r\n",
" demand,\r\n",
"\t precip,\r\n",
"\t temp,\r\n",
"\t CASE WHEN timeStamp < ''2017-01-01'' THEN 0 ELSE 1 END AS is_validate_column\r\n",
"FROM nyc_energy\r\n",
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
"and timeStamp < ''2017-02-01''',\r\n",
"@label_column='demand',\r\n",
"@task='forecasting',\r\n",
"@iterations=10,\r\n",
"@iteration_timeout_minutes=5,\r\n",
"@time_column_name='timeStamp',\r\n",
"@is_validate_column='is_validate_column',\r\n",
"@experiment_name='automl-sql-forecast',\r\n",
"@primary_metric='normalized_root_mean_squared_error'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use the AutoMLPredict stored procedure to predict using the forecasting model for the nyc_energy dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model\r\n",
" WHERE ExperimentName = 'automl-sql-forecast'\r\n",
"\t\t\t\t\t\t\t\tORDER BY CreatedDate DESC)\r\n",
"\r\n",
"EXEC dbo.AutoMLPredict @input_query='\r\n",
"SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,\r\n",
" demand,\r\n",
"\t precip,\r\n",
"\t temp\r\n",
"FROM nyc_energy\r\n",
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
"AND timeStamp >= ''2017-02-01''',\r\n",
"@label_column='demand',\r\n",
"@model=@model\r\n",
"WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## List all the metrics for all iterations for the most recent training run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DECLARE @RunId NVARCHAR(43)\r\n",
"DECLARE @ExperimentName NVARCHAR(255)\r\n",
"\r\n",
"SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)\r\n",
"FROM aml_model\r\n",
"ORDER BY CreatedDate DESC\r\n",
"\r\n",
"EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName"
]
}
],
"metadata": {
"authors": [
{
"name": "jeffshep"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "sql",
"name": "python36"
},
"language_info": {
"name": "sql",
"version": ""
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,92 @@
-- This procedure forecast values based on a forecasting model returned by AutoMLTrain.
-- It returns a dataset with the forecasted values.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLForecast]
(
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
@label_column NVARCHAR(255)='', -- Optional name of the column from input_query, which should be ignored when predicting
@y_query_column NVARCHAR(255)='', -- Optional value column that can be used for predicting.
-- If specified, this can contain values for past times (after the model was trained)
-- and contain Nan for future times.
@forecast_column_name NVARCHAR(255) = 'predicted'
-- The name of the output column containing the forecast value.
) AS
BEGIN
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import azureml.core
import numpy as np
from azureml.train.automl import AutoMLConfig
import pickle
import codecs
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
test_data = input_data.copy()
if label_column != "" and label_column is not None:
y_test = test_data.pop(label_column).values
else:
y_test = None
if y_query_column != "" and y_query_column is not None:
y_query = test_data.pop(y_query_column).values
else:
y_query = np.repeat(np.nan, len(test_data))
X_test = test_data
if time_column_name != "" and time_column_name is not None:
X_test[time_column_name] = pd.to_datetime(X_test[time_column_name])
y_fcst, X_trans = model_obj.forecast(X_test, y_query)
def align_outputs(y_forecast, X_trans, X_test, y_test, forecast_column_name):
# Demonstrates how to get the output aligned to the inputs
# using pandas indexes. Helps understand what happened if
# the output shape differs from the input shape, or if
# the data got re-sorted by time and grain during forecasting.
# Typical causes of misalignment are:
# * we predicted some periods that were missing in actuals -> drop from eval
# * model was asked to predict past max_horizon -> increase max horizon
# * data at start of X_test was needed for lags -> provide previous periods
df_fcst = pd.DataFrame({forecast_column_name : y_forecast})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
if y_test is not None:
X_test_full[label_column] = y_test
# X_test_full does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns=''index'')
together = df_fcst.merge(X_test_full, how=''right'')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[label_column, forecast_column_name]].notnull().all(axis=1)]
return(clean)
combined_output = align_outputs(y_fcst, X_trans, X_test, y_test, forecast_column_name)
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'combined_output'
, @params = N'@model NVARCHAR(MAX), @time_column_name NVARCHAR(255), @label_column NVARCHAR(255), @y_query_column NVARCHAR(255), @forecast_column_name NVARCHAR(255)'
, @model = @model
, @time_column_name = @time_column_name
, @label_column = @label_column
, @y_query_column = @y_query_column
, @forecast_column_name = @forecast_column_name
END

View File

@@ -0,0 +1,70 @@
-- This procedure returns a list of metrics for each iteration of a run.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]
(
@run_id NVARCHAR(250), -- The RunId
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
@connection_name NVARCHAR(255)='default' -- The AML connection to use.
) AS
BEGIN
DECLARE @tenantid NVARCHAR(255)
DECLARE @appid NVARCHAR(255)
DECLARE @password NVARCHAR(255)
DECLARE @config_file NVARCHAR(255)
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
FROM aml_connection
WHERE ConnectionName = @connection_name;
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import logging
import azureml.core
import numpy as np
from azureml.core.experiment import Experiment
from azureml.train.automl.run import AutoMLRun
from azureml.core.authentication import ServicePrincipalAuthentication
from azureml.core.workspace import Workspace
auth = ServicePrincipalAuthentication(tenantid, appid, password)
ws = Workspace.from_config(path=config_file, auth=auth)
experiment = Experiment(ws, experiment_name)
ml_run = AutoMLRun(experiment = experiment, run_id = run_id)
children = list(ml_run.get_children())
iterationlist = []
metricnamelist = []
metricvaluelist = []
for run in children:
properties = run.get_properties()
if "iteration" in properties:
iteration = int(properties["iteration"])
for metric_name, metric_value in run.get_metrics().items():
if isinstance(metric_value, float):
iterationlist.append(iteration)
metricnamelist.append(metric_name)
metricvaluelist.append(metric_value)
metrics = pd.DataFrame({"iteration": iterationlist, "metric_name": metricnamelist, "metric_value": metricvaluelist})
'
, @output_data_1_name = N'metrics'
, @params = N'@run_id NVARCHAR(250),
@experiment_name NVARCHAR(32),
@tenantid NVARCHAR(255),
@appid NVARCHAR(255),
@password NVARCHAR(255),
@config_file NVARCHAR(255)'
, @run_id = @run_id
, @experiment_name = @experiment_name
, @tenantid = @tenantid
, @appid = @appid
, @password = @password
, @config_file = @config_file
WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))
END

View File

@@ -0,0 +1,41 @@
-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.
-- It returns the dataset with a new column added, which is the predicted value.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]
(
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
@label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting
) AS
BEGIN
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import azureml.core
import numpy as np
from azureml.train.automl import AutoMLConfig
import pickle
import codecs
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
test_data = input_data.copy()
if label_column != "" and label_column is not None:
y_test = test_data.pop(label_column).values
X_test = test_data
predicted = model_obj.predict(X_test)
combined_output = input_data.assign(predicted=predicted)
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'combined_output'
, @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)'
, @model = @model
, @label_column = @label_column
END

View File

@@ -0,0 +1,240 @@
-- This stored procedure uses automated machine learning to train several models
-- and returns the best model.
--
-- The result set has several columns:
-- best_run - iteration ID for the best model
-- experiment_name - experiment name pass in with the @experiment_name parameter
-- fitted_model - best model found
-- log_file_text - AutoML debug_log contents
-- workspace - name of the Azure ML workspace where run history is stored
--
-- An example call for a classification problem is:
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
-- exec dbo.AutoMLTrain @input_query='
-- SELECT top 100000
-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime
-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime
-- ,[passenger_count]
-- ,[trip_time_in_secs]
-- ,[trip_distance]
-- ,[payment_type]
-- ,[tip_class]
-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',
-- @label_column = 'tip_class',
-- @iterations=10
--
-- An example call for forecasting is:
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
-- exec dbo.AutoMLTrain @input_query='
-- select cast(timeStamp as nvarchar(30)) as timeStamp,
-- demand,
-- precip,
-- temp,
-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column
-- from nyc_energy
-- where demand is not null and precip is not null and temp is not null
-- and timeStamp < ''2017-02-01''',
-- @label_column='demand',
-- @task='forecasting',
-- @iterations=10,
-- @iteration_timeout_minutes=5,
-- @time_column_name='timeStamp',
-- @is_validate_column='is_validate_column',
-- @experiment_name='automl-sql-forecast',
-- @primary_metric='normalized_root_mean_squared_error'
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]
(
@input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.
@label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.
@primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.
@iterations INT=100, -- The maximum number of pipelines to train.
@task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
@iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline.
@experiment_timeout_minutes INT = 60, -- The maximum time in minutes for training all pipelines.
@n_cross_validations INT = 3, -- The number of cross validations.
@blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.
-- The list of possible models can be found at:
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
@whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.
-- The list of possible models can be found at:
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
@experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.
@sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.
@is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.
-- In the values of the column, 0 means for training and 1 means for validation.
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
@connection_name NVARCHAR(255)='default', -- The AML connection to use.
@max_horizon INT = 0 -- A forecast horizon is a time span into the future (or just beyond the latest date in the training data)
-- where forecasts of the target quantity are needed.
-- For example, if data is recorded daily and max_horizon is 5, we will predict 5 days ahead.
) AS
BEGIN
DECLARE @tenantid NVARCHAR(255)
DECLARE @appid NVARCHAR(255)
DECLARE @password NVARCHAR(255)
DECLARE @config_file NVARCHAR(255)
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
FROM aml_connection
WHERE ConnectionName = @connection_name;
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import logging
import azureml.core
import pandas as pd
import numpy as np
from azureml.core.experiment import Experiment
from azureml.train.automl import AutoMLConfig
from sklearn import datasets
import pickle
import codecs
from azureml.core.authentication import ServicePrincipalAuthentication
from azureml.core.workspace import Workspace
if __name__.startswith("sqlindb"):
auth = ServicePrincipalAuthentication(tenantid, appid, password)
ws = Workspace.from_config(path=config_file, auth=auth)
project_folder = "./sample_projects/" + experiment_name
experiment = Experiment(ws, experiment_name)
data_train = input_data
X_valid = None
y_valid = None
sample_weight_valid = None
if is_validate_column != "" and is_validate_column is not None:
data_train = input_data[input_data[is_validate_column] <= 0]
data_valid = input_data[input_data[is_validate_column] > 0]
data_train.pop(is_validate_column)
data_valid.pop(is_validate_column)
y_valid = data_valid.pop(label_column).values
if sample_weight_column != "" and sample_weight_column is not None:
sample_weight_valid = data_valid.pop(sample_weight_column).values
X_valid = data_valid
n_cross_validations = None
y_train = data_train.pop(label_column).values
sample_weight = None
if sample_weight_column != "" and sample_weight_column is not None:
sample_weight = data_train.pop(sample_weight_column).values
X_train = data_train
if experiment_timeout_minutes == 0:
experiment_timeout_minutes = None
if experiment_exit_score == 0:
experiment_exit_score = None
if blacklist_models == "":
blacklist_models = None
if blacklist_models is not None:
blacklist_models = blacklist_models.replace(" ", "").split(",")
if whitelist_models == "":
whitelist_models = None
if whitelist_models is not None:
whitelist_models = whitelist_models.replace(" ", "").split(",")
automl_settings = {}
preprocess = True
if time_column_name != "" and time_column_name is not None:
automl_settings = { "time_column_name": time_column_name }
preprocess = False
if max_horizon > 0:
automl_settings["max_horizon"] = max_horizon
log_file_name = "automl_sqlindb_errors.log"
automl_config = AutoMLConfig(task = task,
debug_log = log_file_name,
primary_metric = primary_metric,
iteration_timeout_minutes = iteration_timeout_minutes,
experiment_timeout_minutes = experiment_timeout_minutes,
iterations = iterations,
n_cross_validations = n_cross_validations,
preprocess = preprocess,
verbosity = logging.INFO,
X = X_train,
y = y_train,
path = project_folder,
blacklist_models = blacklist_models,
whitelist_models = whitelist_models,
experiment_exit_score = experiment_exit_score,
sample_weight = sample_weight,
X_valid = X_valid,
y_valid = y_valid,
sample_weight_valid = sample_weight_valid,
**automl_settings)
local_run = experiment.submit(automl_config, show_output = True)
best_run, fitted_model = local_run.get_output()
pickled_model = codecs.encode(pickle.dumps(fitted_model), "base64").decode()
log_file_text = ""
try:
with open(log_file_name, "r") as log_file:
log_file_text = log_file.read()
except:
log_file_text = "Log file not found"
returned_model = pd.DataFrame({"best_run": [best_run.id], "experiment_name": [experiment_name], "fitted_model": [pickled_model], "log_file_text": [log_file_text], "workspace": [ws.name]}, dtype=np.dtype(np.str))
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'returned_model'
, @params = N'@label_column NVARCHAR(255),
@primary_metric NVARCHAR(40),
@iterations INT, @task NVARCHAR(40),
@experiment_name NVARCHAR(32),
@iteration_timeout_minutes INT,
@experiment_timeout_minutes INT,
@n_cross_validations INT,
@blacklist_models NVARCHAR(MAX),
@whitelist_models NVARCHAR(MAX),
@experiment_exit_score FLOAT,
@sample_weight_column NVARCHAR(255),
@is_validate_column NVARCHAR(255),
@time_column_name NVARCHAR(255),
@tenantid NVARCHAR(255),
@appid NVARCHAR(255),
@password NVARCHAR(255),
@config_file NVARCHAR(255),
@max_horizon INT'
, @label_column = @label_column
, @primary_metric = @primary_metric
, @iterations = @iterations
, @task = @task
, @experiment_name = @experiment_name
, @iteration_timeout_minutes = @iteration_timeout_minutes
, @experiment_timeout_minutes = @experiment_timeout_minutes
, @n_cross_validations = @n_cross_validations
, @blacklist_models = @blacklist_models
, @whitelist_models = @whitelist_models
, @experiment_exit_score = @experiment_exit_score
, @sample_weight_column = @sample_weight_column
, @is_validate_column = @is_validate_column
, @time_column_name = @time_column_name
, @tenantid = @tenantid
, @appid = @appid
, @password = @password
, @config_file = @config_file
, @max_horizon = @max_horizon
WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))
END

View File

@@ -0,0 +1,18 @@
-- This is a table to store the Azure ML connection information.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[aml_connection](
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
[ConnectionName] [nvarchar](255) NULL,
[TenantId] [nvarchar](255) NULL,
[AppId] [nvarchar](255) NULL,
[Password] [nvarchar](255) NULL,
[ConfigFile] [nvarchar](255) NULL
) ON [PRIMARY]
GO

View File

@@ -0,0 +1,22 @@
-- This is a table to hold the results from the AutoMLTrain procedure.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[aml_model](
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
[Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.
[RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.
[CreatedDate] [datetime] NULL,
[ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name
[WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name
[LogFileText] [nvarchar](max) NULL
)
GO
ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]
GO

View File

@@ -0,0 +1,562 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Set up Azure ML Automated Machine Learning on SQL Server 2019 CTP 2.4 big data cluster\r\n",
"\r\n",
"\\# Prerequisites: \r\n",
"\\# - An Azure subscription and resource group \r\n",
"\\# - An Azure Machine Learning workspace \r\n",
"\\# - A SQL Server 2019 CTP 2.4 big data cluster with Internet access and a database named 'automl' \r\n",
"\\# - Azure CLI \r\n",
"\\# - kubectl command \r\n",
"\\# - The https://github.com/Azure/MachineLearningNotebooks repository downloaded (cloned) to your local machine\r\n",
"\r\n",
"\\# In the 'automl' database, create a table named 'dbo.nyc_energy' as follows: \r\n",
"\\# - In SQL Server Management Studio, right-click the 'automl' database, select Tasks, then Import Flat File. \r\n",
"\\# - Select the file AzureMlCli\\notebooks\\how-to-use-azureml\\automated-machine-learning\\forecasting-energy-demand\\nyc_energy.csv. \r\n",
"\\# - Using the \"Modify Columns\" page, allow nulls for all columns. \r\n",
"\r\n",
"\\# Create an Azure Machine Learning Workspace using the instructions at https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace \r\n",
"\r\n",
"\\# Create an Azure service principal. You can do this with the following commands: \r\n",
"\r\n",
"az login \r\n",
"az account set --subscription *subscriptionid* \r\n",
"\r\n",
"\\# The following command prints out the **appId** and **tenant**, \r\n",
"\\# which you insert into the indicated cell later in this notebook \r\n",
"\\# to allow AutoML to authenticate with Azure: \r\n",
"\r\n",
"az ad sp create-for-rbac --name *principlename* --password *password*\r\n",
"\r\n",
"\\# Log into the master instance of SQL Server 2019 CTP 2.4: \r\n",
"kubectl exec -it mssql-master-pool-0 -n *clustername* -c mssql-server -- /bin/bash\r\n",
"\r\n",
"mkdir /tmp/aml\r\n",
"\r\n",
"cd /tmp/aml\r\n",
"\r\n",
"\\# **Modify** the following with your subscription_id, resource_group, and workspace_name: \r\n",
"cat > config.json << EOF \r\n",
"{ \r\n",
" \"subscription_id\": \"123456ab-78cd-0123-45ef-abcd12345678\", \r\n",
" \"resource_group\": \"myrg1\", \r\n",
" \"workspace_name\": \"myws1\" \r\n",
"} \r\n",
"EOF\r\n",
"\r\n",
"\\# The directory referenced below is appropriate for the master instance of SQL Server 2019 CTP 2.4.\r\n",
"\r\n",
"cd /opt/mssql/mlservices/runtime/python/bin\r\n",
"\r\n",
"./python -m pip install azureml-sdk[automl]\r\n",
"\r\n",
"./python -m pip install --upgrade numpy \r\n",
"\r\n",
"./python -m pip install --upgrade sklearn\r\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.png)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Enable external scripts to allow invoking Python\r\n",
"sp_configure 'external scripts enabled',1 \r\n",
"reconfigure with override \r\n",
"GO\r\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Use database 'automl'\r\n",
"USE [automl]\r\n",
"GO"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This is a table to hold the Azure ML connection information.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"\r\n",
"CREATE TABLE [dbo].[aml_connection](\r\n",
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
"\t[ConnectionName] [nvarchar](255) NULL,\r\n",
"\t[TenantId] [nvarchar](255) NULL,\r\n",
"\t[AppId] [nvarchar](255) NULL,\r\n",
"\t[Password] [nvarchar](255) NULL,\r\n",
"\t[ConfigFile] [nvarchar](255) NULL\r\n",
") ON [PRIMARY]\r\n",
"GO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Copy the values from create-for-rbac above into the cell below"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Use the following values:\r\n",
"-- Leave the name as 'Default'\r\n",
"-- Insert <tenant> returned by create-for-rbac above\r\n",
"-- Insert <AppId> returned by create-for-rbac above\r\n",
"-- Insert <password> used in create-for-rbac above\r\n",
"-- Leave <path> as '/tmp/aml/config.json'\r\n",
"INSERT INTO [dbo].[aml_connection] \r\n",
"VALUES (\r\n",
" N'Default', -- Name\r\n",
" N'11111111-2222-3333-4444-555555555555', -- Tenant\r\n",
" N'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', -- AppId\r\n",
" N'insertpasswordhere', -- Password\r\n",
" N'/tmp/aml/config.json' -- Path\r\n",
" );\r\n",
"GO"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This is a table to hold the results from the AutoMLTrain procedure.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"\r\n",
"CREATE TABLE [dbo].[aml_model](\r\n",
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
" [Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.\r\n",
" [RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.\r\n",
" [CreatedDate] [datetime] NULL,\r\n",
" [ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name\r\n",
" [WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name\r\n",
"\t[LogFileText] [nvarchar](max) NULL\r\n",
") \r\n",
"GO\r\n",
"\r\n",
"ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]\r\n",
"GO\r\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This stored procedure uses automated machine learning to train several models\r\n",
"-- and return the best model.\r\n",
"--\r\n",
"-- The result set has several columns:\r\n",
"-- best_run - ID of the best model found\r\n",
"-- experiment_name - training run name\r\n",
"-- fitted_model - best model found\r\n",
"-- log_file_text - console output\r\n",
"-- workspace - name of the Azure ML workspace where run history is stored\r\n",
"--\r\n",
"-- An example call for a classification problem is:\r\n",
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"-- exec dbo.AutoMLTrain @input_query='\r\n",
"-- SELECT top 100000 \r\n",
"-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime\r\n",
"-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime\r\n",
"-- ,[passenger_count]\r\n",
"-- ,[trip_time_in_secs]\r\n",
"-- ,[trip_distance]\r\n",
"-- ,[payment_type]\r\n",
"-- ,[tip_class]\r\n",
"-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',\r\n",
"-- @label_column = 'tip_class',\r\n",
"-- @iterations=10\r\n",
"-- \r\n",
"-- An example call for forecasting is:\r\n",
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"-- exec dbo.AutoMLTrain @input_query='\r\n",
"-- select cast(timeStamp as nvarchar(30)) as timeStamp,\r\n",
"-- demand,\r\n",
"-- \t precip,\r\n",
"-- \t temp,\r\n",
"-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column\r\n",
"-- from nyc_energy\r\n",
"-- where demand is not null and precip is not null and temp is not null\r\n",
"-- and timeStamp < ''2017-02-01''',\r\n",
"-- @label_column='demand',\r\n",
"-- @task='forecasting',\r\n",
"-- @iterations=10,\r\n",
"-- @iteration_timeout_minutes=5,\r\n",
"-- @time_column_name='timeStamp',\r\n",
"-- @is_validate_column='is_validate_column',\r\n",
"-- @experiment_name='automl-sql-forecast',\r\n",
"-- @primary_metric='normalized_root_mean_squared_error'\r\n",
"\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]\r\n",
" (\r\n",
" @input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.\r\n",
" @label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.\r\n",
" @primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.\r\n",
" @iterations INT=100, -- The maximum number of pipelines to train.\r\n",
" @task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.\r\n",
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
" @iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline. \r\n",
" @experiment_timeout_minutes INT = 60, -- The maximum time in minutes for training all pipelines.\r\n",
" @n_cross_validations INT = 3, -- The number of cross validations.\r\n",
" @blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.\r\n",
" -- The list of possible models can be found at:\r\n",
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
" @whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.\r\n",
" -- The list of possible models can be found at:\r\n",
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
" @experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.\r\n",
" @sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.\r\n",
" @is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.\r\n",
"\t -- In the values of the column, 0 means for training and 1 means for validation.\r\n",
" @time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.\r\n",
"\t@connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
" ) AS\r\n",
"BEGIN\r\n",
"\r\n",
" DECLARE @tenantid NVARCHAR(255)\r\n",
" DECLARE @appid NVARCHAR(255)\r\n",
" DECLARE @password NVARCHAR(255)\r\n",
" DECLARE @config_file NVARCHAR(255)\r\n",
"\r\n",
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
"\tFROM aml_connection\r\n",
"\tWHERE ConnectionName = @connection_name;\r\n",
"\r\n",
"\tEXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
"import logging \r\n",
"import azureml.core \r\n",
"import pandas as pd\r\n",
"import numpy as np\r\n",
"from azureml.core.experiment import Experiment \r\n",
"from azureml.train.automl import AutoMLConfig \r\n",
"from sklearn import datasets \r\n",
"import pickle\r\n",
"import codecs\r\n",
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
"from azureml.core.workspace import Workspace \r\n",
"\r\n",
"if __name__.startswith(\"sqlindb\"):\r\n",
" auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
" \r\n",
" ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
" \r\n",
" project_folder = \"./sample_projects/\" + experiment_name\r\n",
" \r\n",
" experiment = Experiment(ws, experiment_name) \r\n",
"\r\n",
" data_train = input_data\r\n",
" X_valid = None\r\n",
" y_valid = None\r\n",
" sample_weight_valid = None\r\n",
"\r\n",
" if is_validate_column != \"\" and is_validate_column is not None:\r\n",
" data_train = input_data[input_data[is_validate_column] <= 0]\r\n",
" data_valid = input_data[input_data[is_validate_column] > 0]\r\n",
" data_train.pop(is_validate_column)\r\n",
" data_valid.pop(is_validate_column)\r\n",
" y_valid = data_valid.pop(label_column).values\r\n",
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
" sample_weight_valid = data_valid.pop(sample_weight_column).values\r\n",
" X_valid = data_valid\r\n",
" n_cross_validations = None\r\n",
"\r\n",
" y_train = data_train.pop(label_column).values\r\n",
"\r\n",
" sample_weight = None\r\n",
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
" sample_weight = data_train.pop(sample_weight_column).values\r\n",
"\r\n",
" X_train = data_train\r\n",
"\r\n",
" if experiment_timeout_minutes == 0:\r\n",
" experiment_timeout_minutes = None\r\n",
"\r\n",
" if experiment_exit_score == 0:\r\n",
" experiment_exit_score = None\r\n",
"\r\n",
" if blacklist_models == \"\":\r\n",
" blacklist_models = None\r\n",
"\r\n",
" if blacklist_models is not None:\r\n",
" blacklist_models = blacklist_models.replace(\" \", \"\").split(\",\")\r\n",
"\r\n",
" if whitelist_models == \"\":\r\n",
" whitelist_models = None\r\n",
"\r\n",
" if whitelist_models is not None:\r\n",
" whitelist_models = whitelist_models.replace(\" \", \"\").split(\",\")\r\n",
"\r\n",
" automl_settings = {}\r\n",
" preprocess = True\r\n",
" if time_column_name != \"\" and time_column_name is not None:\r\n",
" automl_settings = { \"time_column_name\": time_column_name }\r\n",
" preprocess = False\r\n",
"\r\n",
" log_file_name = \"automl_errors.log\"\r\n",
"\t \r\n",
" automl_config = AutoMLConfig(task = task, \r\n",
" debug_log = log_file_name, \r\n",
" primary_metric = primary_metric, \r\n",
" iteration_timeout_minutes = iteration_timeout_minutes, \r\n",
" experiment_timeout_minutes = experiment_timeout_minutes,\r\n",
" iterations = iterations, \r\n",
" n_cross_validations = n_cross_validations, \r\n",
" preprocess = preprocess,\r\n",
" verbosity = logging.INFO, \r\n",
" enable_ensembling = False,\r\n",
" X = X_train, \r\n",
" y = y_train, \r\n",
" path = project_folder,\r\n",
" blacklist_models = blacklist_models,\r\n",
" whitelist_models = whitelist_models,\r\n",
" experiment_exit_score = experiment_exit_score,\r\n",
" sample_weight = sample_weight,\r\n",
" X_valid = X_valid,\r\n",
" y_valid = y_valid,\r\n",
" sample_weight_valid = sample_weight_valid,\r\n",
" **automl_settings) \r\n",
" \r\n",
" local_run = experiment.submit(automl_config, show_output = True) \r\n",
"\r\n",
" best_run, fitted_model = local_run.get_output()\r\n",
"\r\n",
" pickled_model = codecs.encode(pickle.dumps(fitted_model), \"base64\").decode()\r\n",
"\r\n",
" log_file_text = \"\"\r\n",
"\r\n",
" try:\r\n",
" with open(log_file_name, \"r\") as log_file:\r\n",
" log_file_text = log_file.read()\r\n",
" except:\r\n",
" log_file_text = \"Log file not found\"\r\n",
"\r\n",
" returned_model = pd.DataFrame({\"best_run\": [best_run.id], \"experiment_name\": [experiment_name], \"fitted_model\": [pickled_model], \"log_file_text\": [log_file_text], \"workspace\": [ws.name]}, dtype=np.dtype(np.str))\r\n",
"'\r\n",
"\t, @input_data_1 = @input_query\r\n",
"\t, @input_data_1_name = N'input_data'\r\n",
"\t, @output_data_1_name = N'returned_model'\r\n",
"\t, @params = N'@label_column NVARCHAR(255), \r\n",
"\t @primary_metric NVARCHAR(40),\r\n",
"\t\t\t\t @iterations INT, @task NVARCHAR(40),\r\n",
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
"\t\t\t\t @iteration_timeout_minutes INT,\r\n",
"\t\t\t\t @experiment_timeout_minutes INT,\r\n",
"\t\t\t\t @n_cross_validations INT,\r\n",
"\t\t\t\t @blacklist_models NVARCHAR(MAX),\r\n",
"\t\t\t\t @whitelist_models NVARCHAR(MAX),\r\n",
"\t\t\t\t @experiment_exit_score FLOAT,\r\n",
"\t\t\t\t @sample_weight_column NVARCHAR(255),\r\n",
"\t\t\t\t @is_validate_column NVARCHAR(255),\r\n",
"\t\t\t\t @time_column_name NVARCHAR(255),\r\n",
"\t\t\t\t @tenantid NVARCHAR(255),\r\n",
"\t\t\t\t @appid NVARCHAR(255),\r\n",
"\t\t\t\t @password NVARCHAR(255),\r\n",
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
"\t, @label_column = @label_column\r\n",
"\t, @primary_metric = @primary_metric\r\n",
"\t, @iterations = @iterations\r\n",
"\t, @task = @task\r\n",
"\t, @experiment_name = @experiment_name\r\n",
"\t, @iteration_timeout_minutes = @iteration_timeout_minutes\r\n",
"\t, @experiment_timeout_minutes = @experiment_timeout_minutes\r\n",
"\t, @n_cross_validations = @n_cross_validations\r\n",
"\t, @blacklist_models = @blacklist_models\r\n",
"\t, @whitelist_models = @whitelist_models\r\n",
"\t, @experiment_exit_score = @experiment_exit_score\r\n",
"\t, @sample_weight_column = @sample_weight_column\r\n",
"\t, @is_validate_column = @is_validate_column\r\n",
"\t, @time_column_name = @time_column_name\r\n",
"\t, @tenantid = @tenantid\r\n",
"\t, @appid = @appid\r\n",
"\t, @password = @password\r\n",
"\t, @config_file = @config_file\r\n",
"WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))\r\n",
"END"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This procedure returns a list of metrics for each iteration of a training run.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]\r\n",
" (\r\n",
"\t@run_id NVARCHAR(250), -- The RunId\r\n",
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
" @connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
" ) AS\r\n",
"BEGIN\r\n",
" DECLARE @tenantid NVARCHAR(255)\r\n",
" DECLARE @appid NVARCHAR(255)\r\n",
" DECLARE @password NVARCHAR(255)\r\n",
" DECLARE @config_file NVARCHAR(255)\r\n",
"\r\n",
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
"\tFROM aml_connection\r\n",
"\tWHERE ConnectionName = @connection_name;\r\n",
"\r\n",
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
"import logging \r\n",
"import azureml.core \r\n",
"import numpy as np\r\n",
"from azureml.core.experiment import Experiment \r\n",
"from azureml.train.automl.run import AutoMLRun\r\n",
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
"from azureml.core.workspace import Workspace \r\n",
"\r\n",
"auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
" \r\n",
"ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
" \r\n",
"experiment = Experiment(ws, experiment_name) \r\n",
"\r\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\r\n",
"\r\n",
"children = list(ml_run.get_children())\r\n",
"iterationlist = []\r\n",
"metricnamelist = []\r\n",
"metricvaluelist = []\r\n",
"\r\n",
"for run in children:\r\n",
" properties = run.get_properties()\r\n",
" if \"iteration\" in properties:\r\n",
" iteration = int(properties[\"iteration\"])\r\n",
" for metric_name, metric_value in run.get_metrics().items():\r\n",
" if isinstance(metric_value, float):\r\n",
" iterationlist.append(iteration)\r\n",
" metricnamelist.append(metric_name)\r\n",
" metricvaluelist.append(metric_value)\r\n",
" \r\n",
"metrics = pd.DataFrame({\"iteration\": iterationlist, \"metric_name\": metricnamelist, \"metric_value\": metricvaluelist})\r\n",
"'\r\n",
" , @output_data_1_name = N'metrics'\r\n",
"\t, @params = N'@run_id NVARCHAR(250), \r\n",
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
" \t\t\t\t @tenantid NVARCHAR(255),\r\n",
"\t\t\t\t @appid NVARCHAR(255),\r\n",
"\t\t\t\t @password NVARCHAR(255),\r\n",
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
" , @run_id = @run_id\r\n",
"\t, @experiment_name = @experiment_name\r\n",
"\t, @tenantid = @tenantid\r\n",
"\t, @appid = @appid\r\n",
"\t, @password = @password\r\n",
"\t, @config_file = @config_file\r\n",
"WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))\r\n",
"END"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.\r\n",
"-- It returns the dataset with a new column added, which is the predicted value.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]\r\n",
" (\r\n",
" @input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.\r\n",
" @model NVARCHAR(MAX), -- A model returned from AutoMLTrain.\r\n",
" @label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting\r\n",
" ) AS \r\n",
"BEGIN \r\n",
" \r\n",
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd \r\n",
"import azureml.core \r\n",
"import numpy as np \r\n",
"from azureml.train.automl import AutoMLConfig \r\n",
"import pickle \r\n",
"import codecs \r\n",
" \r\n",
"model_obj = pickle.loads(codecs.decode(model.encode(), \"base64\")) \r\n",
" \r\n",
"test_data = input_data.copy() \r\n",
"\r\n",
"if label_column != \"\" and label_column is not None:\r\n",
" y_test = test_data.pop(label_column).values \r\n",
"X_test = test_data \r\n",
" \r\n",
"predicted = model_obj.predict(X_test) \r\n",
" \r\n",
"combined_output = input_data.assign(predicted=predicted)\r\n",
" \r\n",
"' \r\n",
" , @input_data_1 = @input_query \r\n",
" , @input_data_1_name = N'input_data' \r\n",
" , @output_data_1_name = N'combined_output' \r\n",
" , @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)' \r\n",
" , @model = @model \r\n",
"\t, @label_column = @label_column\r\n",
"END"
]
}
],
"metadata": {
"authors": [
{
"name": "jeffshep"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "sql",
"name": "python36"
},
"language_info": {
"name": "sql",
"version": ""
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-subsampling-local
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml

View File

@@ -593,7 +593,10 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()" "# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['datatransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
] ]
}, },
{ {

View File

@@ -13,7 +13,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n", "# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n", "To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n", "\n",
"The notebook will show:\n", "The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n", "1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
@@ -675,7 +675,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Next: ADLA as a Compute Target\n", "# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](./aml-pipelines-use-adla-as-compute-target.ipynb) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline." "To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](https://aka.ms/pl-adla) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
] ]
}, },
{ {

View File

@@ -1 +0,0 @@
Under contruction...please visit again soon!

View File

@@ -77,7 +77,7 @@
"from azureml.core import Workspace\n", "from azureml.core import Workspace\n",
"\n", "\n",
"ws = Workspace.from_config()\n", "ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
] ]
}, },
{ {
@@ -108,11 +108,11 @@
"source": [ "source": [
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"\n", "\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n", "model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n", " model_name=\"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n", " tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n", " description=\"Ridge regression model to predict diabetes\",\n",
" workspace = ws)" " workspace=ws)"
] ]
}, },
{ {
@@ -177,7 +177,7 @@
"from azureml.core.webservice import AciWebservice, Webservice\n", "from azureml.core.webservice import AciWebservice, Webservice\n",
"from azureml.exceptions import WebserviceException\n", "from azureml.exceptions import WebserviceException\n",
"\n", "\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1)\n", "deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"aci_service_name = 'aciservice1'\n", "aci_service_name = 'aciservice1'\n",
"\n", "\n",
"try:\n", "try:\n",
@@ -215,7 +215,7 @@
" [10,9,8,7,6,5,4,3,2,1]\n", " [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n", "]})\n",
"\n", "\n",
"test_sample_encoded = bytes(test_sample,encoding = 'utf8')\n", "test_sample_encoded = bytes(test_sample, encoding='utf8')\n",
"prediction = service.run(input_data=test_sample_encoded)\n", "prediction = service.run(input_data=test_sample_encoded)\n",
"print(prediction)" "print(prediction)"
] ]
@@ -247,15 +247,38 @@
"source": [ "source": [
"### Model Profiling\n", "### Model Profiling\n",
"\n", "\n",
"you can also take advantage of profiling feature for model\n", "You can also take advantage of the profiling feature to estimate CPU and memory requirements for models.\n",
"\n", "\n",
"```python\n", "```python\n",
"\n", "profile = Model.profile(ws, \"profilename\", [model], inference_config, test_sample)\n",
"profile = model.profile(ws, \"profilename\", [model], inference_config, test_sample)\n",
"profile.wait_for_profiling(True)\n", "profile.wait_for_profiling(True)\n",
"profiling_results = profile.get_results()\n", "profiling_results = profile.get_results()\n",
"print(profiling_results)\n", "print(profiling_results)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Packaging\n",
"\n", "\n",
"If you want to build a Docker image that encapsulates your model and its dependencies, you can use the model packaging option. The output image will be pushed to your workspace's ACR.\n",
"\n",
"You must include an Environment object in your inference configuration to use `Model.package()`.\n",
"\n",
"```python\n",
"package = Model.package(ws, [model], inference_config)\n",
"package.wait_for_creation(show_output=True) # Or show_output=False to hide the Docker build logs.\n",
"package.pull()\n",
"```\n",
"\n",
"Instead of a fully-built image, you can also generate a Dockerfile and download all the assets needed to build an image on top of your Environment.\n",
"\n",
"```python\n",
"package = Model.package(ws, [model], inference_config, generate_dockerfile=True)\n",
"package.wait_for_creation(show_output=True)\n",
"package.save(\"./local_context_dir\")\n",
"```" "```"
] ]
} }

View File

@@ -0,0 +1,4 @@
name: model-register-and-deploy
dependencies:
- pip:
- azureml-sdk

View File

@@ -72,7 +72,7 @@
"from azureml.core import Workspace\n", "from azureml.core import Workspace\n",
"\n", "\n",
"ws = Workspace.from_config()\n", "ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
] ]
}, },
{ {
@@ -103,11 +103,11 @@
"source": [ "source": [
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"\n", "\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n", "model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n", " model_name=\"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n", " tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n", " description=\"Ridge regression model to predict diabetes\",\n",
" workspace = ws)" " workspace=ws)"
] ]
}, },
{ {
@@ -127,10 +127,10 @@
"\n", "\n",
"source_directory = \"C:/abc\"\n", "source_directory = \"C:/abc\"\n",
"\n", "\n",
"os.makedirs(source_directory, exist_ok = True)\n", "os.makedirs(source_directory, exist_ok=True)\n",
"os.makedirs(\"C:/abc/x/y\", exist_ok = True)\n", "os.makedirs(\"C:/abc/x/y\", exist_ok=True)\n",
"os.makedirs(\"C:/abc/env\", exist_ok = True)\n", "os.makedirs(\"C:/abc/env\", exist_ok=True)\n",
"os.makedirs(\"C:/abc/dockerstep\", exist_ok = True)" "os.makedirs(\"C:/abc/dockerstep\", exist_ok=True)"
] ]
}, },
{ {
@@ -253,7 +253,7 @@
"from azureml.core.model import InferenceConfig\n", "from azureml.core.model import InferenceConfig\n",
"\n", "\n",
"inference_config = InferenceConfig(source_directory=\"C:/abc\",\n", "inference_config = InferenceConfig(source_directory=\"C:/abc\",\n",
" runtime= \"python\", \n", " runtime=\"python\", \n",
" entry_script=\"x/y/score.py\",\n", " entry_script=\"x/y/score.py\",\n",
" conda_file=\"env/myenv.yml\", \n", " conda_file=\"env/myenv.yml\", \n",
" extra_docker_file_steps=\"dockerstep/customDockerStep.txt\")" " extra_docker_file_steps=\"dockerstep/customDockerStep.txt\")"
@@ -271,15 +271,10 @@
"\n", "\n",
"NOTE:\n", "NOTE:\n",
"\n", "\n",
"we require docker running with linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running\n", "The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:\n",
"\n", "\n",
" powershell command to switch to linux engine\n", " # PowerShell command to switch to Linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine\n", " & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine"
"\n",
"and c drive is shared https://docs.docker.com/docker-for-windows/#shared-drives\n",
"sometimes you have to reshare c drive as docker \n",
"\n",
"<img src=\"./dockerSharedDrive.JPG\" align=\"left\"/>"
] ]
}, },
{ {
@@ -295,7 +290,7 @@
"source": [ "source": [
"from azureml.core.webservice import LocalWebservice\n", "from azureml.core.webservice import LocalWebservice\n",
"\n", "\n",
"#this is optional, if not provided we choose random port\n", "# This is optional, if not provided Docker will choose a random unused port.\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n", "deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n", "\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n", "local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
@@ -427,9 +422,8 @@
"local_service.reload()\n", "local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n", "print(\"--------------------------------------------------------------\")\n",
"\n", "\n",
"# after reload now if you call run this will return updated return message\n", "# After calling reload(), run() will return the updated message.\n",
"\n", "local_service.run(input_data=sample_input)"
"print(local_service.run(input_data=sample_input))"
] ]
}, },
{ {
@@ -442,9 +436,9 @@
"\n", "\n",
"```python\n", "```python\n",
"\n", "\n",
"local_service.update(models = [SomeOtherModelObject],\n", "local_service.update(models=[SomeOtherModelObject],\n",
" deployment_config = local_config,\n", " deployment_config=local_config,\n",
" inference_config = inference_config)\n", " inference_config=inference_config)\n",
"```" "```"
] ]
}, },
@@ -468,7 +462,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "raymondl" "name": "keriehm"
} }
], ],
"kernelspec": { "kernelspec": {

View File

@@ -68,7 +68,7 @@
"from azureml.core import Workspace\n", "from azureml.core import Workspace\n",
"\n", "\n",
"ws = Workspace.from_config()\n", "ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
] ]
}, },
{ {
@@ -99,11 +99,31 @@
"source": [ "source": [
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"\n", "\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n", "model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n", " model_name=\"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n", " tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n", " description=\"Ridge regression model to predict diabetes\",\n",
" workspace = ws)" " workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.environment import Environment\n",
"\n",
"environment = Environment(\"LocalDeploy\")\n",
"environment.python.conda_dependencies = CondaDependencies(\"myenv.yml\")"
] ]
}, },
{ {
@@ -121,9 +141,8 @@
"source": [ "source": [
"from azureml.core.model import InferenceConfig\n", "from azureml.core.model import InferenceConfig\n",
"\n", "\n",
"inference_config = InferenceConfig(runtime= \"python\", \n", "inference_config = InferenceConfig(entry_script=\"score.py\",\n",
" entry_script=\"score.py\",\n", " environment=environment)"
" conda_file=\"myenv.yml\")"
] ]
}, },
{ {
@@ -138,15 +157,10 @@
"\n", "\n",
"NOTE:\n", "NOTE:\n",
"\n", "\n",
"we require docker running with linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running\n", "The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:\n",
"\n", "\n",
" powershell command to switch to linux engine\n", " # PowerShell command to switch to Linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine\n", " & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine"
"\n",
"and c drive is shared https://docs.docker.com/docker-for-windows/#shared-drives\n",
"sometimes you have to reshare c drive as docker \n",
"\n",
"<img src=\"./dockerSharedDrive.JPG\" align=\"left\"/>"
] ]
}, },
{ {
@@ -157,7 +171,7 @@
"source": [ "source": [
"from azureml.core.webservice import LocalWebservice\n", "from azureml.core.webservice import LocalWebservice\n",
"\n", "\n",
"#this is optional, if not provided we choose random port\n", "# This is optional, if not provided Docker will choose a random unused port.\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n", "deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n", "\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n", "local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
@@ -221,7 +235,7 @@
"\n", "\n",
"sample_input = bytes(sample_input, encoding='utf-8')\n", "sample_input = bytes(sample_input, encoding='utf-8')\n",
"\n", "\n",
"print(local_service.run(input_data=sample_input))" "local_service.run(input_data=sample_input)"
] ]
}, },
{ {
@@ -282,9 +296,8 @@
"local_service.reload()\n", "local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n", "print(\"--------------------------------------------------------------\")\n",
"\n", "\n",
"# after reload now if you call run this will return updated return message\n", "# After calling reload(), run() will return the updated message.\n",
"\n", "local_service.run(input_data=sample_input)"
"print(local_service.run(input_data=sample_input))"
] ]
}, },
{ {
@@ -296,10 +309,9 @@
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n", "If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
"\n", "\n",
"```python\n", "```python\n",
"\n", "local_service.update(models=[SomeOtherModelObject],\n",
"local_service.update(models = [SomeOtherModelObject],\n", " inference_config=inference_config,\n",
" deployment_config = local_config,\n", " deployment_config=local_config)\n",
" inference_config = inference_config)\n",
"```" "```"
] ]
}, },
@@ -323,7 +335,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "raymondl" "name": "keriehm"
} }
], ],
"kernelspec": { "kernelspec": {

View File

@@ -12,7 +12,7 @@ Easily create and train a model using various deep neural networks (DNNs) as a f
To learn more about the azureml-accel-model classes, see the section [Model Classes](#model-classes) below or the [Azure ML Accel Models SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py). To learn more about the azureml-accel-model classes, see the section [Model Classes](#model-classes) below or the [Azure ML Accel Models SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py).
### Step 1: Create an Azure ML workspace ### Step 1: Create an Azure ML workspace
Follow [these instructions](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python) to install the Azure ML SDK on your local machine, create an Azure ML workspace, and set up your notebook environment, which is required for the next step. Follow [these instructions](https://docs.microsoft.com/en-us/azure/machine-learning/service/setup-create-workspace) to install the Azure ML SDK on your local machine, create an Azure ML workspace, and set up your notebook environment, which is required for the next step.
### Step 2: Check your FPGA quota ### Step 2: Check your FPGA quota
Use the Azure CLI to check whether you have quota. Use the Azure CLI to check whether you have quota.

View File

@@ -1,494 +1,497 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n", "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.png)"
"\n", ]
"Licensed under the MIT License." },
] {
}, "cell_type": "markdown",
{ "metadata": {},
"cell_type": "markdown", "source": [
"metadata": {}, "Copyright (c) Microsoft Corporation. All rights reserved.\n",
"source": [ "\n",
"# Azure ML Hardware Accelerated Object Detection" "Licensed under the MIT License."
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"This tutorial will show you how to deploy an object detection service based on the SSD-VGG model in just a few minutes using the Azure Machine Learning Accelerated AI service.\n", "# Azure ML Hardware Accelerated Object Detection"
"\n", ]
"We will use the SSD-VGG model accelerated on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n", },
"\n", {
"The steps in this notebook are: \n", "cell_type": "markdown",
"1. [Setup Environment](#set-up-environment)\n", "metadata": {},
"* [Construct Model](#construct-model)\n", "source": [
" * Image Preprocessing\n", "This tutorial will show you how to deploy an object detection service based on the SSD-VGG model in just a few minutes using the Azure Machine Learning Accelerated AI service.\n",
" * Featurizer\n", "\n",
" * Save Model\n", "We will use the SSD-VGG model accelerated on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
" * Save input and output tensor names\n", "\n",
"* [Create Image](#create-image)\n", "The steps in this notebook are: \n",
"* [Deploy Image](#deploy-image)\n", "1. [Setup Environment](#set-up-environment)\n",
"* [Test the Service](#test-service)\n", "* [Construct Model](#construct-model)\n",
" * Create Client\n", " * Image Preprocessing\n",
" * Serve the model\n", " * Featurizer\n",
"* [Cleanup](#cleanup)" " * Save Model\n",
] " * Save input and output tensor names\n",
}, "* [Create Image](#create-image)\n",
{ "* [Deploy Image](#deploy-image)\n",
"cell_type": "markdown", "* [Test the Service](#test-service)\n",
"metadata": {}, " * Create Client\n",
"source": [ " * Serve the model\n",
"<a id=\"set-up-environment\"></a>\n", "* [Cleanup](#cleanup)"
"## 1. Set up Environment\n", ]
"### 1.a. Imports" },
] {
}, "cell_type": "markdown",
{ "metadata": {},
"cell_type": "code", "source": [
"execution_count": null, "<a id=\"set-up-environment\"></a>\n",
"metadata": {}, "## 1. Set up Environment\n",
"outputs": [], "### 1.a. Imports"
"source": [ ]
"import os\n", },
"import tensorflow as tf" {
] "cell_type": "code",
}, "execution_count": null,
{ "metadata": {},
"cell_type": "markdown", "outputs": [],
"metadata": {}, "source": [
"source": [ "import os\n",
"### 1.b. Retrieve Workspace\n", "import tensorflow as tf"
"If you haven't created a Workspace, please follow [this notebook](\"../../../configuration.ipynb\") to do so. If you have, run the codeblock below to retrieve it. " ]
] },
}, {
{ "cell_type": "markdown",
"cell_type": "code", "metadata": {},
"execution_count": null, "source": [
"metadata": {}, "### 1.b. Retrieve Workspace\n",
"outputs": [], "If you haven't created a Workspace, please follow [this notebook](\"../../../configuration.ipynb\") to do so. If you have, run the codeblock below to retrieve it. "
"source": [ ]
"from azureml.core import Workspace\n", },
"\n", {
"ws = Workspace.from_config()\n", "cell_type": "code",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" "execution_count": null,
] "metadata": {},
}, "outputs": [],
{ "source": [
"cell_type": "markdown", "from azureml.core import Workspace\n",
"metadata": {}, "\n",
"source": [ "ws = Workspace.from_config()\n",
"<a id=\"construct-model\"></a>\n", "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
"## 2. Construct model\n", ]
"### 2.a. Image preprocessing\n", },
"We'd like our service to accept JPEG images as input. However the input to SSD-VGG is a float tensor of shape \\[1, 300, 300, 3\\]. The first dimension is batch, then height, width, and channels (i.e. NHWC). To bridge this gap, we need code that decodes JPEG images and resizes them appropriately for input to SSD-VGG. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as TensorFlow strings) and produces a tensor that is ready to be featurized by SSD-VGG.\n", {
"\n", "cell_type": "markdown",
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0." "metadata": {},
] "source": [
}, "<a id=\"construct-model\"></a>\n",
{ "## 2. Construct model\n",
"cell_type": "code", "### 2.a. Image preprocessing\n",
"execution_count": null, "We'd like our service to accept JPEG images as input. However the input to SSD-VGG is a float tensor of shape \\[1, 300, 300, 3\\]. The first dimension is batch, then height, width, and channels (i.e. NHWC). To bridge this gap, we need code that decodes JPEG images and resizes them appropriately for input to SSD-VGG. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as TensorFlow strings) and produces a tensor that is ready to be featurized by SSD-VGG.\n",
"metadata": {}, "\n",
"outputs": [], "**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
"source": [ ]
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n", },
"import azureml.accel.models.utils as utils\n", {
"tf.reset_default_graph()\n", "cell_type": "code",
"\n", "execution_count": null,
"in_images = tf.placeholder(tf.string)\n", "metadata": {},
"image_tensors = utils.preprocess_array(in_images, output_width=300, output_height=300, preserve_aspect_ratio=False)\n", "outputs": [],
"print(image_tensors.shape)" "source": [
] "# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
}, "import azureml.accel.models.utils as utils\n",
{ "tf.reset_default_graph()\n",
"cell_type": "markdown", "\n",
"metadata": {}, "in_images = tf.placeholder(tf.string)\n",
"source": [ "image_tensors = utils.preprocess_array(in_images, output_width=300, output_height=300, preserve_aspect_ratio=False)\n",
"### 2.b. Featurizer\n", "print(image_tensors.shape)"
"The SSD-VGG model is different from our other models in that it generates 12 tensor outputs. These corresponds to x,y displacements of the anchor boxes and the detection confidence (for 21 classes). Because these outputs are not convenient to work with, we will later use a pre-defined post-processing utility to transform the outputs into a simplified list of bounding boxes with their respective class and confidence.\n", ]
"\n", },
"For more information about the output tensors, take this example: the output tensor 'ssd_300_vgg/block4_box/Reshape_1:0' has a shape of [None, 37, 37, 4, 21]. This gives the pre-softmax confidence for 4 anchor boxes situated at each site of a 37 x 37 grid imposed on the image, one confidence score for each of the 21 classes. The first dimension is the batch dimension. Likewise, 'ssd_300_vgg/block4_box/Reshape:0' has shape [None, 37, 37, 4, 4] and encodes the (cx, cy) center shift and rescaling (sw, sh) relative to each anchor box. Refer to the [SSD-VGG paper](https://arxiv.org/abs/1512.02325) to understand how these are computed. The other 10 tensors are defined similarly." {
] "cell_type": "markdown",
}, "metadata": {},
{ "source": [
"cell_type": "code", "### 2.b. Featurizer\n",
"execution_count": null, "The SSD-VGG model is different from our other models in that it generates 12 tensor outputs. These corresponds to x,y displacements of the anchor boxes and the detection confidence (for 21 classes). Because these outputs are not convenient to work with, we will later use a pre-defined post-processing utility to transform the outputs into a simplified list of bounding boxes with their respective class and confidence.\n",
"metadata": {}, "\n",
"outputs": [], "For more information about the output tensors, take this example: the output tensor 'ssd_300_vgg/block4_box/Reshape_1:0' has a shape of [None, 37, 37, 4, 21]. This gives the pre-softmax confidence for 4 anchor boxes situated at each site of a 37 x 37 grid imposed on the image, one confidence score for each of the 21 classes. The first dimension is the batch dimension. Likewise, 'ssd_300_vgg/block4_box/Reshape:0' has shape [None, 37, 37, 4, 4] and encodes the (cx, cy) center shift and rescaling (sw, sh) relative to each anchor box. Refer to the [SSD-VGG paper](https://arxiv.org/abs/1512.02325) to understand how these are computed. The other 10 tensors are defined similarly."
"source": [ ]
"from azureml.accel.models import SsdVgg\n", },
"\n", {
"saved_model_dir = os.path.join(os.path.expanduser('~'), 'models')\n", "cell_type": "code",
"model_graph = SsdVgg(saved_model_dir, is_frozen = True)\n", "execution_count": null,
"\n", "metadata": {},
"print('SSD-VGG Input Tensors:')\n", "outputs": [],
"for idx, input_name in enumerate(model_graph.input_tensor_list):\n", "source": [
" print('{}, {}'.format(input_name, model_graph.get_input_dims(idx)))\n", "from azureml.accel.models import SsdVgg\n",
" \n", "\n",
"print('SSD-VGG Output Tensors:')\n", "saved_model_dir = os.path.join(os.path.expanduser('~'), 'models')\n",
"for idx, output_name in enumerate(model_graph.output_tensor_list):\n", "model_graph = SsdVgg(saved_model_dir, is_frozen = True)\n",
" print('{}, {}'.format(output_name, model_graph.get_output_dims(idx)))\n", "\n",
"\n", "print('SSD-VGG Input Tensors:')\n",
"ssd_outputs = model_graph.import_graph_def(image_tensors, is_training=False)" "for idx, input_name in enumerate(model_graph.input_tensor_list):\n",
] " print('{}, {}'.format(input_name, model_graph.get_input_dims(idx)))\n",
}, " \n",
{ "print('SSD-VGG Output Tensors:')\n",
"cell_type": "markdown", "for idx, output_name in enumerate(model_graph.output_tensor_list):\n",
"metadata": {}, " print('{}, {}'.format(output_name, model_graph.get_output_dims(idx)))\n",
"source": [ "\n",
"### 2.c. Save Model\n", "ssd_outputs = model_graph.import_graph_def(image_tensors, is_training=False)"
"Now that we loaded both parts of the tensorflow graph (preprocessor and SSD-VGG featurizer), we can save the graph and associated variables to a directory which we can register as an Azure ML Model." ]
] },
}, {
{ "cell_type": "markdown",
"cell_type": "code", "metadata": {},
"execution_count": null, "source": [
"metadata": {}, "### 2.c. Save Model\n",
"outputs": [], "Now that we loaded both parts of the tensorflow graph (preprocessor and SSD-VGG featurizer), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
"source": [ ]
"model_name = \"ssdvgg\"\n", },
"model_save_path = os.path.join(saved_model_dir, model_name, \"saved_model\")\n", {
"print(\"Saving model in {}\".format(model_save_path))\n", "cell_type": "code",
"\n", "execution_count": null,
"output_map = {}\n", "metadata": {},
"for i, output in enumerate(ssd_outputs):\n", "outputs": [],
" output_map['out_{}'.format(i)] = output\n", "source": [
"\n", "model_name = \"ssdvgg\"\n",
"with tf.Session() as sess:\n", "model_save_path = os.path.join(saved_model_dir, model_name, \"saved_model\")\n",
" model_graph.restore_weights(sess)\n", "print(\"Saving model in {}\".format(model_save_path))\n",
" tf.saved_model.simple_save(sess, \n", "\n",
" model_save_path, \n", "output_map = {}\n",
" inputs={'images': in_images}, \n", "for i, output in enumerate(ssd_outputs):\n",
" outputs=output_map)" " output_map['out_{}'.format(i)] = output\n",
] "\n",
}, "with tf.Session() as sess:\n",
{ " model_graph.restore_weights(sess)\n",
"cell_type": "markdown", " tf.saved_model.simple_save(sess, \n",
"metadata": {}, " model_save_path, \n",
"source": [ " inputs={'images': in_images}, \n",
"### 2.d. Important! Save names of input and output tensors\n", " outputs=output_map)"
"\n", ]
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information!" },
] {
}, "cell_type": "markdown",
{ "metadata": {},
"cell_type": "code", "source": [
"execution_count": null, "### 2.d. Important! Save names of input and output tensors\n",
"metadata": { "\n",
"tags": [ "These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information!"
"register model from file" ]
] },
}, {
"outputs": [], "cell_type": "code",
"source": [ "execution_count": null,
"input_tensors = in_images.name\n", "metadata": {
"# We will use the list of output tensors during inferencing\n", "tags": [
"output_tensors = [output.name for output in ssd_outputs]\n", "register model from file"
"# However, for multiple output tensors, our AccelOnnxConverter will \n", ]
"# accept comma-delimited strings (lists will cause error)\n", },
"output_tensors_str = \",\".join(output_tensors)\n", "outputs": [],
"\n", "source": [
"print(input_tensors)\n", "input_tensors = in_images.name\n",
"print(output_tensors)" "# We will use the list of output tensors during inferencing\n",
] "output_tensors = [output.name for output in ssd_outputs]\n",
}, "# However, for multiple output tensors, our AccelOnnxConverter will \n",
{ "# accept comma-delimited strings (lists will cause error)\n",
"cell_type": "markdown", "output_tensors_str = \",\".join(output_tensors)\n",
"metadata": {}, "\n",
"source": [ "print(input_tensors)\n",
"<a id=\"create-image\"></a>\n", "print(output_tensors)"
"## 3. Create AccelContainerImage\n", ]
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)." },
] {
}, "cell_type": "markdown",
{ "metadata": {},
"cell_type": "code", "source": [
"execution_count": null, "<a id=\"create-image\"></a>\n",
"metadata": {}, "## 3. Create AccelContainerImage\n",
"outputs": [], "Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
"source": [ ]
"from azureml.core import Workspace\n", },
"from azureml.core.model import Model\n", {
"from azureml.core.image import Image\n", "cell_type": "code",
"from azureml.accel import AccelOnnxConverter\n", "execution_count": null,
"from azureml.accel import AccelContainerImage\n", "metadata": {},
"\n", "outputs": [],
"# Retrieve workspace\n", "source": [
"ws = Workspace.from_config()\n", "from azureml.core import Workspace\n",
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n", "from azureml.core.model import Model\n",
"\n", "from azureml.core.image import Image\n",
"# Register model\n", "from azureml.accel import AccelOnnxConverter\n",
"registered_model = Model.register(workspace = ws,\n", "from azureml.accel import AccelContainerImage\n",
" model_path = model_save_path,\n", "\n",
" model_name = model_name)\n", "# Retrieve workspace\n",
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n", "ws = Workspace.from_config()\n",
"\n", "print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
"# Convert model\n", "\n",
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors_str)\n", "# Register model\n",
"# If it fails, you can run wait_for_completion again with show_output=True.\n", "registered_model = Model.register(workspace = ws,\n",
"convert_request.wait_for_completion(show_output=False)\n", " model_path = model_save_path,\n",
"converted_model = convert_request.result\n", " model_name = model_name)\n",
"print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n", "print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
" converted_model.id, converted_model.created_time, '\\n')\n", "\n",
"\n", "# Convert model\n",
"# Package into AccelContainerImage\n", "convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors_str)\n",
"image_config = AccelContainerImage.image_configuration()\n", "if convert_request.wait_for_completion(show_output = False):\n",
"# Image name must be lowercase\n", " # If the above call succeeded, get the converted model\n",
"image_name = \"{}-image\".format(model_name)\n", " converted_model = convert_request.result\n",
"image = Image.create(name = image_name,\n", " print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
" models = [converted_model],\n", " converted_model.id, converted_model.created_time, '\\n')\n",
" image_config = image_config, \n", "else:\n",
" workspace = ws)\n", " print(\"Model conversion failed. Showing output.\")\n",
"image.wait_for_creation()\n", " convert_request.wait_for_completion(show_output = True)\n",
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))" "\n",
] "# Package into AccelContainerImage\n",
}, "image_config = AccelContainerImage.image_configuration()\n",
{ "# Image name must be lowercase\n",
"cell_type": "markdown", "image_name = \"{}-image\".format(model_name)\n",
"metadata": {}, "image = Image.create(name = image_name,\n",
"source": [ " models = [converted_model],\n",
"<a id=\"deploy-image\"></a>\n", " image_config = image_config, \n",
"## 4. Deploy image\n", " workspace = ws)\n",
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n", "image.wait_for_creation()\n",
"\n", "print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
"### 4.a. Deploy to Databox Edge Machine using IoT Hub\n", ]
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n", },
"\n", {
"### 4.b. Deploy to AKS Cluster\n", "cell_type": "markdown",
"Same as in the [Quickstart section on image deployment](./accelerated-models-quickstart.ipynb#deploy-image), we are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it.\n", "metadata": {},
"#### Create AKS ComputeTarget" "source": [
] "<a id=\"deploy-image\"></a>\n",
}, "## 4. Deploy image\n",
{ "Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
"cell_type": "code", "\n",
"execution_count": null, "### 4.a. Deploy to Databox Edge Machine using IoT Hub\n",
"metadata": {}, "See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
"outputs": [], "\n",
"source": [ "### 4.b. Deploy to AKS Cluster\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n", "Same as in the [Quickstart section on image deployment](./accelerated-models-quickstart.ipynb#deploy-image), we are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it.\n",
"\n", "#### Create AKS ComputeTarget"
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n", ]
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n", },
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n", {
" agent_count = 1, \n", "cell_type": "code",
" location = \"eastus\")\n", "execution_count": null,
"\n", "metadata": {},
"aks_name = 'aks-pb6-obj'\n", "outputs": [],
"# Create the cluster\n", "source": [
"aks_target = ComputeTarget.create(workspace = ws, \n", "from azureml.core.compute import AksCompute, ComputeTarget\n",
" name = aks_name, \n", "\n",
" provisioning_configuration = prov_config)" "# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
] "# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
}, "prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
{ " agent_count = 1, \n",
"cell_type": "markdown", " location = \"eastus\")\n",
"metadata": {}, "\n",
"source": [ "aks_name = 'aks-pb6-obj'\n",
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute." "# Create the cluster\n",
] "aks_target = ComputeTarget.create(workspace = ws, \n",
}, " name = aks_name, \n",
{ " provisioning_configuration = prov_config)"
"cell_type": "code", ]
"execution_count": null, },
"metadata": {}, {
"outputs": [], "cell_type": "markdown",
"source": [ "metadata": {},
"aks_target.wait_for_completion(show_output = True)\n", "source": [
"print(aks_target.provisioning_state)\n", "Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
"print(aks_target.provisioning_errors)" ]
] },
}, {
{ "cell_type": "code",
"cell_type": "markdown", "execution_count": null,
"metadata": {}, "metadata": {},
"source": [ "outputs": [],
"#### Deploy AccelContainerImage to AKS ComputeTarget" "source": [
] "%%time\n",
}, "aks_target.wait_for_completion(show_output = True)\n",
{ "print(aks_target.provisioning_state)\n",
"cell_type": "code", "print(aks_target.provisioning_errors)"
"execution_count": null, ]
"metadata": {}, },
"outputs": [], {
"source": [ "cell_type": "markdown",
"from azureml.core.webservice import Webservice, AksWebservice\n", "metadata": {},
"\n", "source": [
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n", "#### Deploy AccelContainerImage to AKS ComputeTarget"
"# Authentication is enabled by default, but for testing we specify False\n", ]
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n", },
" num_replicas=1,\n", {
" auth_enabled = False)\n", "cell_type": "code",
"\n", "execution_count": null,
"aks_service_name ='my-aks-service'\n", "metadata": {},
"\n", "outputs": [],
"aks_service = Webservice.deploy_from_image(workspace = ws,\n", "source": [
" name = aks_service_name,\n", "%%time\n",
" image = image,\n", "from azureml.core.webservice import Webservice, AksWebservice\n",
" deployment_config = aks_config,\n", "\n",
" deployment_target = aks_target)\n", "# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
"aks_service.wait_for_deployment(show_output = True)" "# Authentication is enabled by default, but for testing we specify False\n",
] "aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
}, " num_replicas=1,\n",
{ " auth_enabled = False)\n",
"cell_type": "markdown", "\n",
"metadata": {}, "aks_service_name ='my-aks-service'\n",
"source": [ "\n",
"<a id=\"test-service\"></a>\n", "aks_service = Webservice.deploy_from_image(workspace = ws,\n",
"## 5. Test the service\n", " name = aks_service_name,\n",
"<a id=\"create-client\"></a>\n", " image = image,\n",
"### 5.a. Create Client\n", " deployment_config = aks_config,\n",
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We have a client that can call into the docker image to get predictions. \n", " deployment_target = aks_target)\n",
"\n", "aks_service.wait_for_deployment(show_output = True)"
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).", ]
"\n", },
"**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it." {
] "cell_type": "markdown",
}, "metadata": {},
{ "source": [
"cell_type": "code", "<a id=\"test-service\"></a>\n",
"execution_count": null, "## 5. Test the service\n",
"metadata": {}, "<a id=\"create-client\"></a>\n",
"outputs": [], "### 5.a. Create Client\n",
"source": [ "The image supports gRPC and the TensorFlow Serving \"predict\" API. We will create a PredictionClient from the Webservice object that can call into the docker image to get predictions. If you do not have the Webservice object, you can also create [PredictionClient](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.predictionclient?view=azure-ml-py) directly.\n",
"# Using the grpc client in AzureML Accelerated Models SDK\n", "\n",
"from azureml.accel.client import PredictionClient\n", "**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key).\n",
"\n", "**WARNING:** If you are running on Azure Notebooks free compute, you will not be able to make outgoing calls to your service. Try locating your client on a different machine to consume it."
"address = aks_service.scoring_uri\n", ]
"ssl_enabled = address.startswith(\"https\")\n", },
"address = address[address.find('/')+2:].strip('/')\n", {
"port = 443 if ssl_enabled else 80\n", "cell_type": "code",
"\n", "execution_count": null,
"# Initialize AzureML Accelerated Models client\n", "metadata": {},
"client = PredictionClient(address=address,\n", "outputs": [],
" port=port,\n", "source": [
" use_ssl=ssl_enabled,\n", "# Using the grpc client in AzureML Accelerated Models SDK\n",
" service_name=aks_service.name)" "from azureml.accel import client_from_service\n",
] "\n",
}, "# Initialize AzureML Accelerated Models client\n",
{ "client = client_from_service(aks_service)"
"cell_type": "markdown", ]
"metadata": {}, },
"source": [ {
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n", "cell_type": "markdown",
"\n", "metadata": {},
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)." "source": [
] "You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
}, "\n",
{ "The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
"cell_type": "markdown", ]
"metadata": {}, },
"source": [ {
"<a id=\"serve-model\"></a>\n", "cell_type": "markdown",
"### 5.b. Serve the model\n", "metadata": {},
"The SSD-VGG model returns the confidence and bounding boxes for all possible anchor boxes. As mentioned earlier, we will use a post-processing routine to transform this into a list of bounding boxes (y1, x1, y2, x2) where x, y are fractional coordinates measured from left and top respectively. A respective list of classes and scores is also returned to tag each bounding box. Below we make use of this information to draw the bounding boxes on top the original image. Note that in the post-processing routine we select a confidence threshold of 0.5." "source": [
] "<a id=\"serve-model\"></a>\n",
}, "### 5.b. Serve the model\n",
{ "The SSD-VGG model returns the confidence and bounding boxes for all possible anchor boxes. As mentioned earlier, we will use a post-processing routine to transform this into a list of bounding boxes (y1, x1, y2, x2) where x, y are fractional coordinates measured from left and top respectively. A respective list of classes and scores is also returned to tag each bounding box. Below we make use of this information to draw the bounding boxes on top the original image. Note that in the post-processing routine we select a confidence threshold of 0.5."
"cell_type": "code", ]
"execution_count": null, },
"metadata": {}, {
"outputs": [], "cell_type": "code",
"source": [ "execution_count": null,
"import cv2\n", "metadata": {},
"from matplotlib import pyplot as plt\n", "outputs": [],
"\n", "source": [
"colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),\n", "import cv2\n",
" (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),\n", "from matplotlib import pyplot as plt\n",
" (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),\n", "\n",
" (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),\n", "colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),\n",
" (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n", " (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),\n",
"\n", " (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),\n",
"\n", " (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),\n",
"def draw_boxes_on_img(img, classes, scores, bboxes, thickness=2):\n", " (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n",
" shape = img.shape\n", "\n",
" for i in range(bboxes.shape[0]):\n", "\n",
" bbox = bboxes[i]\n", "def draw_boxes_on_img(img, classes, scores, bboxes, thickness=2):\n",
" color = colors_tableau[classes[i]]\n", " shape = img.shape\n",
" # Draw bounding box...\n", " for i in range(bboxes.shape[0]):\n",
" p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))\n", " bbox = bboxes[i]\n",
" p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))\n", " color = colors_tableau[classes[i]]\n",
" cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)\n", " # Draw bounding box...\n",
" # Draw text...\n", " p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))\n",
" s = '%s/%.3f' % (classes[i], scores[i])\n", " p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))\n",
" p1 = (p1[0]-5, p1[1])\n", " cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)\n",
" cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)" " # Draw text...\n",
] " s = '%s/%.3f' % (classes[i], scores[i])\n",
}, " p1 = (p1[0]-5, p1[1])\n",
{ " cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)"
"cell_type": "code", ]
"execution_count": null, },
"metadata": {}, {
"outputs": [], "cell_type": "code",
"source": [ "execution_count": null,
"import azureml.accel._external.ssdvgg_utils as ssdvgg_utils\n", "metadata": {},
"\n", "outputs": [],
"result = client.score_file(path=\"meeting.jpg\", input_name=input_tensors, outputs=output_tensors)\n", "source": [
"classes, scores, bboxes = ssdvgg_utils.postprocess(result, select_threshold=0.5)\n", "import azureml.accel._external.ssdvgg_utils as ssdvgg_utils\n",
"\n", "\n",
"img = cv2.imread('meeting.jpg', 1)\n", "result = client.score_file(path=\"meeting.jpg\", input_name=input_tensors, outputs=output_tensors)\n",
"img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", "classes, scores, bboxes = ssdvgg_utils.postprocess(result, select_threshold=0.5)\n",
"draw_boxes_on_img(img, classes, scores, bboxes)\n", "\n",
"plt.imshow(img)" "img = cv2.imread('meeting.jpg', 1)\n",
] "img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
}, "draw_boxes_on_img(img, classes, scores, bboxes)\n",
{ "plt.imshow(img)"
"cell_type": "markdown", ]
"metadata": {}, },
"source": [ {
"<a id=\"cleanup\"></a>\n", "cell_type": "markdown",
"## 6. Cleanup\n", "metadata": {},
"It's important to clean up your resources, so that you won't incur unnecessary costs. In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning." "source": [
] "<a id=\"cleanup\"></a>\n",
}, "## 6. Cleanup\n",
{ "It's important to clean up your resources, so that you won't incur unnecessary costs. In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning."
"cell_type": "code", ]
"execution_count": null, },
"metadata": {}, {
"outputs": [], "cell_type": "code",
"source": [ "execution_count": null,
"aks_service.delete()\n", "metadata": {},
"aks_target.delete()\n", "outputs": [],
"image.delete()\n", "source": [
"registered_model.delete()\n", "aks_service.delete()\n",
"converted_model.delete()" "aks_target.delete()\n",
] "image.delete()\n",
} "registered_model.delete()\n",
], "converted_model.delete()"
"metadata": { ]
"authors": [ }
{
"name": "coverste"
},
{
"name": "paledger"
},
{
"name": "sukha"
}
], ],
"kernelspec": { "metadata": {
"display_name": "Python 3.6", "authors": [
"language": "python", {
"name": "python36" "name": "coverste"
},
{
"name": "paledger"
},
{
"name": "sukha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
}, },
"language_info": { "nbformat": 4,
"codemirror_mode": { "nbformat_minor": 2
"name": "ipython", }
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: accelerated-models-object-detection
dependencies:
- pip:
- azureml-sdk
- azureml-accel-models
- tensorflow
- opencv-python
- matplotlib

View File

@@ -0,0 +1,6 @@
name: accelerated-models-quickstart
dependencies:
- pip:
- azureml-sdk
- azureml-accel-models
- tensorflow

View File

@@ -0,0 +1,9 @@
name: accelerated-models-training
dependencies:
- pip:
- azureml-sdk
- azureml-accel-models
- tensorflow
- keras
- tqdm
- sklearn

View File

@@ -0,0 +1,4 @@
name: enable-app-insights-in-production-service
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,4 @@
name: enable-data-collection-for-models-in-aks
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,6 @@
name: onnx-convert-aml-deploy-tinyyolo
dependencies:
- pip:
- azureml-sdk
- git+https://github.com/apple/coremltools
- onnxmltools==1.3.1

View File

@@ -0,0 +1,9 @@
name: onnx-inference-facial-expression-recognition-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx
- opencv-python

View File

@@ -0,0 +1,9 @@
name: onnx-inference-mnist-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx
- opencv-python

View File

@@ -0,0 +1,4 @@
name: onnx-modelzoo-aml-deploy-resnet50
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,5 @@
name: onnx-train-pytorch-aml-deploy-mnist
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -1,407 +1,407 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n", "Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n", "\n",
"Licensed under the MIT License." "Licensed under the MIT License."
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n", "# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n", "This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model." "We then test and delete the service, image and model."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.core import Workspace\n", "from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n", "from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n", "from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import Image\n", "from azureml.core.image import Image\n",
"from azureml.core.model import Model" "from azureml.core.model import Model"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"print(azureml.core.VERSION)" "print(azureml.core.VERSION)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Get workspace\n", "# Get workspace\n",
"Load existing workspace from the config file info." "Load existing workspace from the config file info."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.core.workspace import Workspace\n", "from azureml.core.workspace import Workspace\n",
"\n", "\n",
"ws = Workspace.from_config()\n", "ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Register the model\n", "# Register the model\n",
"Register an existing trained model, add descirption and tags. Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. You can download a [pretrained resnet50](https://github.com/tensorflow/models/tree/master/official/resnet#pre-trained-model) and unpack it to that directory." "Register an existing trained model, add descirption and tags. Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. You can download a [pretrained resnet50](https://github.com/tensorflow/models/tree/master/official/resnet#pre-trained-model) and unpack it to that directory."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"#Register the model\n", "#Register the model\n",
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"model = Model.register(model_path = \"resnet50\", # this points to a local file\n", "model = Model.register(model_path = \"resnet50\", # this points to a local file\n",
" model_name = \"resnet50\", # this is the name the model is registered as\n", " model_name = \"resnet50\", # this is the name the model is registered as\n",
" tags = {'area': \"Image classification\", 'type': \"classification\"},\n", " tags = {'area': \"Image classification\", 'type': \"classification\"},\n",
" description = \"Image classification trained on Imagenet Dataset\",\n", " description = \"Image classification trained on Imagenet Dataset\",\n",
" workspace = ws)\n", " workspace = ws)\n",
"\n", "\n",
"print(model.name, model.description, model.version)" "print(model.name, model.description, model.version)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Create an image\n", "# Create an image\n",
"Create an image using the registered model the script that will load and run the model." "Create an image using the registered model the script that will load and run the model."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%writefile score.py\n", "%%writefile score.py\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"import numpy as np\n", "import numpy as np\n",
"import ujson\n", "import ujson\n",
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"from azureml.contrib.services.aml_request import AMLRequest, rawhttp\n", "from azureml.contrib.services.aml_request import AMLRequest, rawhttp\n",
"from azureml.contrib.services.aml_response import AMLResponse\n", "from azureml.contrib.services.aml_response import AMLResponse\n",
"\n", "\n",
"def init():\n", "def init():\n",
" global session\n", " global session\n",
" global input_name\n", " global input_name\n",
" global output_name\n", " global output_name\n",
" \n", " \n",
" session = tf.Session()\n", " session = tf.Session()\n",
"\n", "\n",
" model_path = Model.get_model_path('resnet50')\n", " model_path = Model.get_model_path('resnet50')\n",
" model = tf.saved_model.loader.load(session, ['serve'], model_path)\n", " model = tf.saved_model.loader.load(session, ['serve'], model_path)\n",
" if len(model.signature_def['serving_default'].inputs) > 1:\n", " if len(model.signature_def['serving_default'].inputs) > 1:\n",
" raise ValueError(\"This score.py only supports one input\")\n", " raise ValueError(\"This score.py only supports one input\")\n",
" if len(model.signature_def['serving_default'].outputs) > 1:\n", " if len(model.signature_def['serving_default'].outputs) > 1:\n",
" raise ValueError(\"This score.py only supports one input\")\n", " raise ValueError(\"This score.py only supports one input\")\n",
" input_name = [tensor.name for tensor in model.signature_def['serving_default'].inputs.values()][0]\n", " input_name = [tensor.name for tensor in model.signature_def['serving_default'].inputs.values()][0]\n",
" output_name = [tensor.name for tensor in model.signature_def['serving_default'].outputs.values()][0]\n", " output_name = [tensor.name for tensor in model.signature_def['serving_default'].outputs.values()][0]\n",
" \n", " \n",
"\n", "\n",
"@rawhttp\n", "@rawhttp\n",
"def run(request):\n", "def run(request):\n",
" if request.method == 'POST':\n", " if request.method == 'POST':\n",
" reqBody = request.get_data(False)\n", " reqBody = request.get_data(False)\n",
" resp = score(reqBody)\n", " resp = score(reqBody)\n",
" return AMLResponse(resp, 200)\n", " return AMLResponse(resp, 200)\n",
" if request.method == 'GET':\n", " if request.method == 'GET':\n",
" respBody = str.encode(\"GET is not supported\")\n", " respBody = str.encode(\"GET is not supported\")\n",
" return AMLResponse(respBody, 405)\n", " return AMLResponse(respBody, 405)\n",
" return AMLResponse(\"bad request\", 500)\n", " return AMLResponse(\"bad request\", 500)\n",
"\n", "\n",
"def score(data):\n", "def score(data):\n",
" result = session.run(output_name, {input_name: [data]})\n", " result = session.run(output_name, {input_name: [data]})\n",
" return ujson.dumps(result[0])\n", " return ujson.dumps(result[0])\n",
"\n", "\n",
"if __name__ == \"__main__\":\n", "if __name__ == \"__main__\":\n",
" init()\n", " init()\n",
" with open(\"test_image.jpg\", 'rb') as f:\n", " with open(\"test_image.jpg\", 'rb') as f:\n",
" content = f.read()\n", " content = f.read()\n",
" print(score(content))" " print(score(content))"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.core.conda_dependencies import CondaDependencies \n", "from azureml.core.conda_dependencies import CondaDependencies \n",
"\n", "\n",
"myenv = CondaDependencies.create(conda_packages=['tensorflow-gpu==1.12.0','numpy','ujson','azureml-contrib-services'])\n", "myenv = CondaDependencies.create(conda_packages=['tensorflow-gpu==1.12.0','numpy','ujson','azureml-contrib-services'])\n",
"\n", "\n",
"with open(\"myenv.yml\",\"w\") as f:\n", "with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())" " f.write(myenv.serialize_to_string())"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from azureml.core.image import ContainerImage\n", "from azureml.core.image import ContainerImage\n",
"\n", "\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n", "image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n", " runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n", " conda_file = \"myenv.yml\",\n",
" gpu_enabled = True\n", " gpu_enabled = True\n",
" )\n", " )\n",
"\n", "\n",
"image = ContainerImage.create(name = \"GpuImage\",\n", "image = ContainerImage.create(name = \"GpuImage\",\n",
" # this is the model object\n", " # this is the model object\n",
" models = [model],\n", " models = [model],\n",
" image_config = image_config,\n", " image_config = image_config,\n",
" workspace = ws)\n", " workspace = ws)\n",
"\n", "\n",
"image.wait_for_creation(show_output = True)" "image.wait_for_creation(show_output = True)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Provision the AKS Cluster\n", "# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it." "This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# Use the default configuration (can also provide parameters to customize)\n", "# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\")\n", "prov_config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\")\n",
"\n", "\n",
"aks_name = 'my-aks-9' \n", "aks_name = 'my-aks-9' \n",
"# Create the cluster\n", "# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n", "aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n", " name = aks_name, \n",
" provisioning_configuration = prov_config)" " provisioning_configuration = prov_config)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Create AKS Cluster in an existing virtual network (optional)\n", "# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details." "See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"'''\n", "'''\n",
"from azureml.core.compute import ComputeTarget, AksCompute\n", "from azureml.core.compute import ComputeTarget, AksCompute\n",
"\n", "\n",
"# Create the compute configuration and set virtual network information\n", "# Create the compute configuration and set virtual network information\n",
"config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\", location=\"eastus2\")\n", "config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\", location=\"eastus2\")\n",
"config.vnet_resourcegroup_name = \"mygroup\"\n", "config.vnet_resourcegroup_name = \"mygroup\"\n",
"config.vnet_name = \"mynetwork\"\n", "config.vnet_name = \"mynetwork\"\n",
"config.subnet_name = \"default\"\n", "config.subnet_name = \"default\"\n",
"config.service_cidr = \"10.0.0.0/16\"\n", "config.service_cidr = \"10.0.0.0/16\"\n",
"config.dns_service_ip = \"10.0.0.10\"\n", "config.dns_service_ip = \"10.0.0.10\"\n",
"config.docker_bridge_cidr = \"172.17.0.1/16\"\n", "config.docker_bridge_cidr = \"172.17.0.1/16\"\n",
"\n", "\n",
"# Create the compute target\n", "# Create the compute target\n",
"aks_target = ComputeTarget.create(workspace = ws,\n", "aks_target = ComputeTarget.create(workspace = ws,\n",
" name = \"myaks\",\n", " name = \"myaks\",\n",
" provisioning_configuration = config)\n", " provisioning_configuration = config)\n",
"'''" "'''"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Enable SSL on the AKS Cluster (optional)\n", "# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details" "See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")" "# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%time\n", "%%time\n",
"aks_target.wait_for_completion(show_output = True)\n", "aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n", "print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)" "print(aks_target.provisioning_errors)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Optional step: Attach existing AKS cluster\n", "## Optional step: Attach existing AKS cluster\n",
"\n", "\n",
"If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace." "If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"'''\n", "'''\n",
"# Use the default configuration (can also provide parameters to customize)\n", "# Use the default configuration (can also provide parameters to customize)\n",
"resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01'\n", "resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01'\n",
"\n", "\n",
"create_name='my-existing-aks' \n", "create_name='my-existing-aks' \n",
"# Create the cluster\n", "# Create the cluster\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n", "attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n", "aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n",
"# Wait for the operation to complete\n", "# Wait for the operation to complete\n",
"aks_target.wait_for_completion(True)\n", "aks_target.wait_for_completion(True)\n",
"'''" "'''"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Deploy web service to AKS" "# Deploy web service to AKS"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"#Set the web service configuration (using default here)\n", "#Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()" "aks_config = AksWebservice.deploy_configuration()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%time\n", "%%time\n",
"aks_service_name ='aks-service-1'\n", "aks_service_name ='aks-service-1'\n",
"\n", "\n",
"aks_service = Webservice.deploy_from_image(workspace = ws, \n", "aks_service = Webservice.deploy_from_image(workspace = ws, \n",
" name = aks_service_name,\n", " name = aks_service_name,\n",
" image = image,\n", " image = image,\n",
" deployment_config = aks_config,\n", " deployment_config = aks_config,\n",
" deployment_target = aks_target)\n", " deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)\n", "aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)" "print(aks_service.state)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Test the web service\n", "# Test the web service\n",
"We test the web sevice by passing the test images content." "We test the web sevice by passing the test images content."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%time\n", "%%time\n",
"import requests\n", "import requests\n",
"key1, key2 = aks_service.get_keys()\n", "key1, key2 = aks_service.get_keys()\n",
"\n", "\n",
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n", "headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"test_sampe = open('test_image.jpg', 'rb').read()\n", "test_sampe = open('test_image.jpg', 'rb').read()\n",
"resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)" "resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Clean up\n", "# Clean up\n",
"Delete the service, image, model and compute target" "Delete the service, image, model and compute target"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%%time\n", "%%time\n",
"aks_service.delete()\n", "aks_service.delete()\n",
"image.delete()\n", "image.delete()\n",
"model.delete()\n", "model.delete()\n",
"aks_target.delete()" "aks_target.delete()"
] ]
} }
],
"metadata": {
"authors": [
{
"name": "aashishb"
}
], ],
"kernelspec": { "metadata": {
"display_name": "Python 3", "authors": [
"language": "python", {
"name": "python3" "name": "aashishb"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
}, },
"language_info": { "nbformat": 4,
"codemirror_mode": { "nbformat_minor": 2
"name": "ipython", }
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -470,7 +470,27 @@
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.6" "version": "3.6.6"
} },
"friendly_name": "Prepare data for regression modeling",
"exclude_from_index": false,
"order_index": 1,
"category": "deployment",
"tags": [
"featured"
],
"task": "Regression",
"datasets": [
"test"
],
"compute": [
"localtest"
],
"deployment": [
"AKS"
],
"framework": [
"test1"
]
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -0,0 +1,8 @@
name: register-model-create-image-deploy-service
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -1,8 +1,11 @@
## Using explain model APIs ## Using explain model APIs
<a name="samples"></a>
# Explain Model SDK Sample Notebooks
Follow these sample notebooks to learn: Follow these sample notebooks to learn:
1. [Explain tabular data locally](explain-tabular-data-local): Basic example of explaining model trained on tabular data. 1. [Explain tabular data locally](tabular-data): Basic examples of explaining model trained on tabular data.
4. [Explain on remote AMLCompute](explain-on-amlcompute): Explain a model on a remote AMLCompute target. 2. [Explain on remote AMLCompute](azure-integration/remote-explanation): Explain a model on a remote AMLCompute target.
5. [Explain tabular data with Run History](explain-tabular-data-run-history): Explain a model with Run History. 3. [Explain tabular data with Run History](azure-integration/run-history): Explain a model with Run History.
7. [Explain raw features](explain-tabular-data-raw-features): Explain the raw features of a trained model. 4. [Operationalize model explanation](azure-integration/scoring-time): Operationalize model explanation as a web service.

View File

@@ -0,0 +1,645 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/azure-integration/run-history/save-retrieve-explanations-run-history.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Save and retrieve explanations via Azure Machine Learning Run History\n",
"\n",
"_**This notebook showcases how to use the Azure Machine Learning Interpretability SDK to save and retrieve classification model explanations to/from Azure Machine Learning Run History.**_\n",
"\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Run model explainer locally at training time](#Explain)\n",
" 1. Apply feature transformations\n",
" 1. Train a binary classification model\n",
" 1. Explain the model on raw features\n",
" 1. Generate global explanations\n",
" 1. Generate local explanations\n",
"1. [Upload model explanations to Azure Machine Learning Run History](#Upload)\n",
"1. [Download model explanations from Azure Machine Learning Run History](#Download)\n",
"1. [Visualize explanations](#Visualize)\n",
"1. [Next steps](#Next)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"This notebook showcases how to explain a classification model predictions locally at training time, upload explanations to the Azure Machine Learning's run history, and download previously-uploaded explanations from the Run History.\n",
"It demonstrates the API calls that you need to make to upload/download the global and local explanations and a visualization dashboard that provides an interactive way of discovering patterns in data and downloaded explanations.\n",
"\n",
"We will showcase three tabular data explainers: TabularExplainer (SHAP), MimicExplainer (global surrogate), and PFIExplainer.\n",
"\n",
"\n",
"\n",
"Problem: IBM employee attrition classification with scikit-learn (run model explainer locally and upload explanation to the Azure Machine Learning Run History)\n",
"\n",
"1. Train a SVM classification model using Scikit-learn\n",
"2. Run 'explain_model' with AML Run History, which leverages run history service to store and manage the explanation data\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain\n",
"\n",
"### Run model explainer locally at training time"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.pipeline import Pipeline\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.svm import SVC\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# Explainers:\n",
"# 1. SHAP Tabular Explainer\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"\n",
"# OR\n",
"\n",
"# 2. Mimic Explainer\n",
"from azureml.explain.model.mimic.mimic_explainer import MimicExplainer\n",
"# You can use one of the following four interpretable models as a global surrogate to the black box model\n",
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
"from azureml.explain.model.mimic.models.linear_model import LinearExplainableModel\n",
"from azureml.explain.model.mimic.models.linear_model import SGDExplainableModel\n",
"from azureml.explain.model.mimic.models.tree_model import DecisionTreeExplainableModel\n",
"\n",
"# OR\n",
"\n",
"# 3. PFI Explainer\n",
"from azureml.explain.model.permutation.permutation_importance import PFIExplainer "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the IBM employee attrition data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the IBM employee attrition dataset\n",
"outdirname = 'dataset.6.21.19'\n",
"try:\n",
" from urllib import urlretrieve\n",
"except ImportError:\n",
" from urllib.request import urlretrieve\n",
"import zipfile\n",
"zipfilename = outdirname + '.zip'\n",
"urlretrieve('https://publictestdatasets.blob.core.windows.net/data/' + zipfilename, zipfilename)\n",
"with zipfile.ZipFile(zipfilename, 'r') as unzip:\n",
" unzip.extractall('.')\n",
"attritionData = pd.read_csv('./WA_Fn-UseC_-HR-Employee-Attrition.csv')\n",
"\n",
"# Dropping Employee count as all values are 1 and hence attrition is independent of this feature\n",
"attritionData = attritionData.drop(['EmployeeCount'], axis=1)\n",
"# Dropping Employee Number since it is merely an identifier\n",
"attritionData = attritionData.drop(['EmployeeNumber'], axis=1)\n",
"\n",
"attritionData = attritionData.drop(['Over18'], axis=1)\n",
"\n",
"# Since all values are 80\n",
"attritionData = attritionData.drop(['StandardHours'], axis=1)\n",
"\n",
"# Converting target variables from string to numerical values\n",
"target_map = {'Yes': 1, 'No': 0}\n",
"attritionData[\"Attrition_numerical\"] = attritionData[\"Attrition\"].apply(lambda x: target_map[x])\n",
"target = attritionData[\"Attrition_numerical\"]\n",
"\n",
"attritionXData = attritionData.drop(['Attrition_numerical', 'Attrition'], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split data into train and test\n",
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(attritionXData, \n",
" target, \n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=target)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Creating dummy columns for each categorical feature\n",
"categorical = []\n",
"for col, value in attritionXData.iteritems():\n",
" if value.dtype == 'object':\n",
" categorical.append(col)\n",
" \n",
"# Store the numerical columns in a list numerical\n",
"numerical = attritionXData.columns.difference(categorical) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transform raw features"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can explain raw features by either using a `sklearn.compose.ColumnTransformer` or a list of fitted transformer tuples. The cell below uses `sklearn.compose.ColumnTransformer`. In case you want to run the example with the list of fitted transformer tuples, comment the cell below and uncomment the cell that follows after. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.compose import ColumnTransformer\n",
"\n",
"# We create the preprocessing pipelines for both numeric and categorical data.\n",
"numeric_transformer = Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='median')),\n",
" ('scaler', StandardScaler())])\n",
"\n",
"categorical_transformer = Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),\n",
" ('onehot', OneHotEncoder(handle_unknown='ignore'))])\n",
"\n",
"transformations = ColumnTransformer(\n",
" transformers=[\n",
" ('num', numeric_transformer, numerical),\n",
" ('cat', categorical_transformer, categorical)])\n",
"\n",
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', SVC(kernel='linear', C = 1.0, probability=True))])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"# Uncomment below if sklearn-pandas is not installed\n",
"#!pip install sklearn-pandas\n",
"from sklearn_pandas import DataFrameMapper\n",
"\n",
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
"\n",
"\n",
"numeric_transformations = [([f], Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])) for f in numerical]\n",
"\n",
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
"\n",
"transformations = numeric_transformations + categorical_transformations\n",
"\n",
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', SVC(kernel='linear', C = 1.0, probability=True))]) \n",
"\n",
"\n",
"\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train a SVM classification model, which you want to explain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = clf.fit(x_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Explain predictions on your local machine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 1. Using SHAP TabularExplainer\n",
"# clf.steps[-1][1] returns the trained classification model\n",
"explainer = TabularExplainer(clf.steps[-1][1], \n",
" initialization_examples=x_train, \n",
" features=attritionXData.columns, \n",
" classes=[\"Not leaving\", \"leaving\"], \n",
" transformations=transformations)\n",
"\n",
"\n",
"\n",
"\n",
"# 2. Using MimicExplainer\n",
"# augment_data is optional and if true, oversamples the initialization examples to improve surrogate model accuracy to fit original model. Useful for high-dimensional data where the number of rows is less than the number of columns. \n",
"# max_num_of_augmentations is optional and defines max number of times we can increase the input data size.\n",
"# LGBMExplainableModel can be replaced with LinearExplainableModel, SGDExplainableModel, or DecisionTreeExplainableModel\n",
"# explainer = MimicExplainer(clf.steps[-1][1], \n",
"# x_train, \n",
"# LGBMExplainableModel, \n",
"# augment_data=True, \n",
"# max_num_of_augmentations=10, \n",
"# features=attritionXData.columns, \n",
"# classes=[\"Not leaving\", \"leaving\"], \n",
"# transformations=transformations)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"# 3. Using PFIExplainer\n",
"\n",
"# Use the parameter \"metric\" to pass a metric name or function to evaluate the permutation. \n",
"# Note that if a metric function is provided a higher value must be better.\n",
"# Otherwise, take the negative of the function or set the parameter \"is_error_metric\" to True.\n",
"# Default metrics: \n",
"# F1 Score for binary classification, F1 Score with micro average for multiclass classification and\n",
"# Mean absolute error for regression\n",
"\n",
"# explainer = PFIExplainer(clf.steps[-1][1], \n",
"# features=x_train.columns, \n",
"# transformations=transformations,\n",
"# classes=[\"Not leaving\", \"leaving\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate global explanations\n",
"Explain overall model predictions (global explanation)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Passing in test dataset for evaluation examples - note it must be a representative sample of the original data\n",
"# x_train can be passed as well, but with more examples explanations will take longer although they may be more accurate\n",
"global_explanation = explainer.explain_global(x_test)\n",
"\n",
"# Note: if you used the PFIExplainer in the previous step, use the next line of code instead\n",
"# global_explanation = explainer.explain_global(x_test, true_labels=y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Sorted SHAP values\n",
"print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values()))\n",
"# Corresponding feature names\n",
"print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names()))\n",
"# Feature ranks (based on original order of features)\n",
"print('global importance rank: {}'.format(global_explanation.global_importance_rank))\n",
"\n",
"# Note: PFIExplainer does not support per class explanations\n",
"# Per class feature names\n",
"print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names()))\n",
"# Per class feature importance values\n",
"print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Print out a dictionary that holds the sorted feature importance names and values\n",
"print('global importance rank: {}'.format(global_explanation.get_feature_importance_dict()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Explain overall model predictions as a collection of local (instance-level) explanations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# feature shap values for all features and all data points in the training data\n",
"print('local importance values: {}'.format(global_explanation.local_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate local explanations\n",
"Explain local data points (individual instances)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Note: PFIExplainer does not support local explanations\n",
"# You can pass a specific data point or a group of data points to the explain_local function\n",
"\n",
"# E.g., Explain the first data point in the test set\n",
"instance_num = 1\n",
"local_explanation = explainer.explain_local(x_test[:instance_num])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the prediction for the first member of the test set and explain why model made that prediction\n",
"prediction_value = clf.predict(x_test)[instance_num]\n",
"\n",
"sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value]\n",
"sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value]\n",
"\n",
"print('local importance values: {}'.format(sorted_local_importance_values))\n",
"print('local importance names: {}'.format(sorted_local_importance_names))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upload\n",
"Upload explanations to Azure Machine Learning Run History"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Experiment, Run\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'explain_model'\n",
"experiment = Experiment(ws, experiment_name)\n",
"run = experiment.start_logging()\n",
"client = ExplanationClient.from_run(run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Uploading model explanation data for storage or visualization in webUX\n",
"# The explanation can then be downloaded on any compute\n",
"# Multiple explanations can be uploaded\n",
"client.upload_model_explanation(global_explanation, comment='global explanation: all features')\n",
"# Or you can only upload the explanation object with the top k feature info\n",
"#client.upload_model_explanation(global_explanation, top_k=2, comment='global explanation: Only top 2 features')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Uploading model explanation data for storage or visualization in webUX\n",
"# The explanation can then be downloaded on any compute\n",
"# Multiple explanations can be uploaded\n",
"client.upload_model_explanation(local_explanation, comment='local explanation for test point 1: all features')\n",
"\n",
"# Alterntively, you can only upload the local explanation object with the top k feature info\n",
"#client.upload_model_explanation(local_explanation, top_k=2, comment='local explanation: top 2 features')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download\n",
"Download explanations from Azure Machine Learning Run History"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# List uploaded explanations\n",
"client.list_model_explanations()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for explanation in client.list_model_explanations():\n",
" \n",
" if explanation['comment'] == 'local explanation for test point 1: all features':\n",
" downloaded_local_explanation = client.download_model_explanation(explanation_id=explanation['id'])\n",
" # You can pass a k value to only download the top k feature importance values\n",
" downloaded_local_explanation_top2 = client.download_model_explanation(top_k=2, explanation_id=explanation['id'])\n",
" \n",
" \n",
" elif explanation['comment'] == 'global explanation: all features':\n",
" downloaded_global_explanation = client.download_model_explanation(explanation_id=explanation['id'])\n",
" # You can pass a k value to only download the top k feature importance values\n",
" downloaded_global_explanation_top2 = client.download_model_explanation(top_k=2, explanation_id=explanation['id'])\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize\n",
"Load the visualization dashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(downloaded_global_explanation, model, x_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next\n",
"Learn about other use cases of the explain package on a:\n",
"1. [Training time: regression problem](../../tabular-data/explain-binary-classification-local.ipynb) \n",
"1. [Training time: binary classification problem](../../tabular-data/explain-binary-classification-local.ipynb)\n",
"1. [Training time: multiclass classification problem](../../tabular-data/explain-multiclass-classification-local.ipynb)\n",
"1. Explain models with engineered features:\n",
" 1. [Simple feature transformations](../../tabular-data/simple-feature-transformations-explain-local.ipynb)\n",
" 1. [Advanced feature transformations](../../tabular-data/advanced-feature-transformations-explain-local.ipynb)\n",
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
"1. Inferencing time: deploy a classification model and explainer:\n",
" 1. [Deploy a locally-trained model and explainer](../scoring-time/train-explain-model-locally-and-deploy.ipynb)\n",
" 1. [Deploy a remotely-trained model and explainer](../scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "mesameki"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,6 @@
name: save-retrieve-explanations-run-history
dependencies:
- pip:
- azureml-sdk
- azureml-explain-model
- azureml-contrib-explain-model

View File

@@ -0,0 +1,33 @@
import json
import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model
def init():
global original_model
global scoring_explainer
# Retrieve the path to the model file using the model name
# Assume original model is named original_prediction_model
original_model_path = Model.get_model_path('original_model')
scoring_explainer_path = Model.get_model_path('IBM_attrition_explainer')
original_model = joblib.load(original_model_path)
scoring_explainer = joblib.load(scoring_explainer_path)
def run(raw_data):
# Get predictions and explanations for each data point
data = pd.read_json(raw_data)
# Make prediction
predictions = original_model.predict(data)
# Retrieve model explanations
local_importance_values = scoring_explainer.explain(data)
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(), 'local_importance_values': local_importance_values}

View File

@@ -0,0 +1,513 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-locally-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train and explain models locally and deploy model and scoring explainer\n",
"\n",
"\n",
"_**This notebook illustrates how to use the Azure Machine Learning Interpretability SDK to deploy a locally-trained model and its corresponding scoring explainer to Azure Container Instances (ACI) as a web service.**_\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Problem: IBM employee attrition classification with scikit-learn (train and explain a model locally and use Azure Container Instances (ACI) for deploying your model and its corresponding scoring explainer as a web service.)\n",
"\n",
"---\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Run model explainer locally at training time](#Explain)\n",
" 1. Apply feature transformations\n",
" 1. Train a binary classification model\n",
" 1. Explain the model on raw features\n",
" 1. Generate global explanations\n",
" 1. Generate local explanations\n",
"1. [Visualize explanations](#Visualize)\n",
"1. [Deploy model and scoring explainer](#Deploy)\n",
"1. [Next steps](#Next)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"\n",
"This notebook showcases how to train and explain a classification model locally, and deploy the trained model and its corresponding explainer to Azure Container Instances (ACI).\n",
"It demonstrates the API calls that you need to make to submit a run for training and explaining a model to AMLCompute, download the compute explanations remotely, and visualizing the global and local explanations via a visualization dashboard that provides an interactive way of discovering patterns in model predictions and downloaded explanations. It also demonstrates how to use Azure Machine Learning MLOps capabilities to deploy your model and its corresponding explainer.\n",
"\n",
"We will showcase one of the tabular data explainers: TabularExplainer (SHAP) and follow these steps:\n",
"1.\tDevelop a machine learning script in Python which involves the training script and the explanation script.\n",
"2.\tRun the script locally.\n",
"3.\tUse the interpretability toolkit\u00e2\u20ac\u2122s visualization dashboard to visualize predictions and their explanation. If the metrics and explanations don't indicate a desired outcome, loop back to step 1 and iterate on your scripts.\n",
"5.\tAfter a satisfactory run is found, create a scoring explainer and register the persisted model and its corresponding explainer in the model registry.\n",
"6.\tDevelop a scoring script.\n",
"7.\tCreate an image and register it in the image registry.\n",
"8.\tDeploy the image as a web service in Azure.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"Make sure you go through the [configuration notebook](../../../../configuration.ipynb) first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize a Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain\n",
"Create An Experiment: **Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"experiment_name = 'explain_model_at_scoring_time'\n",
"experiment = Experiment(workspace=ws, name=experiment_name)\n",
"run = experiment.start_logging()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get IBM attrition data\n",
"import os\n",
"import pandas as pd\n",
"\n",
"outdirname = 'dataset.6.21.19'\n",
"try:\n",
" from urllib import urlretrieve\n",
"except ImportError:\n",
" from urllib.request import urlretrieve\n",
"import zipfile\n",
"zipfilename = outdirname + '.zip'\n",
"urlretrieve('https://publictestdatasets.blob.core.windows.net/data/' + zipfilename, zipfilename)\n",
"with zipfile.ZipFile(zipfilename, 'r') as unzip:\n",
" unzip.extractall('.')\n",
"attritionData = pd.read_csv('./WA_Fn-UseC_-HR-Employee-Attrition.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.externals import joblib\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn_pandas import DataFrameMapper\n",
"\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"\n",
"os.makedirs('./outputs', exist_ok=True)\n",
"\n",
"# Dropping Employee count as all values are 1 and hence attrition is independent of this feature\n",
"attritionData = attritionData.drop(['EmployeeCount'], axis=1)\n",
"# Dropping Employee Number since it is merely an identifier\n",
"attritionData = attritionData.drop(['EmployeeNumber'], axis=1)\n",
"attritionData = attritionData.drop(['Over18'], axis=1)\n",
"# Since all values are 80\n",
"attritionData = attritionData.drop(['StandardHours'], axis=1)\n",
"\n",
"# Converting target variables from string to numerical values\n",
"target_map = {'Yes': 1, 'No': 0}\n",
"attritionData[\"Attrition_numerical\"] = attritionData[\"Attrition\"].apply(lambda x: target_map[x])\n",
"target = attritionData[\"Attrition_numerical\"]\n",
"\n",
"attritionXData = attritionData.drop(['Attrition_numerical', 'Attrition'], axis=1)\n",
"\n",
"# Creating dummy columns for each categorical feature\n",
"categorical = []\n",
"for col, value in attritionXData.iteritems():\n",
" if value.dtype == 'object':\n",
" categorical.append(col)\n",
"\n",
"# Store the numerical columns in a list numerical\n",
"numerical = attritionXData.columns.difference(categorical)\n",
"\n",
"numeric_transformations = [([f], Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='median')),\n",
" ('scaler', StandardScaler())])) for f in numerical]\n",
"\n",
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
"\n",
"transformations = numeric_transformations + categorical_transformations\n",
"\n",
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n",
" ('classifier', RandomForestClassifier())])\n",
"\n",
"# Split data into train and test\n",
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(attritionXData,\n",
" target,\n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=target)\n",
"\n",
"# preprocess the data and fit the classification model\n",
"clf.fit(x_train, y_train)\n",
"model = clf.steps[-1][1]\n",
"\n",
"model_file_name = 'log_reg.pkl'\n",
"\n",
"# save model in the outputs folder so it automatically get uploaded\n",
"with open(model_file_name, 'wb') as file:\n",
" joblib.dump(value=clf, filename=os.path.join('./outputs/',\n",
" model_file_name))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Explain predictions on your local machine\n",
"tabular_explainer = TabularExplainer(model, \n",
" initialization_examples=x_train, \n",
" features=attritionXData.columns, \n",
" classes=[\"Not leaving\", \"leaving\"], \n",
" transformations=transformations)\n",
"\n",
"# Explain overall model predictions (global explanation)\n",
"# Passing in test dataset for evaluation examples - note it must be a representative sample of the original data\n",
"# x_train can be passed as well, but with more examples explanations it will\n",
"# take longer although they may be more accurate\n",
"global_explanation = tabular_explainer.explain_global(x_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save\n",
"# ScoringExplainer\n",
"scoring_explainer = TreeScoringExplainer(tabular_explainer)\n",
"# Pickle scoring explainer locally\n",
"save(scoring_explainer, exist_ok=True)\n",
"\n",
"# Register original model\n",
"run.upload_file('original_model.pkl', os.path.join('./outputs/', model_file_name))\n",
"original_model = run.register_model(model_name='original_model', model_path='original_model.pkl')\n",
"\n",
"# Register scoring explainer\n",
"run.upload_file('IBM_attrition_explainer.pkl', 'scoring_explainer.pkl')\n",
"scoring_explainer_model = run.register_model(model_name='IBM_attrition_explainer', model_path='IBM_attrition_explainer.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize\n",
"Visualize the explanations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, clf, x_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy \n",
"\n",
"Deploy Model and ScoringExplainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
" tags={\"data\": \"IBM_Attrition\", \n",
" \"method\" : \"local_explanation\"}, \n",
" description='Get local explanations for IBM Employee Attrition data')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n",
"]\n",
" \n",
"\n",
"# specify CondaDependencies obj\n",
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas'],\n",
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
" pin_sdk_version=False)\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())\n",
"\n",
"with open(\"myenv.yml\",\"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile dockerfile\n",
"RUN apt-get update && apt-get install -y g++ "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"# retrieve scoring explainer for deployment\n",
"scoring_explainer_model = Model(ws, 'IBM_attrition_explainer')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"# Use the custom scoring, docker, and conda files we created above\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
" docker_file=\"dockerfile\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")\n",
"\n",
"# Use configs and models generated above\n",
"service = Webservice.deploy_from_model(workspace=ws,\n",
" name='model-scoring',\n",
" deployment_config=aciconfig,\n",
" models=[scoring_explainer_model, original_model],\n",
" image_config=image_config)\n",
"\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import json\n",
"\n",
"\n",
"# Create data to test service with\n",
"sample_data = '{\"Age\":{\"899\":49},\"BusinessTravel\":{\"899\":\"Travel_Rarely\"},\"DailyRate\":{\"899\":1098},\"Department\":{\"899\":\"Research & Development\"},\"DistanceFromHome\":{\"899\":4},\"Education\":{\"899\":2},\"EducationField\":{\"899\":\"Medical\"},\"EnvironmentSatisfaction\":{\"899\":1},\"Gender\":{\"899\":\"Male\"},\"HourlyRate\":{\"899\":85},\"JobInvolvement\":{\"899\":2},\"JobLevel\":{\"899\":5},\"JobRole\":{\"899\":\"Manager\"},\"JobSatisfaction\":{\"899\":3},\"MaritalStatus\":{\"899\":\"Married\"},\"MonthlyIncome\":{\"899\":18711},\"MonthlyRate\":{\"899\":12124},\"NumCompaniesWorked\":{\"899\":2},\"OverTime\":{\"899\":\"No\"},\"PercentSalaryHike\":{\"899\":13},\"PerformanceRating\":{\"899\":3},\"RelationshipSatisfaction\":{\"899\":3},\"StockOptionLevel\":{\"899\":1},\"TotalWorkingYears\":{\"899\":23},\"TrainingTimesLastYear\":{\"899\":2},\"WorkLifeBalance\":{\"899\":4},\"YearsAtCompany\":{\"899\":1},\"YearsInCurrentRole\":{\"899\":0},\"YearsSinceLastPromotion\":{\"899\":0},\"YearsWithCurrManager\":{\"899\":0}}'\n",
"\n",
"\n",
"\n",
"headers = {'Content-Type':'application/json'}\n",
"\n",
"# send request to service\n",
"resp = requests.post(service.scoring_uri, sample_data, headers=headers)\n",
"\n",
"print(\"POST to url\", service.scoring_uri)\n",
"# can covert back to Python objects from json string if desired\n",
"print(\"prediction:\", resp.text)\n",
"result = json.loads(resp.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#plot the feature importance for the prediction\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt; plt.rcdefaults()\n",
"\n",
"labels = json.loads(sample_data)\n",
"labels = labels.keys()\n",
"objects = labels\n",
"y_pos = np.arange(len(objects))\n",
"performance = result[\"local_importance_values\"][0][0]\n",
"\n",
"plt.bar(y_pos, performance, align='center', alpha=0.5)\n",
"plt.xticks(y_pos, objects)\n",
"locs, labels = plt.xticks()\n",
"plt.setp(labels, rotation=90)\n",
"plt.ylabel('Feature impact - leaving vs not leaving')\n",
"plt.title('Local feature importance for prediction')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next\n",
"Learn about other use cases of the explain package on a:\n",
"1. [Training time: regression problem](../../tabular-data/explain-binary-classification-local.ipynb) \n",
"1. [Training time: binary classification problem](../../tabular-data/explain-binary-classification-local.ipynb)\n",
"1. [Training time: multiclass classification problem](../../tabular-data/explain-multiclass-classification-local.ipynb)\n",
"1. Explain models with engineered features:\n",
" 1. [Simple feature transformations](../../tabular-data/simple-feature-transformations-explain-local.ipynb)\n",
" 1. [Advanced feature transformations](../../tabular-data/advanced-feature-transformations-explain-local.ipynb)\n",
"1. [Save model explanations via Azure Machine Learning Run History](../run-history/save-retrieve-explanations-run-history.ipynb)\n",
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
"1. [Inferencing time: deploy a remotely-trained model and explainer](./train-explain-model-on-amlcompute-and-deploy.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "mesameki"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,7 @@
name: train-explain-model-locally-and-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-explain-model
- azureml-contrib-explain-model
- sklearn-pandas

View File

@@ -13,33 +13,66 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-on-amlcompute/regression-sklearn-on-amlcompute.png)" "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-on-amlcompute-and-deploy.png)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Train using Azure Machine Learning Compute\n", "# Train and explain models remotely via Azure Machine Learning Compute and deploy model and scoring explainer\n",
"\n", "\n",
"* Initialize a Workspace\n", "\n",
"* Create an Experiment\n", "_**This notebook illustrates how to use the Azure Machine Learning Interpretability SDK to train and explain a classification model remotely on an Azure Machine Leanrning Compute Target (AMLCompute), and use Azure Container Instances (ACI) for deploying your model and its corresponding scoring explainer as a web service.**_\n",
"* Introduction to AmlCompute\n", "\n",
"* Submit an AmlCompute run in a few different ways\n", "Problem: IBM employee attrition classification with scikit-learn (train a model and run an explainer remotely via AMLCompute, and deploy model and its corresponding explainer.)\n",
" - Provision as a run based compute target \n", "\n",
" - Provision as a persistent compute target (Basic)\n", "---\n",
" - Provision as a persistent compute target (Advanced)\n", "\n",
"* Additional operations to perform on AmlCompute\n", "## Table of Contents\n",
"* Download model explanation data from the Run History Portal\n", "\n",
"* Print the explanation data" "1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Run model explainer locally at training time](#Explain)\n",
" 1. Apply feature transformations\n",
" 1. Train a binary classification model\n",
" 1. Explain the model on raw features\n",
" 1. Generate global explanations\n",
" 1. Generate local explanations\n",
"1. [Visualize results](#Visualize)\n",
"1. [Deploy model and scoring explainer](#Deploy)\n",
"1. [Next steps](#Next)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Prerequisites\n", "## Introduction\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't." "\n",
"This notebook showcases how to train and explain a classification model remotely via Azure Machine Learning Compute (AMLCompute), download the calculated explanations locally for visualization and inspection, and deploy the final model and its corresponding explainer to Azure Container Instances (ACI).\n",
"It demonstrates the API calls that you need to make to submit a run for training and explaining a model to AMLCompute, download the compute explanations remotely, and visualizing the global and local explanations via a visualization dashboard that provides an interactive way of discovering patterns in model predictions and downloaded explanations, and using Azure Machine Learning MLOps capabilities to deploy your model and its corresponding explainer.\n",
"\n",
"We will showcase one of the tabular data explainers: TabularExplainer (SHAP) and follow these steps:\n",
"1.\tDevelop a machine learning script in Python which involves the training script and the explanation script.\n",
"2.\tCreate and configure a compute target.\n",
"3.\tSubmit the scripts to the configured compute target to run in that environment. During training, the scripts can read from or write to datastore. And the records of execution (e.g., model, metrics, prediction explanations) are saved as runs in the workspace and grouped under experiments.\n",
"4.\tQuery the experiment for logged metrics and explanations from the current and past runs. Use the interpretability toolkit\u00e2\u20ac\u2122s visualization dashboard to visualize predictions and their explanation. If the metrics and explanations don't indicate a desired outcome, loop back to step 1 and iterate on your scripts.\n",
"5.\tAfter a satisfactory run is found, create a scoring explainer and register the persisted model and its corresponding explainer in the model registry.\n",
"6.\tDevelop a scoring script.\n",
"7.\tCreate an image and register it in the image registry.\n",
"8.\tDeploy the image as a web service in Azure.\n",
"\n",
"| ![azure-machine-learning-cycle](./img/azure-machine-learning-cycle.PNG) |\n",
"|:--:|"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"Make sure you go through the [configuration notebook](../../../../configuration.ipynb) first if you haven't."
] ]
}, },
{ {
@@ -83,9 +116,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create An Experiment\n", "## Explain\n",
"\n", "\n",
"**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments." "Create An Experiment: **Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments."
] ]
}, },
{ {
@@ -162,7 +195,7 @@
"\n", "\n",
"project_folder = './explainer-remote-run-on-amlcompute'\n", "project_folder = './explainer-remote-run-on-amlcompute'\n",
"os.makedirs(project_folder, exist_ok=True)\n", "os.makedirs(project_folder, exist_ok=True)\n",
"shutil.copy('run_explainer.py', project_folder)" "shutil.copy('train_explain.py', project_folder)"
] ]
}, },
{ {
@@ -203,20 +236,25 @@
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n", "# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"run_config.environment.python.user_managed_dependencies = False\n", "run_config.environment.python.user_managed_dependencies = False\n",
"\n", "\n",
"# auto-prepare the Docker image when used for execution (if it is not already prepared)\n",
"run_config.auto_prepare_environment = True\n",
"\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n", " 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n", " 'azureml-explain-model'\n",
"]\n", "]\n",
" \n",
"\n",
"\n", "\n",
"# specify CondaDependencies obj\n", "# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n", "run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
" pip_packages=azureml_pip_packages)\n", " pip_packages=['sklearn_pandas', 'pyyaml'] + azureml_pip_packages,\n",
"\n", " pin_sdk_version=False)\n",
"# Now submit a run on AmlCompute\n", "# Now submit a run on AmlCompute\n",
"from azureml.core.script_run_config import ScriptRunConfig\n", "from azureml.core.script_run_config import ScriptRunConfig\n",
"\n", "\n",
"script_run_config = ScriptRunConfig(source_directory=project_folder,\n", "script_run_config = ScriptRunConfig(source_directory=project_folder,\n",
" script='run_explainer.py',\n", " script='train_explain.py',\n",
" run_config=run_config)\n", " run_config=run_config)\n",
"\n", "\n",
"run = experiment.submit(script_run_config)\n", "run = experiment.submit(script_run_config)\n",
@@ -243,262 +281,6 @@
"run.wait_for_completion(show_output=True)" "run.wait_for_completion(show_output=True)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Provision as a persistent compute target (Basic)\n",
"\n",
"You can provision a persistent AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"\n",
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
"* `max_nodes`: Maximum nodes to autoscale to while running a job on AmlCompute"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=4)\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n",
"\n",
"# enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n",
"]\n",
"\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
" pip_packages=azureml_pip_packages)\n",
"\n",
"from azureml.core import Run\n",
"from azureml.core import ScriptRunConfig\n",
"\n",
"src = ScriptRunConfig(source_directory=project_folder, \n",
" script='run_explainer.py', \n",
" run_config=run_config) \n",
"run = experiment.submit(config=src)\n",
"run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# Shows output of the run on stdout.\n",
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.get_metrics()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Provision as a persistent compute target (Advanced)\n",
"\n",
"You can also specify additional properties or change defaults while provisioning AmlCompute using a more advanced configuration. This is useful when you want a dedicated cluster of 4 nodes (for example you can set the min_nodes and max_nodes to 4), or want the compute to be within an existing VNet in your subscription.\n",
"\n",
"In addition to `vm_size` and `max_nodes`, you can specify:\n",
"* `min_nodes`: Minimum nodes (default 0 nodes) to downscale to while running a job on AmlCompute\n",
"* `vm_priority`: Choose between 'dedicated' (default) and 'lowpriority' VMs when provisioning AmlCompute. Low Priority VMs use Azure's excess capacity and are thus cheaper but risk your run being pre-empted\n",
"* `idle_seconds_before_scaledown`: Idle time (default 120 seconds) to wait after run completion before auto-scaling to min_nodes\n",
"* `vnet_resourcegroup_name`: Resource group of the **existing** VNet within which AmlCompute should be provisioned\n",
"* `vnet_name`: Name of VNet\n",
"* `subnet_name`: Name of SubNet within the VNet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" vm_priority='lowpriority',\n",
" min_nodes=2,\n",
" max_nodes=4,\n",
" idle_seconds_before_scaledown='300',\n",
" vnet_resourcegroup_name='<my-resource-group>',\n",
" vnet_name='<my-vnet-name>',\n",
" subnet_name='<my-subnet-name>')\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n",
"\n",
"# enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n",
"]\n",
"\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],\n",
" pip_packages=azureml_pip_packages)\n",
"\n",
"from azureml.core import Run\n",
"from azureml.core import ScriptRunConfig\n",
"\n",
"src = ScriptRunConfig(source_directory=project_folder, \n",
" script='run_explainer.py', \n",
" run_config=run_config) \n",
"run = experiment.submit(config=src)\n",
"run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# Shows output of the run on stdout.\n",
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.get_metrics()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n",
"\n",
"client = ExplanationClient.from_run(run)\n",
"# Get the top k (e.g., 4) most important features with their importance values\n",
"explanation = client.download_model_explanation(top_k=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Additional operations to perform on AmlCompute\n",
"\n",
"You can perform more operations on AmlCompute such as updating the node counts or deleting the compute. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get_status () gets the latest status of the AmlCompute target\n",
"cpu_cluster.get_status().serialize()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Update () takes in the min_nodes, max_nodes and idle_seconds_before_scaledown and updates the AmlCompute target\n",
"# cpu_cluster.update(min_nodes=1)\n",
"# cpu_cluster.update(max_nodes=10)\n",
"cpu_cluster.update(idle_seconds_before_scaledown=300)\n",
"# cpu_cluster.update(min_nodes=2, max_nodes=4, idle_seconds_before_scaledown=600)"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@@ -515,7 +297,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Download Model Explanation Data" "## Download Model Explanation, Model, and Data"
] ]
}, },
{ {
@@ -524,13 +306,26 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"from sklearn.externals import joblib\n",
"original_model = Model(ws, 'original_model')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_svm_model = joblib.load(model_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# retrieve global explanation for visualization\n",
"from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n", "from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n",
"\n", "\n",
"# Get model explanation data\n", "# get model explanation data\n",
"client = ExplanationClient.from_run(run)\n", "client = ExplanationClient.from_run(run)\n",
"explanation = client.download_model_explanation()\n", "global_explanation = client.download_model_explanation()"
"local_importance_values = explanation.local_importance_values\n",
"expected_values = explanation.expected_values\n"
] ]
}, },
{ {
@@ -539,42 +334,189 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# Or you can use the saved run.id to retrive the feature importance values\n", "# retrieve x_test for visualization\n",
"client = ExplanationClient.from_run_id(ws, experiment_name, run.id)\n", "from sklearn.externals import joblib\n",
"explanation = client.download_model_explanation()\n", "x_test_path = './x_test.pkl'\n",
"local_importance_values = explanation.local_importance_values\n", "run.download_file('x_test_ibm.pkl', output_file_path=x_test_path)\n",
"expected_values = explanation.expected_values" "x_test = joblib.load(x_test_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the top k (e.g., 4) most important features with their importance values\n",
"explanation = client.download_model_explanation(top_k=4)\n",
"global_importance_values = explanation.get_ranked_global_values()\n",
"global_importance_names = explanation.get_ranked_global_names()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('global importance values: {}'.format(global_importance_values))\n",
"print('global importance names: {}'.format(global_importance_names))"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Success!\n", "## Visualize\n",
"Great, you are ready to move on to the remaining notebooks." "Visualize the explanations"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, original_svm_model, x_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy\n",
"Deploy Model and ScoringExplainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
" tags={\"data\": \"IBM_Attrition\", \n",
" \"method\" : \"local_explanation\"}, \n",
" description='Get local explanations for IBM Employee Attrition data')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n",
"]\n",
" \n",
"\n",
"# specify CondaDependencies obj\n",
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas'],\n",
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
" pin_sdk_version=False)\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())\n",
"\n",
"with open(\"myenv.yml\",\"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile dockerfile\n",
"RUN apt-get update && apt-get install -y g++ "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# retrieve scoring explainer for deployment\n",
"scoring_explainer_model = Model(ws, 'IBM_attrition_explainer')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"# Use the custom scoring, docker, and conda files we created above\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
" docker_file=\"dockerfile\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")\n",
"\n",
"# Use configs and models generated above\n",
"service = Webservice.deploy_from_model(workspace=ws,\n",
" name='model-scoring-service',\n",
" deployment_config=aciconfig,\n",
" models=[scoring_explainer_model, original_model],\n",
" image_config=image_config)\n",
"\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"# create data to test service with\n",
"examples = x_test[:4]\n",
"input_data = examples.to_json()\n",
"\n",
"headers = {'Content-Type':'application/json'}\n",
"\n",
"# send request to service\n",
"resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"\n",
"print(\"POST to url\", service.scoring_uri)\n",
"# can covert back to Python objects from json string if desired\n",
"print(\"prediction:\", resp.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next\n",
"Learn about other use cases of the explain package on a:\n",
"1. [Training time: regression problem](../../tabular-data/explain-binary-classification-local.ipynb) \n",
"1. [Training time: binary classification problem](../../tabular-data/explain-binary-classification-local.ipynb)\n",
"1. [Training time: multiclass classification problem](../../tabular-data/explain-multiclass-classification-local.ipynb)\n",
"1. Explain models with engineered features:\n",
" 1. [Simple feature transformations](../../tabular-data/simple-feature-transformations-explain-local.ipynb)\n",
" 1. [Advanced feature transformations](../../tabular-data/advanced-feature-transformations-explain-local.ipynb)\n",
"1. [Save model explanations via Azure Machine Learning Run History](../run-history/save-retrieve-explanations-run-history.ipynb)\n",
"1. [Run explainers remotely on Azure Machine Learning Compute (AMLCompute)](../remote-explanation/explain-model-on-amlcompute.ipynb)\n",
"1. [Inferencing time: deploy a locally-trained model and explainer](./train-explain-model-locally-and-deploy.ipynb)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {

Some files were not shown because too many files have changed in this diff Show More