Compare commits

..

1 Commits

Author SHA1 Message Date
amlrelsa-ms
71e061b193 update samples from Release-114 as a part of 1.38.0 SDK stable release 2022-02-16 16:32:55 +00:00
513 changed files with 50615 additions and 17415 deletions

View File

@@ -1,6 +1,6 @@
# Azure Machine Learning Python SDK notebooks # Azure Machine Learning Python SDK notebooks
### **With the introduction of AzureML SDK v2, this samples repository for the v1 SDK is now deprecated and will not be monitored or updated. Users are encouraged to visit the [v2 SDK samples repository](https://github.com/Azure/azureml-examples) instead for up-to-date and enhanced examples of how to build, train, and deploy machine learning models with AzureML's newest features.** > a community-driven repository of examples using mlflow for tracking can be found at https://github.com/Azure/azureml-examples
Welcome to the Azure Machine Learning Python SDK notebooks repository! Welcome to the Azure Machine Learning Python SDK notebooks repository!

View File

@@ -1,41 +0,0 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.7 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

View File

@@ -103,7 +103,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.38.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -329,7 +329,7 @@
" print(\"Creating new gpu-cluster\")\n", " print(\"Creating new gpu-cluster\")\n",
" \n", " \n",
" # Specify the configuration for the new cluster\n", " # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"Standard_NC6s_v3\",\n", " compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" min_nodes=0,\n", " min_nodes=0,\n",
" max_nodes=4)\n", " max_nodes=4)\n",
" # Create the cluster with the specified name and configuration\n", " # Create the cluster with the specified name and configuration\n",
@@ -367,9 +367,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8 - AzureML", "display_name": "Python 3.6",
"language": "python", "language": "python",
"name": "python38-azureml" "name": "python36"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -174,7 +174,7 @@
"else:\n", "else:\n",
" print(\"creating new cluster\")\n", " print(\"creating new cluster\")\n",
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n", " # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v3\", min_nodes=1, max_nodes = 1)\n", " provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
"\n", "\n",
" # create the cluster\n", " # create the cluster\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n", " gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
@@ -188,6 +188,13 @@
"### Script to process data and train model" "### Script to process data and train model"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _process&#95;data.py_ script used in the step below is a slightly modified implementation of [RAPIDS Mortgage E2E example](https://github.com/rapidsai/notebooks-contrib/blob/master/intermediate_notebooks/E2E/mortgage/mortgage_e2e.ipynb)."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@@ -366,7 +373,7 @@
"run_config.target = gpu_cluster_name\n", "run_config.target = gpu_cluster_name\n",
"run_config.environment.docker.enabled = True\n", "run_config.environment.docker.enabled = True\n",
"run_config.environment.docker.gpu_support = True\n", "run_config.environment.docker.gpu_support = True\n",
"run_config.environment.docker.base_image = \"mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu20.04\"\n", "run_config.environment.docker.base_image = \"mcr.microsoft.com/azureml/base-gpu:intelmpi2018.3-cuda10.0-cudnn7-ubuntu16.04\"\n",
"run_config.environment.spark.precache_packages = False\n", "run_config.environment.spark.precache_packages = False\n",
"run_config.data_references={'data':data_ref.to_config()}" "run_config.data_references={'data':data_ref.to_config()}"
] ]
@@ -398,7 +405,7 @@
"# run_config.target = gpu_cluster_name\n", "# run_config.target = gpu_cluster_name\n",
"# run_config.environment.docker.enabled = True\n", "# run_config.environment.docker.enabled = True\n",
"# run_config.environment.docker.gpu_support = True\n", "# run_config.environment.docker.gpu_support = True\n",
"# run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2-runtime-ubuntu20.04\"\n", "# run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2-runtime-ubuntu18.04\"\n",
"# # run_config.environment.docker.base_image_registry.address = '<registry_url>' # not required if the base_image is in Docker hub\n", "# # run_config.environment.docker.base_image_registry.address = '<registry_url>' # not required if the base_image is in Docker hub\n",
"# # run_config.environment.docker.base_image_registry.username = '<user_name>' # needed only for private images\n", "# # run_config.environment.docker.base_image_registry.username = '<user_name>' # needed only for private images\n",
"# # run_config.environment.docker.base_image_registry.password = '<password>' # needed only for private images\n", "# # run_config.environment.docker.base_image_registry.password = '<password>' # needed only for private images\n",
@@ -525,9 +532,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8 - AzureML", "display_name": "Python 3.6",
"language": "python", "language": "python",
"name": "python38-azureml" "name": "python36"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -0,0 +1,621 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/fairness/fairlearn-azureml-mitigation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Unfairness Mitigation with Fairlearn and Azure Machine Learning\n",
"**This notebook shows how to upload results from Fairlearn's GridSearch mitigation algorithm into a dashboard in Azure Machine Learning Studio**\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Loading the Data](#LoadingData)\n",
"1. [Training an Unmitigated Model](#UnmitigatedModel)\n",
"1. [Mitigation with GridSearch](#Mitigation)\n",
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
" 1. Registering models\n",
" 1. Computing Fairness Metrics\n",
" 1. Uploading to Azure\n",
"1. [Conclusion](#Conclusion)\n",
"\n",
"<a id=\"Introduction\"></a>\n",
"## Introduction\n",
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.org) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.org/).\n",
"\n",
"We will apply the [grid search algorithm](https://fairlearn.org/v0.4.6/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
"\n",
"### Setup\n",
"\n",
"To use this notebook, an Azure Machine Learning workspace is required.\n",
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn>=0.6.2` (pre-v0.5.0 will work with minor modifications)\n",
"* `joblib`\n",
"* `liac-arff`\n",
"* `raiwidgets~=0.7.0`\n",
"\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we will fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairlearn.reductions import GridSearch, DemographicParity, ErrorRate\n",
"from raiwidgets import FairnessDashboard\n",
"\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.compose import make_column_selector as selector\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now load and inspect the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairness_nb_utils import fetch_census_dataset\n",
"\n",
"data = fetch_census_dataset()\n",
" \n",
"# Extract the items we want\n",
"X_raw = data.data\n",
"y = (data.target == '>50K') * 1\n",
"\n",
"X_raw[\"race\"].value_counts().to_dict()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are going to treat the sex and race of each individual as protected attributes, and in this particular case we are going to remove these attributes from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). Protected attributes are often denoted by 'A' in the literature, and we follow that convention here:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['sex','race']]\n",
"X_raw = X_raw.drop(labels=['sex', 'race'], axis = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
")\n",
"\n",
"# Ensure indices are aligned between X, y and A,\n",
"# after all the slicing and splitting of DataFrames\n",
"# and Series\n",
"\n",
"X_train = X_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"y_train = y_train.reset_index(drop=True)\n",
"y_test = y_test.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
"\n",
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numeric_transformer = Pipeline(\n",
" steps=[\n",
" (\"impute\", SimpleImputer()),\n",
" (\"scaler\", StandardScaler()),\n",
" ]\n",
")\n",
"\n",
"categorical_transformer = Pipeline(\n",
" [\n",
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
" ]\n",
")\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = preprocessor.fit_transform(X_train)\n",
"X_test = preprocessor.transform(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"UnmitigatedModel\"></a>\n",
"## Training an Unmitigated Model\n",
"\n",
"So we have a point of comparison, we first train a model (specifically, logistic regression from scikit-learn) on the raw data, without applying any mitigation algorithm:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"unmitigated_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"unmitigated_predictor.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can view this model in the fairness dashboard, and see the disparities which appear:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"FairnessDashboard(sensitive_features=A_test,\n",
" y_true=y_test,\n",
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the disparity in accuracy when we select 'Sex' as the sensitive feature, we see that males have an error rate about three times greater than the females. More interesting is the disparity in opportunitiy - males are offered loans at three times the rate of females.\n",
"\n",
"Despite the fact that we removed the feature from the training data, our predictor still discriminates based on sex. This demonstrates that simply ignoring a protected attribute when fitting a predictor rarely eliminates unfairness. There will generally be enough other features correlated with the removed attribute to lead to disparate impact."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Mitigation\"></a>\n",
"## Mitigation with GridSearch\n",
"\n",
"The `GridSearch` class in `Fairlearn` implements a simplified version of the exponentiated gradient reduction of [Agarwal et al. 2018](https://arxiv.org/abs/1803.02453). The user supplies a standard ML estimator, which is treated as a blackbox - for this simple example, we shall use the logistic regression estimator from scikit-learn. `GridSearch` works by generating a sequence of relabellings and reweightings, and trains a predictor for each.\n",
"\n",
"For this example, we specify demographic parity (on the protected attribute of sex) as the fairness metric. Demographic parity requires that individuals are offered the opportunity (a loan in this example) independent of membership in the protected class (i.e., females and males should be offered loans at the same rate). *We are using this metric for the sake of simplicity* in this example; the appropriate fairness metric can only be selected after *careful examination of the broader context* in which the model is to be used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sweep = GridSearch(LogisticRegression(solver='liblinear', fit_intercept=True),\n",
" constraints=DemographicParity(),\n",
" grid_size=71)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With our estimator created, we can fit it to the data. After `fit()` completes, we extract the full set of predictors from the `GridSearch` object.\n",
"\n",
"The following cell trains a many copies of the underlying estimator, and may take a minute or two to run:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sweep.fit(X_train, y_train,\n",
" sensitive_features=A_train.sex)\n",
"\n",
"# For Fairlearn pre-v0.5.0, need sweep._predictors\n",
"predictors = sweep.predictors_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We could load these predictors into the Fairness dashboard now. However, the plot would be somewhat confusing due to their number. In this case, we are going to remove the predictors which are dominated in the error-disparity space by others from the sweep (note that the disparity will only be calculated for the protected attribute; other potentially protected attributes will *not* be mitigated). In general, one might not want to do this, since there may be other considerations beyond the strict optimisation of error and disparity (of the given protected attribute)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"errors, disparities = [], []\n",
"for predictor in predictors:\n",
" error = ErrorRate()\n",
" error.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
" disparity = DemographicParity()\n",
" disparity.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
" \n",
" errors.append(error.gamma(predictor.predict)[0])\n",
" disparities.append(disparity.gamma(predictor.predict).max())\n",
" \n",
"all_results = pd.DataFrame( {\"predictor\": predictors, \"error\": errors, \"disparity\": disparities})\n",
"\n",
"dominant_models_dict = dict()\n",
"base_name_format = \"census_gs_model_{0}\"\n",
"row_id = 0\n",
"for row in all_results.itertuples():\n",
" model_name = base_name_format.format(row_id)\n",
" errors_for_lower_or_eq_disparity = all_results[\"error\"][all_results[\"disparity\"]<=row.disparity]\n",
" if row.error <= errors_for_lower_or_eq_disparity.min():\n",
" dominant_models_dict[model_name] = row.predictor\n",
" row_id = row_id + 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can construct predictions for the dominant models (we include the unmitigated predictor as well, for comparison):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions_dominant = {\"census_unmitigated\": unmitigated_predictor.predict(X_test)}\n",
"models_dominant = {\"census_unmitigated\": unmitigated_predictor}\n",
"for name, predictor in dominant_models_dict.items():\n",
" value = predictor.predict(X_test)\n",
" predictions_dominant[name] = value\n",
" models_dominant[name] = predictor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These predictions may then be viewed in the fairness dashboard. We include the race column from the dataset, as an alternative basis for assessing the models. However, since we have not based our mitigation on it, the variation in the models with respect to race can be large."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"FairnessDashboard(sensitive_features=A_test, \n",
" y_true=y_test.tolist(),\n",
" y_pred=predictions_dominant)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using sex as the sensitive feature and accuracy as the metric, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
"\n",
"By clicking on individual models on the plot, we can inspect their metrics for disparity and accuracy in greater detail. In a real example, we would then pick the model which represented the best trade-off between accuracy and disparity given the relevant business constraints."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"AzureUpload\"></a>\n",
"## Uploading a Fairness Dashboard to Azure\n",
"\n",
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
"1. Register the dominant models\n",
"1. Precompute all the required metrics\n",
"1. Upload to Azure\n",
"\n",
"Before that, we need to connect to Azure Machine Learning Studio:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Experiment, Model\n",
"\n",
"ws = Workspace.from_config()\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"RegisterModels\"></a>\n",
"### Registering Models\n",
"\n",
"The fairness dashboard is designed to integrate with registered models, so we need to do this for the models we want in the Studio portal. The assumption is that the names of the models specified in the dashboard dictionary correspond to the `id`s (i.e. `<name>:<version>` pairs) of registered models in the workspace. We register each of the models in the `models_dominant` dictionary into the workspace. For this, we have to save each model to a file, and then register that file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import os\n",
"\n",
"os.makedirs('models', exist_ok=True)\n",
"def register_model(name, model):\n",
" print(\"Registering \", name)\n",
" model_path = \"models/{0}.pkl\".format(name)\n",
" joblib.dump(value=model, filename=model_path)\n",
" registered_model = Model.register(model_path=model_path,\n",
" model_name=name,\n",
" workspace=ws)\n",
" print(\"Registered \", registered_model.id)\n",
" return registered_model.id\n",
"\n",
"model_name_id_mapping = dict()\n",
"for name, model in models_dominant.items():\n",
" m_id = register_model(name, model)\n",
" model_name_id_mapping[name] = m_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, produce new predictions dictionaries, with the updated names:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions_dominant_ids = dict()\n",
"for name, y_pred in predictions_dominant.items():\n",
" predictions_dominant_ids[model_name_id_mapping[name]] = y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"PrecomputeMetrics\"></a>\n",
"### Precomputing Metrics\n",
"\n",
"We create a _dashboard dictionary_ using Fairlearn's `metrics` package. The `_create_group_metric_set` method has arguments similar to the Dashboard constructor, except that the sensitive features are passed as a dictionary (to ensure that names are available), and we must specify the type of prediction. Note that we use the `predictions_dominant_ids` dictionary we just created:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf = { 'sex': A_test.sex, 'race': A_test.race }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
" predictions=predictions_dominant_ids,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"DashboardUpload\"></a>\n",
"### Uploading the Dashboard\n",
"\n",
"Now, we import our `contrib` package which contains the routine to perform the upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.fairness import upload_dashboard_dictionary, download_dashboard_by_upload_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can create an Experiment, then a Run, and upload our dashboard to it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp = Experiment(ws, \"Test_Fairlearn_GridSearch_Census_Demo\")\n",
"print(exp)\n",
"\n",
"run = exp.start_logging()\n",
"try:\n",
" dashboard_title = \"Dominant Models from GridSearch\"\n",
" upload_id = upload_dashboard_dictionary(run,\n",
" dash_dict,\n",
" dashboard_name=dashboard_title)\n",
" print(\"\\nUploaded to id: {0}\\n\".format(upload_id))\n",
"\n",
" downloaded_dict = download_dashboard_by_upload_id(run, upload_id)\n",
"finally:\n",
" run.complete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dashboard can be viewed in the Run Details page.\n",
"\n",
"Finally, we can verify that the dashboard dictionary which we downloaded matches our upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dash_dict == downloaded_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Conclusion\"></a>\n",
"## Conclusion\n",
"\n",
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.org/) provides that discussion"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "riedgar"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,9 @@
name: fairlearn-azureml-mitigation
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-fairness
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.16.0

View File

@@ -0,0 +1,111 @@
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
"""Utilities for azureml-contrib-fairness notebooks."""
import arff
from collections import OrderedDict
from contextlib import closing
import gzip
import pandas as pd
from sklearn.datasets import fetch_openml
from sklearn.utils import Bunch
import time
def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
"""Fetch a given dataset from OpenML with retries as specified."""
for i in range(max_retries):
try:
print("Download attempt {0} of {1}".format(i + 1, max_retries))
data = fetch_openml(data_id=data_id, as_frame=True)
break
except Exception as e: # noqa: B902
print("Download attempt failed with exception:")
print(e)
if i + 1 != max_retries:
print("Will retry after {0} seconds".format(retry_delay))
time.sleep(retry_delay)
retry_delay = retry_delay * 2
else:
raise RuntimeError("Unable to download dataset from OpenML")
return data
_categorical_columns = [
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country'
]
def fetch_census_dataset():
"""Fetch the Adult Census Dataset.
This uses a particular URL for the Adult Census dataset. The code
is a simplified version of fetch_openml() in sklearn.
The data are copied from:
https://openml.org/data/v1/download/1595261.gz
(as of 2021-03-31)
"""
try:
from urllib import urlretrieve
except ImportError:
from urllib.request import urlretrieve
filename = "1595261.gz"
data_url = "https://rainotebookscdn.blob.core.windows.net/datasets/"
remaining_attempts = 5
sleep_duration = 10
while remaining_attempts > 0:
try:
urlretrieve(data_url + filename, filename)
http_stream = gzip.GzipFile(filename=filename, mode='rb')
with closing(http_stream):
def _stream_generator(response):
for line in response:
yield line.decode('utf-8')
stream = _stream_generator(http_stream)
data = arff.load(stream)
except Exception as exc: # noqa: B902
remaining_attempts -= 1
print("Error downloading dataset from {} ({} attempt(s) remaining)"
.format(data_url, remaining_attempts))
print(exc)
time.sleep(sleep_duration)
sleep_duration *= 2
continue
else:
# dataset successfully downloaded
break
else:
raise Exception("Could not retrieve dataset from {}.".format(data_url))
attributes = OrderedDict(data['attributes'])
arff_columns = list(attributes)
raw_df = pd.DataFrame(data=data['data'], columns=arff_columns)
target_column_name = 'class'
target = raw_df.pop(target_column_name)
for col_name in _categorical_columns:
dtype = pd.api.types.CategoricalDtype(attributes[col_name])
raw_df[col_name] = raw_df[col_name].astype(dtype, copy=False)
result = Bunch()
result.data = raw_df
result.target = target
return result

View File

@@ -0,0 +1,545 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/fairness/upload-fairness-dashboard.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Upload a Fairness Dashboard to Azure Machine Learning Studio\n",
"**This notebook shows how to generate and upload a fairness assessment dashboard from Fairlearn to AzureML Studio**\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Loading the Data](#LoadingData)\n",
"1. [Processing the Data](#ProcessingData)\n",
"1. [Training Models](#TrainingModels)\n",
"1. [Logging in to AzureML](#LoginAzureML)\n",
"1. [Registering the Models](#RegisterModels)\n",
"1. [Using the Fairness Dashboard](#LocalDashboard)\n",
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
" 1. Computing Fairness Metrics\n",
" 1. Uploading to Azure\n",
"1. [Conclusion](#Conclusion)\n",
" \n",
"\n",
"<a id=\"Introduction\"></a>\n",
"## Introduction\n",
"\n",
"In this notebook, we walk through a simple example of using the `azureml-contrib-fairness` package to upload a collection of fairness statistics for a fairness dashboard. It is an example of integrating the [open source Fairlearn package](https://www.github.com/fairlearn/fairlearn) with Azure Machine Learning. This is not an example of fairness analysis or mitigation - this notebook simply shows how to get a fairness dashboard into the Azure Machine Learning portal. We will load the data and train a couple of simple models. We will then use Fairlearn to generate data for a Fairness dashboard, which we can upload to Azure Machine Learning portal and view there.\n",
"\n",
"### Setup\n",
"\n",
"To use this notebook, an Azure Machine Learning workspace is required.\n",
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn>=0.6.2` (also works for pre-v0.5.0 with slight modifications)\n",
"* `joblib`\n",
"* `liac-arff`\n",
"* `raiwidgets~=0.7.0`\n",
"\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import svm\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.compose import make_column_selector as selector\n",
"from sklearn.pipeline import Pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can load the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairness_nb_utils import fetch_census_dataset\n",
"\n",
"data = fetch_census_dataset()\n",
" \n",
"# Extract the items we want\n",
"X_raw = data.data\n",
"y = (data.target == '>50K') * 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can take a look at some of the data. For example, the next cells shows the counts of the different races identified in the dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(X_raw[\"race\"].value_counts().to_dict())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"ProcessingData\"></a>\n",
"## Processing the Data\n",
"\n",
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and leave the rest of the feature data in `X_raw`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['sex','race']]\n",
"X_raw = X_raw.drop(labels=['sex', 'race'],axis = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
")\n",
"\n",
"# Ensure indices are aligned between X, y and A,\n",
"# after all the slicing and splitting of DataFrames\n",
"# and Series\n",
"\n",
"X_train = X_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"y_train = y_train.reset_index(drop=True)\n",
"y_test = y_test.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
"\n",
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numeric_transformer = Pipeline(\n",
" steps=[\n",
" (\"impute\", SimpleImputer()),\n",
" (\"scaler\", StandardScaler()),\n",
" ]\n",
")\n",
"\n",
"categorical_transformer = Pipeline(\n",
" [\n",
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
" ]\n",
")\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = preprocessor.fit_transform(X_train)\n",
"X_test = preprocessor.transform(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"TrainingModels\"></a>\n",
"## Training Models\n",
"\n",
"We now train a couple of different models on our data. The `adult` census dataset is a classification problem - the goal is to predict whether a particular individual exceeds an income threshold. For the purpose of generating a dashboard to upload, it is sufficient to train two basic classifiers. First, a logistic regression classifier:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"lr_predictor.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And for comparison, a support vector classifier:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"svm_predictor = svm.SVC()\n",
"\n",
"svm_predictor.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoginAzureML\"></a>\n",
"## Logging in to AzureML\n",
"\n",
"With our two classifiers trained, we can log into our AzureML workspace:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Experiment, Model\n",
"\n",
"ws = Workspace.from_config()\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"RegisterModels\"></a>\n",
"## Registering the Models\n",
"\n",
"Next, we register our models. By default, the subroutine which uploads the models checks that the names provided correspond to registered models in the workspace. We define a utility routine to do the registering:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import os\n",
"\n",
"os.makedirs('models', exist_ok=True)\n",
"def register_model(name, model):\n",
" print(\"Registering \", name)\n",
" model_path = \"models/{0}.pkl\".format(name)\n",
" joblib.dump(value=model, filename=model_path)\n",
" registered_model = Model.register(model_path=model_path,\n",
" model_name=name,\n",
" workspace=ws)\n",
" print(\"Registered \", registered_model.id)\n",
" return registered_model.id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we register the models. For convenience in subsequent method calls, we store the results in a dictionary, which maps the `id` of the registered model (a string in `name:version` format) to the predictor itself:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_dict = {}\n",
"\n",
"lr_reg_id = register_model(\"fairness_linear_regression\", lr_predictor)\n",
"model_dict[lr_reg_id] = lr_predictor\n",
"svm_reg_id = register_model(\"fairness_svm\", svm_predictor)\n",
"model_dict[svm_reg_id] = svm_predictor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LocalDashboard\"></a>\n",
"## Using the Fairlearn Dashboard\n",
"\n",
"We can now examine the fairness of the two models we have training, both as a function of race and (binary) sex. Before uploading the dashboard to the AzureML portal, we will first instantiate a local instance of the Fairlearn dashboard.\n",
"\n",
"Regardless of the viewing location, the dashboard is based on three things - the true values, the model predictions and the sensitive feature values. The dashboard can use predictions from multiple models and multiple sensitive features if desired (as we are doing here).\n",
"\n",
"Our first step is to generate a dictionary mapping the `id` of the registered model to the corresponding array of predictions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ys_pred = {}\n",
"for n, p in model_dict.items():\n",
" ys_pred[n] = p.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can examine these predictions in a locally invoked Fairlearn dashboard. This can be compared to the dashboard uploaded to the portal (in the next section):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from raiwidgets import FairnessDashboard\n",
"\n",
"FairnessDashboard(sensitive_features=A_test, \n",
" y_true=y_test.tolist(),\n",
" y_pred=ys_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"AzureUpload\"></a>\n",
"## Uploading a Fairness Dashboard to Azure\n",
"\n",
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
"1. Precompute all the required metrics\n",
"1. Upload to Azure\n",
"\n",
"\n",
"### Computing Fairness Metrics\n",
"We use Fairlearn to create a dictionary which contains all the data required to display a dashboard. This includes both the raw data (true values, predicted values and sensitive features), and also the fairness metrics. The API is similar to that used to invoke the Dashboard locally. However, there are a few minor changes to the API, and the type of problem being examined (binary classification, regression etc.) needs to be specified explicitly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf = { 'Race': A_test.race, 'Sex': A_test.sex }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
" predictions=ys_pred,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `_create_group_metric_set()` method is currently underscored since its exact design is not yet final in Fairlearn."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uploading to Azure\n",
"\n",
"We can now import the `azureml.contrib.fairness` package itself. We will round-trip the data, so there are two required subroutines:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.fairness import upload_dashboard_dictionary, download_dashboard_by_upload_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can upload the generated dictionary to AzureML. The upload method requires a run, so we first create an experiment and a run. The uploaded dashboard can be seen on the corresponding Run Details page in AzureML Studio. For completeness, we also download the dashboard dictionary which we uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp = Experiment(ws, \"notebook-01\")\n",
"print(exp)\n",
"\n",
"run = exp.start_logging()\n",
"try:\n",
" dashboard_title = \"Sample notebook upload\"\n",
" upload_id = upload_dashboard_dictionary(run,\n",
" dash_dict,\n",
" dashboard_name=dashboard_title)\n",
" print(\"\\nUploaded to id: {0}\\n\".format(upload_id))\n",
"\n",
" downloaded_dict = download_dashboard_by_upload_id(run, upload_id)\n",
"finally:\n",
" run.complete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can verify that the dashboard dictionary which we downloaded matches our upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dash_dict == downloaded_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Conclusion\"></a>\n",
"## Conclusion\n",
"\n",
"In this notebook we have demonstrated how to generate and upload a fairness dashboard to AzureML Studio. We have not discussed how to analyse the results and apply mitigations. Those topics will be covered elsewhere."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "riedgar"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,9 @@
name: upload-fairness-dashboard
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-fairness
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.16.0

View File

@@ -9,6 +9,7 @@ As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) not
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure. * [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs. * [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
* [logging-api](./track-and-monitor-experiments/logging-api): Learn about the details of logging metrics to run history. * [logging-api](./track-and-monitor-experiments/logging-api): Learn about the details of logging metrics to run history.
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service. * [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/). Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).

View File

@@ -1,26 +1,29 @@
name: azure_automl name: azure_automl
channels:
- conda-forge
- pytorch
- main
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Azure ML only supports 3.8 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip==22.3.1 - pip==21.1.2
- python>=3.10,<3.11 - python>=3.5.2,<3.8
- holidays==0.29 - boto3==1.15.18
- scipy==1.10.1 - matplotlib==2.1.0
- tqdm==4.66.1 - numpy==1.18.5
- cython
- urllib3<1.24
- scipy>=1.4.1,<=1.5.2
- scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=10.1.243
- tornado==6.1.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.59.0 - azureml-widgets~=1.38.0
- azureml-defaults~=1.59.0 - pytorch-transformers==1.0.0
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_win32_requirements.txt [--no-deps] - spacy==2.1.8
- matplotlib==3.7.1 - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- xgboost==1.5.2 - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.38.0/validated_win32_requirements.txt [--no-deps]
- prophet==1.1.4 - arch==4.14
- onnx==1.16.1
- setuptools-git==1.2
- spacy==3.7.4
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz

View File

@@ -1,30 +1,29 @@
name: azure_automl name: azure_automl
channels:
- conda-forge
- pytorch
- main
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Azure ML only supports 3.7 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip==22.3.1 - pip==21.1.2
- python>=3.10,<3.11 - python>=3.5.2,<3.8
- matplotlib==3.7.1 - boto3==1.15.18
- numpy>=1.21.6,<=1.23.5 - matplotlib==2.1.0
- urllib3==1.26.7 - numpy==1.18.5
- scipy==1.10.1 - cython
- scikit-learn==1.5.1 - urllib3<1.24
- holidays==0.29 - scipy>=1.4.1,<=1.5.2
- pytorch::pytorch=1.11.0 - scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=10.1.243 - cudatoolkit=10.1.243
- notebook - tornado==6.1.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.59.0 - azureml-widgets~=1.38.0
- azureml-defaults~=1.59.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==3.7.4 - spacy==2.1.8
- xgboost==1.5.2 - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- prophet==1.1.4 - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.38.0/validated_linux_requirements.txt [--no-deps]
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz - arch==4.14
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_linux_requirements.txt [--no-deps]

View File

@@ -1,26 +1,30 @@
name: azure_automl name: azure_automl
channels:
- conda-forge
- pytorch
- main
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Currently Azure ML only supports 3.7 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip==22.3.1 - pip==21.1.2
- python>=3.10,<3.11 - nomkl
- numpy>=1.21.6,<=1.23.5 - python>=3.5.2,<3.8
- scipy==1.10.1 - boto3==1.15.18
- scikit-learn==1.5.1 - matplotlib==2.1.0
- holidays==0.29 - numpy==1.18.5
- cython
- urllib3<1.24
- scipy>=1.4.1,<=1.5.2
- scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=9.0
- tornado==6.1.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.59.0 - azureml-widgets~=1.38.0
- azureml-defaults~=1.59.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- prophet==1.1.4 - spacy==2.1.8
- xgboost==1.5.2 - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- spacy==3.7.4 - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.38.0/validated_darwin_requirements.txt [--no-deps]
- matplotlib==3.7.1 - arch==4.14
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_darwin_requirements.txt [--no-deps]

View File

@@ -33,8 +33,6 @@ if not errorlevel 1 (
call conda env create -f %automl_env_file% -n %conda_env_name% call conda env create -f %automl_env_file% -n %conda_env_name%
) )
python "%conda_prefix%\scripts\pywin32_postinstall.py" -install
call conda activate %conda_env_name% 2>nul: call conda activate %conda_env_name% 2>nul:
if errorlevel 1 goto ErrorExit if errorlevel 1 goto ErrorExit

View File

@@ -1,4 +1,4 @@
from setuptools._vendor.packaging import version from distutils.version import LooseVersion
import platform import platform
try: try:
@@ -17,7 +17,7 @@ if architecture != "64bit":
minimumVersion = "4.7.8" minimumVersion = "4.7.8"
versionInvalid = (version.parse(conda.__version__) < version.parse(minimumVersion)) versionInvalid = (LooseVersion(conda.__version__) < LooseVersion(minimumVersion))
if versionInvalid: if versionInvalid:
print('Setup requires conda version ' + minimumVersion + ' or higher.') print('Setup requires conda version ' + minimumVersion + ' or higher.')

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,504 +1,483 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n", "# Automated Machine Learning\n",
"\n", "_**Classification of credit card fraudulent transactions on remote compute **_\n",
"Licensed under the MIT License." "\n",
] "## Contents\n",
}, "1. [Introduction](#Introduction)\n",
{ "1. [Setup](#Setup)\n",
"cell_type": "markdown", "1. [Train](#Train)\n",
"metadata": {}, "1. [Results](#Results)\n",
"source": [ "1. [Test](#Test)\n",
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.png)" "1. [Acknowledgements](#Acknowledgements)"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification of credit card fraudulent transactions on remote compute **_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
"\n",
"This notebook is using remote compute to train the model.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using remote compute.\n",
"4. Explore the results.\n",
"5. Test the fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = \"automl-classification-ccard-remote\"\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output[\"Subscription ID\"] = ws.subscription_id\n",
"output[\"Workspace\"] = ws.name\n",
"output[\"Resource Group\"] = ws.resource_group\n",
"output[\"Location\"] = ws.location\n",
"output[\"Experiment Name\"] = experiment.name\n",
"output[\"SDK Version\"] = azureml.core.VERSION\n",
"pd.set_option(\"display.max_colwidth\", None)\n",
"outputDf = pd.DataFrame(data=output, index=[\"\"])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster-1\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cluster, use it.\")\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"STANDARD_DS12_V2\", max_nodes=6\n",
" )\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"name": "load-data"
},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
"label_column_name = \"Class\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"name": "automl-config"
},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": \"average_precision_score_weighted\",\n",
" \"enable_early_stopping\": True,\n",
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(\n",
" task=\"classification\",\n",
" debug_log=\"automl_errors.log\",\n",
" compute_target=compute_target,\n",
" training_data=training_data,\n",
" label_column_name=label_column_name,\n",
" **automl_settings,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"# from azureml.train.automl.run import AutoMLRun\n",
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"widget-rundetails-sample"
]
},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Explain model\n",
"\n",
"Automated ML models can be explained and visualized using the SDK Explainability library. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# convert the test data to dataframe\n",
"X_test_df = validation_data.drop_columns(\n",
" columns=[label_column_name]\n",
").to_pandas_dataframe()\n",
"y_test_df = validation_data.keep_columns(\n",
" columns=[label_column_name], validate=True\n",
").to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# call the predict functions on the model\n",
"y_pred = fitted_model.predict(X_test_df)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf = confusion_matrix(y_test_df.values, y_pred)\n",
"plt.imshow(cf, cmap=plt.cm.Blues, interpolation=\"nearest\")\n",
"plt.colorbar()\n",
"plt.title(\"Confusion Matrix\")\n",
"plt.xlabel(\"Predicted\")\n",
"plt.ylabel(\"Actual\")\n",
"class_labels = [\"False\", \"True\"]\n",
"tick_marks = np.arange(len(class_labels))\n",
"plt.xticks(tick_marks, class_labels)\n",
"plt.yticks([-0.5, 0, 1, 1.5], [\"\", \"False\", \"True\", \"\"])\n",
"# plotting text value inside cells\n",
"thresh = cf.max() / 2.0\n",
"for i, j in itertools.product(range(cf.shape[0]), range(cf.shape[1])):\n",
" plt.text(\n",
" j,\n",
" i,\n",
" format(cf[i, j], \"d\"),\n",
" horizontalalignment=\"center\",\n",
" color=\"white\" if cf[i, j] > thresh else \"black\",\n",
" )\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u00a9 Libre de Bruxelles) on big data mining and fraud detection.\n",
"More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"\n",
"Please cite the following works:\n",
"\n",
"Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\n",
"Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\n",
"Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"\n",
"Dal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\n",
"Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\n",
"Carcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing\n",
"\n",
"Bertrand Lebichot, Yann-A\u00c3\u00abl Le Borgne, Liyun He, Frederic Obl\u00c3\u00a9, Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019\n",
"\n",
"Fabrizio Carcillo, Yann-A\u00c3\u00abl Le Borgne, Olivier Caelen, Frederic Obl\u00c3\u00a9, Gianluca Bontempi Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection Information Sciences, 2019"
]
}
],
"metadata": {
"authors": [
{
"name": "ratanase"
}
],
"category": "tutorial",
"compute": [
"AML Compute"
],
"datasets": [
"Creditcard"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"file_extension": ".py",
"framework": [
"None"
],
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"remote_run",
"AutomatedML"
],
"task": "Classification",
"version": "3.6.7"
}, },
"nbformat": 4, {
"nbformat_minor": 2 "cell_type": "markdown",
} "metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
"\n",
"This notebook is using remote compute to train the model.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using remote compute.\n",
"4. Explore the results.\n",
"5. Test the fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = \"automl-classification-ccard-remote\"\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output[\"Subscription ID\"] = ws.subscription_id\n",
"output[\"Workspace\"] = ws.name\n",
"output[\"Resource Group\"] = ws.resource_group\n",
"output[\"Location\"] = ws.location\n",
"output[\"Experiment Name\"] = experiment.name\n",
"pd.set_option(\"display.max_colwidth\", -1)\n",
"outputDf = pd.DataFrame(data=output, index=[\"\"])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster-1\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cluster, use it.\")\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"STANDARD_DS12_V2\", max_nodes=6\n",
" )\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
"label_column_name = \"Class\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": \"average_precision_score_weighted\",\n",
" \"enable_early_stopping\": True,\n",
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(\n",
" task=\"classification\",\n",
" debug_log=\"automl_errors.log\",\n",
" compute_target=compute_target,\n",
" training_data=training_data,\n",
" label_column_name=label_column_name,\n",
" **automl_settings,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"# from azureml.train.automl.run import AutoMLRun\n",
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"widget-rundetails-sample"
]
},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Explain model\n",
"\n",
"Automated ML models can be explained and visualized using the SDK Explainability library. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# convert the test data to dataframe\n",
"X_test_df = validation_data.drop_columns(\n",
" columns=[label_column_name]\n",
").to_pandas_dataframe()\n",
"y_test_df = validation_data.keep_columns(\n",
" columns=[label_column_name], validate=True\n",
").to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# call the predict functions on the model\n",
"y_pred = fitted_model.predict(X_test_df)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf = confusion_matrix(y_test_df.values, y_pred)\n",
"plt.imshow(cf, cmap=plt.cm.Blues, interpolation=\"nearest\")\n",
"plt.colorbar()\n",
"plt.title(\"Confusion Matrix\")\n",
"plt.xlabel(\"Predicted\")\n",
"plt.ylabel(\"Actual\")\n",
"class_labels = [\"False\", \"True\"]\n",
"tick_marks = np.arange(len(class_labels))\n",
"plt.xticks(tick_marks, class_labels)\n",
"plt.yticks([-0.5, 0, 1, 1.5], [\"\", \"False\", \"True\", \"\"])\n",
"# plotting text value inside cells\n",
"thresh = cf.max() / 2.0\n",
"for i, j in itertools.product(range(cf.shape[0]), range(cf.shape[1])):\n",
" plt.text(\n",
" j,\n",
" i,\n",
" format(cf[i, j], \"d\"),\n",
" horizontalalignment=\"center\",\n",
" color=\"white\" if cf[i, j] > thresh else \"black\",\n",
" )\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data mining and fraud detection.\n",
"More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"\n",
"Please cite the following works:\n",
"\n",
"Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\n",
"Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\n",
"Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"\n",
"Dal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\n",
"Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-Aël; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\n",
"Carcillo, Fabrizio; Le Borgne, Yann-Aël; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing\n",
"\n",
"Bertrand Lebichot, Yann-Aël Le Borgne, Liyun He, Frederic Oblé, Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019\n",
"\n",
"Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Frederic Oblé, Gianluca Bontempi Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection Information Sciences, 2019"
]
}
],
"metadata": {
"authors": [
{
"name": "ratanase"
}
],
"category": "tutorial",
"compute": [
"AML Compute"
],
"datasets": [
"Creditcard"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"file_extension": ".py",
"framework": [
"None"
],
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6 - AzureML",
"language": "python",
"name": "python3-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"remote_run",
"AutomatedML"
],
"task": "Classification",
"version": "3.6.7"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,591 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Text Classification Using Deep Learning**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This notebook demonstrates classification with text data using deep learning in AutoML.\n",
"\n",
"AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data. Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used, and Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"Notebook synopsis:\n",
"\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
"3. Registering the best model for future use\n",
"4. Evaluating the final model on a test set"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"import os\n",
"import shutil\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.run import Run\n",
"from azureml.widgets import RunDetails\n",
"from azureml.core.model import Model\n",
"from helper import run_inference, get_result_df\n",
"from azureml.train.automl import AutoMLConfig\n",
"from sklearn.datasets import fetch_20newsgroups"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose an experiment name.\n",
"experiment_name = \"automl-classification-text-dnn\"\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output[\"Subscription ID\"] = ws.subscription_id\n",
"output[\"Workspace Name\"] = ws.name\n",
"output[\"Resource Group\"] = ws.resource_group\n",
"output[\"Location\"] = ws.location\n",
"output[\"Experiment Name\"] = experiment.name\n",
"pd.set_option(\"display.max_colwidth\", -1)\n",
"outputDf = pd.DataFrame(data=output, index=[\"\"])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up a compute cluster\n",
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"num_nodes = 2\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"dnntext-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
" print(\"Found existing cluster, use it.\")\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"STANDARD_NC6\", # CPU for BiLSTM, such as \"STANDARD_D2_V2\"\n",
" # To use BERT (this is recommended for best performance), select a GPU such as \"STANDARD_NC6\"\n",
" # or similar GPU option\n",
" # available in your workspace\n",
" max_nodes=num_nodes,\n",
" )\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get data\n",
"For this notebook we will use 20 Newsgroups data from scikit-learn. We filter the data to contain four classes and take a sample as training data. Please note that for accuracy improvement, more data is needed. For this notebook we provide a small-data example so that you can use this template to use with your larger sized data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_dir = \"text-dnn-data\" # Local directory to store data\n",
"blobstore_datadir = data_dir # Blob store directory to store data in\n",
"target_column_name = \"y\"\n",
"feature_column_name = \"X\"\n",
"\n",
"\n",
"def get_20newsgroups_data():\n",
" \"\"\"Fetches 20 Newsgroups data from scikit-learn\n",
" Returns them in form of pandas dataframes\n",
" \"\"\"\n",
" remove = (\"headers\", \"footers\", \"quotes\")\n",
" categories = [\n",
" \"rec.sport.baseball\",\n",
" \"rec.sport.hockey\",\n",
" \"comp.graphics\",\n",
" \"sci.space\",\n",
" ]\n",
"\n",
" data = fetch_20newsgroups(\n",
" subset=\"train\",\n",
" categories=categories,\n",
" shuffle=True,\n",
" random_state=42,\n",
" remove=remove,\n",
" )\n",
" data = pd.DataFrame(\n",
" {feature_column_name: data.data, target_column_name: data.target}\n",
" )\n",
"\n",
" data_train = data[:200]\n",
" data_test = data[200:300]\n",
"\n",
" data_train = remove_blanks_20news(\n",
" data_train, feature_column_name, target_column_name\n",
" )\n",
" data_test = remove_blanks_20news(data_test, feature_column_name, target_column_name)\n",
"\n",
" return data_train, data_test\n",
"\n",
"\n",
"def remove_blanks_20news(data, feature_column_name, target_column_name):\n",
"\n",
" data[feature_column_name] = (\n",
" data[feature_column_name]\n",
" .replace(r\"\\n\", \" \", regex=True)\n",
" .apply(lambda x: x.strip())\n",
" )\n",
" data = data[data[feature_column_name] != \"\"]\n",
"\n",
" return data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Fetch data and upload to datastore for use in training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train, data_test = get_20newsgroups_data()\n",
"\n",
"if not os.path.isdir(data_dir):\n",
" os.mkdir(data_dir)\n",
"\n",
"train_data_fname = data_dir + \"/train_data.csv\"\n",
"test_data_fname = data_dir + \"/test_data.csv\"\n",
"\n",
"data_train.to_csv(train_data_fname, index=False)\n",
"data_test.to_csv(test_data_fname, index=False)\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload(src_dir=data_dir, target_path=blobstore_datadir, overwrite=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, blobstore_datadir + \"/train_data.csv\")]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare AutoML run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the blocked_models parameter to exclude some models that can take a longer time to train on some text datasets. You can choose to remove models from the blocked_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"experiment_timeout_minutes\": 30,\n",
" \"primary_metric\": \"accuracy\",\n",
" \"max_concurrent_iterations\": num_nodes,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"enable_dnn\": True,\n",
" \"enable_early_stopping\": True,\n",
" \"validation_size\": 0.3,\n",
" \"verbosity\": logging.INFO,\n",
" \"enable_voting_ensemble\": False,\n",
" \"enable_stack_ensemble\": False,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(\n",
" task=\"classification\",\n",
" debug_log=\"automl_errors.log\",\n",
" compute_target=compute_target,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" blocked_models=[\"LightGBM\", \"XGBoostClassifier\"],\n",
" **automl_settings,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Submit AutoML Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best model pipeline from our iterations, use it to test on test data on the same compute cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For local inferencing, you can load the model locally via. the method `remote_run.get_output()`. For more information on the arguments expected by this method, you can run `remote_run.get_output??`.\n",
"Note that when the model contains BERT, this step will require pytorch and pytorch-transformers installed in your local environment. The exact versions of these packages can be found in the **automl_env.yml** file located in the local copy of your azureml-examples folder here: \"azureml-examples/python-sdk/tutorials/automl-with-azureml\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Retrieve the best Run object\n",
"best_run = automl_run.get_best_child()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now see what text transformations are used to convert text data to features for this dataset, including deep learning transformations based on BiLSTM or Transformer (BERT is one implementation of a Transformer) models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download the featurization summary JSON file locally\n",
"best_run.download_file(\n",
" \"outputs/featurization_summary.json\", \"featurization_summary.json\"\n",
")\n",
"\n",
"# Render the JSON as a pandas DataFrame\n",
"with open(\"featurization_summary.json\", \"r\") as f:\n",
" records = json.load(f)\n",
"\n",
"featurization_summary = pd.DataFrame.from_records(records)\n",
"featurization_summary[\"Transformations\"].tolist()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Registering the best model\n",
"We now register the best fitted model from the AutoML Run for use in future deployments. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get results stats, extract the best model from AutoML run, download and register the resultant best model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"summary_df = get_result_df(automl_run)\n",
"best_dnn_run_id = summary_df[\"run_id\"].iloc[0]\n",
"best_dnn_run = Run(experiment, best_dnn_run_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_dir = \"Model\" # Local folder where the model will be stored temporarily\n",
"if not os.path.isdir(model_dir):\n",
" os.mkdir(model_dir)\n",
"\n",
"best_dnn_run.download_file(\"outputs/model.pkl\", model_dir + \"/model.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Register the model in your Azure Machine Learning Workspace. If you previously registered a model, please make sure to delete it so as to replace it with this new model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Register the model\n",
"model_name = \"textDNN-20News\"\n",
"model = Model.register(\n",
" model_path=model_dir + \"/model.pkl\", model_name=model_name, tags=None, workspace=ws\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on Test Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now use the best fitted model from the AutoML Run to make predictions on the test set. \n",
"\n",
"Test set schema should match that of the training set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, blobstore_datadir + \"/test_data.csv\")]\n",
")\n",
"\n",
"# preview the first 3 rows of the dataset\n",
"test_dataset.take(3).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = os.path.join(os.getcwd(), \"inference\")\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy(\"infer.py\", script_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run = run_inference(\n",
" test_experiment,\n",
" compute_target,\n",
" script_folder,\n",
" best_dnn_run,\n",
" test_dataset,\n",
" target_column_name,\n",
" model_name,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Display computed metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(test_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run.wait_for_completion()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pd.Series(test_run.get_metrics())"
]
}
],
"metadata": {
"authors": [
{
"name": "anshirga"
}
],
"compute": [
"AML Compute"
],
"datasets": [
"None"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"framework": [
"None"
],
"friendly_name": "DNN Text Featurization",
"index_order": 2,
"kernelspec": {
"display_name": "Python 3.6 - AzureML",
"language": "python",
"name": "python3-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"tags": [
"None"
],
"task": "Text featurization using DNNs for classification"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,68 @@
import pandas as pd
from azureml.core import Environment
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def run_inference(
test_experiment,
compute_target,
script_folder,
train_run,
test_dataset,
target_column_name,
model_name,
):
inference_env = train_run.get_environment()
est = Estimator(
source_directory=script_folder,
entry_script="infer.py",
script_params={
"--target_column_name": target_column_name,
"--model_name": model_name,
},
inputs=[test_dataset.as_named_input("test_data")],
compute_target=compute_target,
environment_definition=inference_env,
)
run = test_experiment.submit(
est,
tags={
"training_run_id": train_run.id,
"run_algorithm": train_run.properties["run_algorithm"],
"valid_score": train_run.properties["score"],
"primary_metric": train_run.properties["primary_metric"],
},
)
run.log("run_algorithm", run.tags["run_algorithm"])
return run
def get_result_df(remote_run):
children = list(remote_run.get_children(recursive=True))
summary_df = pd.DataFrame(
index=["run_id", "run_algorithm", "primary_metric", "Score"]
)
goal_minimize = False
for run in children:
if "run_algorithm" in run.properties and "score" in run.properties:
summary_df[run.id] = [
run.id,
run.properties["run_algorithm"],
run.properties["primary_metric"],
float(run.properties["score"]),
]
if "goal" in run.properties:
goal_minimize = run.properties["goal"].split("_")[-1] == "min"
summary_df = summary_df.T.sort_values(
"Score", ascending=goal_minimize
).drop_duplicates(["run_algorithm"])
summary_df = summary_df.set_index("run_algorithm")
return summary_df

View File

@@ -0,0 +1,68 @@
import argparse
import pandas as pd
import numpy as np
from sklearn.externals import joblib
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
from azureml.core.model import Model
parser = argparse.ArgumentParser()
parser.add_argument(
"--target_column_name",
type=str,
dest="target_column_name",
help="Target Column Name",
)
parser.add_argument(
"--model_name", type=str, dest="model_name", help="Name of registered model"
)
args = parser.parse_args()
target_column_name = args.target_column_name
model_name = args.model_name
print("args passed are: ")
print("Target column name: ", target_column_name)
print("Name of registered model: ", model_name)
model_path = Model.get_model_path(model_name)
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets["test_data"]
X_test_df = test_dataset.drop_columns(
columns=[target_column_name]
).to_pandas_dataframe()
y_test_df = (
test_dataset.with_timestamp_columns(None)
.keep_columns(columns=[target_column_name])
.to_pandas_dataframe()
)
predicted = model.predict_proba(X_test_df)
if isinstance(predicted, pd.DataFrame):
predicted = predicted.values
# Use the AutoML scoring module
train_labels = model.classes_
class_labels = np.unique(
np.concatenate((y_test_df.values, np.reshape(train_labels, (-1, 1))))
)
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
scores = scoring.score_classification(
y_test_df.values, predicted, classification_metrics, class_labels, train_labels
)
print("scores:")
print(scores)
for key, value in scores.items():
run.log(key, value)

View File

@@ -0,0 +1,4 @@
name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk

View File

@@ -31,15 +31,12 @@ try:
model = Model(ws, args.model_name) model = Model(ws, args.model_name)
last_train_time = model.created_time last_train_time = model.created_time
print("Model was last trained on {0}.".format(last_train_time)) print("Model was last trained on {0}.".format(last_train_time))
except Exception: except Exception as e:
print("Could not get last model train time.") print("Could not get last model train time.")
last_train_time = datetime.min.replace(tzinfo=pytz.UTC) last_train_time = datetime.min.replace(tzinfo=pytz.UTC)
train_ds = Dataset.get_by_name(ws, args.ds_name) train_ds = Dataset.get_by_name(ws, args.ds_name)
dataset_changed_time = train_ds.data_changed_time.replace(tzinfo=pytz.UTC) dataset_changed_time = train_ds.data_changed_time
print("dataset_changed_time=" + str(dataset_changed_time))
print("last_train_time=" + str(last_train_time))
if not dataset_changed_time > last_train_time: if not dataset_changed_time > last_train_time:
print("Cancelling run since there is no new data.") print("Cancelling run since there is no new data.")

View File

@@ -120,13 +120,9 @@ except Exception:
end_time = datetime(2021, 5, 1, 0, 0) end_time = datetime(2021, 5, 1, 0, 0)
end_time_last_slice = end_time - relativedelta(weeks=2) end_time_last_slice = end_time - relativedelta(weeks=2)
try: train_df = get_noaa_data(end_time_last_slice, end_time)
train_df = get_noaa_data(end_time_last_slice, end_time)
except Exception as ex:
print("get_noaa_data failed:", ex)
train_df = None
if train_df is not None and train_df.size > 0: if train_df.size > 0:
print( print(
"Received {0} rows of new data after {1}.".format( "Received {0} rows of new data after {1}.".format(
train_df.shape[0], end_time_last_slice train_df.shape[0], end_time_last_slice

View File

@@ -9,7 +9,7 @@ To run these notebook on your own notebook server, use these installation instru
The instructions below will install everything you need and then start a Jupyter notebook. The instructions below will install everything you need and then start a Jupyter notebook.
If you would like to use a lighter-weight version of the client that does not install all of the machine learning libraries locally, you can leverage the [experimental notebooks.](experimental/README.md) If you would like to use a lighter-weight version of the client that does not install all of the machine learning libraries locally, you can leverage the [experimental notebooks.](experimental/README.md)
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.8 or higher. ### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.7 or higher.
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda. - **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
There's no need to install mini-conda specifically. There's no need to install mini-conda specifically.

View File

@@ -1,346 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/custom-model-training-from-autofeaturization-run.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning - Codegen for AutoFeaturization \n",
"_**Autofeaturization of credit card fraudulent transactions dataset on remote compute and codegen functionality**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Autofeaturization](#Autofeaturization)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Introduction'></a>\n",
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Autofeaturization** lets you run an AutoML experiment to only featurize the datasets. These datasets along with the transformer are stored in AML Storage and linked to the run which can later be retrieved and used to train models. \n",
"\n",
"**To run Autofeaturization, set the number of iterations to zero and featurization as auto.**\n",
"\n",
"Please refer to [Autofeaturization and custom model training](../autofeaturization-custom-model-training/custom-model-training-from-autofeaturization-run.ipynb) for more details on the same.\n",
"\n",
"[Codegen](https://github.com/Azure/automl-codegen-preview) is a feature, which when enabled, provides a user with the script of the underlying functionality and a notebook to tweak inputs or code and rerun the same.\n",
"\n",
"In this example we use the credit card fraudulent transactions dataset to showcase how you can use AutoML for autofeaturization and further how you can enable the `Codegen` feature.\n",
"\n",
"This notebook is using remote compute to complete the featurization.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../configuration.ipynb) notebook first if you haven't already, to establish your connection to the AzureML Workspace. \n",
"\n",
"Here you will learn how to create an autofeaturization experiment using an existing workspace with codegen feature enabled."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Setup'></a>\n",
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import pandas as pd\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-autofeaturization-ccard-codegen-remote'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-codegen\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
" max_nodes=6)\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Data'></a>\n",
"## Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card fraudulent transactions dataset from a CSV file, containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. \n",
"\n",
"Here the autofeaturization run will featurize the training data passed in."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Training Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard_train.csv\"\n",
"training_dataset = Dataset.Tabular.from_delimited_files(training_data) # Tabular dataset\n",
"\n",
"label_column_name = 'Class' # output label"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Autofeaturization'></a>\n",
"## AutoFeaturization\n",
"\n",
"Instantiate an AutoMLConfig object. This defines the settings and data used to run the autofeaturization experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression or forecasting|\n",
"|**training_data**|Input training dataset, containing both features and label column.|\n",
"|**iterations**|For an autofeaturization run, iterations will be 0.|\n",
"|**featurization**|For an autofeaturization run, featurization can be 'auto' or 'custom'.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**enable_code_generation**|For enabling codegen for the run, value would be True|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" iterations = 0, # autofeaturization run can be triggered by setting iterations to 0\n",
" compute_target = compute_target,\n",
" training_data = training_dataset,\n",
" label_column_name = label_column_name,\n",
" featurization = 'auto',\n",
" verbosity = logging.INFO,\n",
" enable_code_generation = True # enable codegen\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Codegen Script and Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Codegen script and notebook can be found under the `Outputs + logs` section from the details page of the remote run. Please check for the `autofeaturization_notebook.ipynb` under `/outputs/generated_code`. To modify the featurization code, open `script.py` and make changes. The codegen notebook can be run with the same environment configuration as the above AutoML run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Experiment Complete!"
]
}
],
"metadata": {
"authors": [
{
"name": "bhavanatumma"
}
],
"interpreter": {
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
},
"kernelspec": {
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,729 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/custom-model-training-from-autofeaturization-run.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning - AutoFeaturization (Part 1)\n",
"_**Autofeaturization of credit card fraudulent transactions dataset on remote compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Autofeaturization](#Autofeaturization)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Introduction'></a>\n",
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Autofeaturization is a new feature to let you as the user run an AutoML experiment to only featurize the datasets. These datasets along with the transformer will be stored in the experiment which can later be retrieved and used to train models, either via AutoML or custom training. \n",
"\n",
"**To run Autofeaturization, pass in zero iterations and featurization as auto. This will featurize the datasets and terminate the experiment. Training will not occur.**\n",
"\n",
"*Limitations - Sparse data cannot be supported at the moment. Any dataset that has extensive categorical data might be featurized into sparse data which will not be allowed as input to AutoML. Efforts are underway to support sparse data and will be updated soon.* \n",
"\n",
"In this example we use the credit card fraudulent transactions dataset to showcase how you can use AutoML for autofeaturization. The goal is to clean and featurize the training dataset.\n",
"\n",
"This notebook is using remote compute to complete the featurization.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../configuration.ipynb) notebook first if you haven't already, to establish your connection to the AzureML Workspace. \n",
"\n",
"In the below steps, you will learn how to:\n",
"1. Create an autofeaturization experiment using an existing workspace.\n",
"2. View the featurized datasets and transformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Setup'></a>\n",
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import pandas as pd\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-autofeaturization-ccard-remote'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
" max_nodes=6)\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Data'></a>\n",
"## Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card fraudulent transactions dataset from a CSV file, containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. \n",
"\n",
"Here the autofeaturization run will featurize the training data passed in."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Training Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard_train.csv\"\n",
"training_dataset = Dataset.Tabular.from_delimited_files(training_data) # Tabular dataset\n",
"\n",
"label_column_name = 'Class' # output label"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Autofeaturization'></a>\n",
"## AutoFeaturization\n",
"\n",
"Instantiate an AutoMLConfig object. This defines the settings and data used to run the autofeaturization experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**training_data**|Input training dataset, containing both features and label column.|\n",
"|**iterations**|For an autofeaturization run, iterations will be 0.|\n",
"|**featurization**|For an autofeaturization run, featurization will be 'auto'.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" iterations = 0, # autofeaturization run can be triggered by setting iterations to 0\n",
" compute_target = compute_target,\n",
" training_data = training_dataset,\n",
" label_column_name = label_column_name,\n",
" featurization = 'auto',\n",
" verbosity = logging.INFO\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformer and Featurized Datasets\n",
"The given datasets have been featurized and stored under `Outputs + logs` from the details page of the remote run. The structure is shown below. The featurized dataset is stored under `/outputs/featurization/data` and the transformer is saved under `/outputs/featurization/pipeline` \n",
"\n",
"Below you will learn how to refer to the data saved in your run and retrieve the same."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Featurized Data](https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/autofeaturization_img.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning - AutoFeaturization (Part 2)\n",
"_**Training using a custom model with the featurized data from Autofeaturization run of credit card fraudulent transactions dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Data Setup](#DataSetup)\n",
"1. [Autofeaturization Data](#AutofeaturizationData)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Introduction'></a>\n",
"## Introduction\n",
"\n",
"Here we use the featurized dataset saved in the above run to showcase how you can perform custom training by using the transformer from an autofeaturization run to transform validation / test datasets. \n",
"\n",
"The goal is to use autofeaturized run data and transformer to transform and run a custom training experiment independently\n",
"\n",
"In the below steps, you will learn how to:\n",
"1. Read transformer from a completed autofeaturization run and transform data\n",
"2. Pull featurized data from a completed autofeaturization run\n",
"3. Run a custom training experiment with the above data\n",
"4. Check results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='DataSetup'></a>\n",
"## Data Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will load the featurized training data and also load the transformer from the above autofeaturized run. This transformer can then be used to transform the test data to check the accuracy of the custom model after training."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Test Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"load test dataset from CSV and split into X and y columns to featurize with the transformer going forward."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard_test.csv\"\n",
"\n",
"test_dataset = pd.read_csv(test_data)\n",
"label_column_name = 'Class'\n",
"\n",
"X_test_data = test_dataset[test_dataset.columns.difference([label_column_name])]\n",
"y_test_data = test_dataset[label_column_name].values\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load data_transformer from the above remote run artifact"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### (Method 1)\n",
"\n",
"Method 1 allows you to read the transformer from the remote storage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import mlflow\n",
"mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())\n",
"\n",
"# Set uri to fetch data transformer from remote parent run.\n",
"artifact_path = \"/outputs/featurization/pipeline/\"\n",
"uri = \"runs:/\" + remote_run.id + artifact_path\n",
"\n",
"print(uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### (Method 2)\n",
"\n",
"Method 2 downloads the transformer to the local directory and then can be used to transform the data. Uncomment to use."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"''' import pathlib\n",
"\n",
"# Download the transformer to the local directory\n",
"transformers_file_path = \"/outputs/featurization/pipeline/\"\n",
"local_path = \"./transformer\"\n",
"remote_run.download_files(prefix=transformers_file_path, output_directory=local_path, batch_size=500)\n",
"\n",
"path = pathlib.Path(\"transformer\") \n",
"path = str(path.absolute()) + transformers_file_path\n",
"str_uri = \"file:///\" + path\n",
"\n",
"print(str_uri) '''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transform Data"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** Not all datasets produce a y_transformer. The dataset used in the current notebook requires a transformer as the y column data is categorical. \n",
"\n",
"We will go ahead and download the mlflow transformer model and use it to transform test data that can be used for further experimentation below. To run the commented code, make sure the environment requirement is satisfied. You can go ahead and create the environment from the `conda.yaml` file under `/outputs/featurization/pipeline/` and run the given code in it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"''' from azureml.automl.core.shared.constants import Transformers\n",
"\n",
"transformers = mlflow.sklearn.load_model(uri) # Using method 1\n",
"data_transformers = transformers.get_transformers()\n",
"x_transformer = data_transformers[Transformers.X_TRANSFORMER]\n",
"y_transformer = data_transformers[Transformers.Y_TRANSFORMER]\n",
"\n",
"X_test = x_transformer.transform(X_test_data)\n",
"y_test = y_transformer.transform(y_test_data) '''"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the following cell to see the featurization summary of X and y transformers. Uncomment to use. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"''' X_data_summary = x_transformer.get_featurization_summary(is_user_friendly=False)\n",
"\n",
"summary_df = pd.DataFrame.from_records(X_data_summary)\n",
"summary_df '''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Datastore\n",
"\n",
"The below data store holds the featurized datasets, hence we load and access the data. Check the path and file names according to the saved structure in your experiment `Outputs + logs` as seen in <i>Autofeaturization Part 1</i>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.datastore import Datastore\n",
"\n",
"ds = Datastore.get(ws, \"workspaceartifactstore\")\n",
"experiment_loc = \"ExperimentRun/dcid.\" + remote_run.id\n",
"\n",
"remote_data_path = \"/outputs/featurization/data/\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='AutofeaturizationData'></a>\n",
"## Autofeaturization Data\n",
"\n",
"We will load the training data from the previously completed Autofeaturization experiment. The resulting featurized dataframe can be passed into the custom model for training. Here we are saving the file to local from the experiment storage and reading the data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data_file_path = \"full_training_dataset.df.parquet\"\n",
"local_data_path = \"./data/\" + train_data_file_path\n",
"\n",
"remote_run.download_file(remote_data_path + train_data_file_path, local_data_path)\n",
"\n",
"full_training_data = pd.read_parquet(local_data_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Another way to load the data is to go to the above autofeaturization experiment and check for the featurized dataset ids under `Output datasets`. Uncomment and replace them accordingly below, to use."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# train_data = Dataset.get_by_id(ws, 'cb4418ee-bac4-45ac-b055-600653bdf83a') # replace the featurized full_training_dataset id\n",
"# full_training_data = train_data.to_pandas_dataframe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are dropping the y column and weights column from the featurized training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_COLUMN = \"automl_y\"\n",
"SW_COLUMN = \"automl_weights\"\n",
"\n",
"X_train = full_training_data[full_training_data.columns.difference([Y_COLUMN, SW_COLUMN])]\n",
"y_train = full_training_data[Y_COLUMN].values\n",
"sample_weight = full_training_data[SW_COLUMN].values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Train'></a>\n",
"## Train"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we are passing our training data to the lightgbm classifier, any custom model can be used with your data. Let us first install lightgbm."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install lightgbm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import lightgbm as lgb\n",
"\n",
"model = lgb.LGBMClassifier(learning_rate=0.08,max_depth=-5,random_state=42)\n",
"model.fit(X_train, y_train, sample_weight=sample_weight)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Once training is done, the test data obtained after transforming from the above downloaded transformer can be used to calculate the accuracy "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Training accuracy {:.4f}'.format(model.score(X_train, y_train)))\n",
"\n",
"# Uncomment below to test the model on test data \n",
"# print('Testing accuracy {:.4f}'.format(model.score(X_test, y_test)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Results'></a>\n",
"## Analyze results\n",
"\n",
"### Retrieve the Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='Test'></a>\n",
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Uncomment below to test the model on test data\n",
"# y_pred = model.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Experiment Complete!"
]
}
],
"metadata": {
"authors": [
{
"name": "bhavanatumma"
}
],
"interpreter": {
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
},
"kernelspec": {
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,15 +1,17 @@
name: azure_automl_experimental name: azure_automl_experimental
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Currently Azure ML only supports 3.7.0 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip<=22.3.1 - pip<=19.3.1
- python>=3.7.0,<3.11 - python>=3.5.2,<3.8
- cython
- urllib3<1.24
- PyJWT < 2.0.0
- numpy==1.18.5
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-defaults - azureml-defaults
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- azureml-mlflow
- pandas - pandas
- mlflow

View File

@@ -1,24 +1,18 @@
name: azure_automl_experimental name: azure_automl_experimental
channels:
- conda-forge
- main
dependencies: dependencies:
# The python interpreter version. # The python interpreter version.
# Currently Azure ML only supports 3.7.0 and later. # Currently Azure ML only supports 3.5.2 and later.
- pip<=20.2.4 - pip<=19.3.1
- nomkl - nomkl
- python>=3.7.0,<3.11 - python>=3.5.2,<3.8
- urllib3==1.26.7 - cython
- urllib3<1.24
- PyJWT < 2.0.0 - PyJWT < 2.0.0
- numpy>=1.21.6,<=1.22.3 - numpy==1.18.5
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azure-core==1.24.1
- azure-identity==1.7.0
- azureml-defaults - azureml-defaults
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- azureml-mlflow
- pandas - pandas
- mlflow

View File

@@ -0,0 +1,420 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/experimental/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification of credit card fraudulent transactions on local managed compute **_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
"\n",
"This notebook is using local managed compute to train the model.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local managed compute.\n",
"4. Explore the results.\n",
"5. Test the fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute_target import LocalTarget\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.38.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-local-managed'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Determine if local docker is configured for Linux images\n",
"\n",
"Local managed runs will leverage a Linux docker container to submit the run to. Due to this, the docker needs to be configured to use Linux containers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check if Docker is installed and Linux containers are enabled\n",
"import subprocess\n",
"from subprocess import CalledProcessError\n",
"try:\n",
" assert subprocess.run(\"docker -v\", shell=True).returncode == 0, 'Local Managed runs require docker to be installed.'\n",
" out = subprocess.check_output(\"docker system info\", shell=True).decode('ascii')\n",
" assert \"OSType: linux\" in out, 'Docker engine needs to be configured to use Linux containers.' \\\n",
" 'https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers'\n",
"except CalledProcessError as ex:\n",
" raise Exception('Local Managed runs require docker to be installed.') from ex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
"label_column_name = 'Class'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**enable_local_managed**|Enable the experimental local-managed scenario.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'average_precision_score_weighted',\n",
" \"enable_early_stopping\": True,\n",
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" compute_target = LocalTarget(),\n",
" enable_local_managed = True,\n",
" training_data = training_data,\n",
" label_column_name = label_column_name,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"parent_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"#from azureml.train.automl.run import AutoMLRun\n",
"#parent_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"parent_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Explain model\n",
"\n",
"Automated ML models can be explained and visualized using the SDK Explainability library. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"\n",
"### Retrieve the Best Child Run\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_best_child` method returns the best run. Overloads on `get_best_child` allow you to retrieve the best run for *any* logged metric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run = parent_run.get_best_child()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test_df = validation_data.drop_columns(columns=[label_column_name])\n",
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Creating ModelProxy for submitting prediction runs to the training environment.\n",
"We will create a ModelProxy for the best child run, which will allow us to submit a run that does the prediction in the training environment. Unlike the local client, which can have different versions of some libraries, the training environment will have all the compatible libraries for the model already."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.model_proxy import ModelProxy\n",
"best_model_proxy = ModelProxy(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# call the predict functions on the model proxy\n",
"y_pred = best_model_proxy.predict(X_test_df).to_pandas_dataframe()\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
]
}
],
"metadata": {
"authors": [
{
"name": "sekrupa"
}
],
"category": "tutorial",
"compute": [
"AML Compute"
],
"datasets": [
"Creditcard"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"file_extension": ".py",
"framework": [
"None"
],
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"AutomatedML"
],
"task": "Classification",
"version": "3.6.7"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-credit-card-fraud-local-managed
dependencies:
- pip:
- azureml-sdk

View File

@@ -91,7 +91,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.38.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -180,29 +180,6 @@
"label = \"ERP\"\n" "label = \"ERP\"\n"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The split data will be used in the remote compute by ModelProxy and locally to compare results.\n",
"So, we need to persist the split data to avoid descrepencies from different package versions in the local and remote."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"\n",
"train_data = Dataset.Tabular.register_pandas_dataframe(\n",
" train_data.to_pandas_dataframe(), target=(ds, \"machineTrainData\"), name=\"train_data\")\n",
"\n",
"test_data = Dataset.Tabular.register_pandas_dataframe(\n",
" test_data.to_pandas_dataframe(), target=(ds, \"machineTestData\"), name=\"test_data\")"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@@ -327,8 +304,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"#### Show hyperparameters\n", "#### Show hyperparameters\n",
"Show the model pipeline used for the best run with its hyperparameters.\n", "Show the model pipeline used for the best run with its hyperparameters."
"For ensemble pipelines it shows the iterations and algorithms that are ensembled."
] ]
}, },
{ {
@@ -337,19 +313,8 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"run_properties = best_run.get_details()['properties']\n", "run_properties = json.loads(best_run.get_details()['properties']['pipeline_script'])\n",
"pipeline_script = json.loads(run_properties['pipeline_script'])\n", "print(json.dumps(run_properties, indent = 1)) "
"print(json.dumps(pipeline_script, indent = 1)) \n",
"\n",
"if 'ensembled_iterations' in run_properties:\n",
" print(\"\")\n",
" print(\"Ensembled Iterations\")\n",
" print(run_properties['ensembled_iterations'])\n",
" \n",
"if 'ensembled_algorithms' in run_properties:\n",
" print(\"\")\n",
" print(\"Ensembled Algorithms\")\n",
" print(run_properties['ensembled_algorithms'])"
] ]
}, },
{ {
@@ -448,9 +413,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8 - AzureML", "display_name": "Python 3.6",
"language": "python", "language": "python",
"name": "python38-azureml" "name": "python36"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -0,0 +1,4 @@
name: auto-ml-regression-model-proxy
dependencies:
- pip:
- azureml-sdk

View File

@@ -5,7 +5,6 @@ import json
import os import os
import re import re
import numpy as np
import pandas as pd import pandas as pd
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
@@ -122,10 +121,7 @@ def calculate_scores_and_build_plots(
input_dir: str, output_dir: str, automl_settings: Dict[str, Any] input_dir: str, output_dir: str, automl_settings: Dict[str, Any]
): ):
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
grains = automl_settings.get( grains = automl_settings.get(constants.TimeSeries.GRAIN_COLUMN_NAMES)
constants.TimeSeries.TIME_SERIES_ID_COLUMN_NAMES,
automl_settings.get(constants.TimeSeries.GRAIN_COLUMN_NAMES, None),
)
time_column_name = automl_settings.get(constants.TimeSeries.TIME_COLUMN_NAME) time_column_name = automl_settings.get(constants.TimeSeries.TIME_COLUMN_NAME)
if grains is None: if grains is None:
grains = [] grains = []
@@ -150,9 +146,6 @@ def calculate_scores_and_build_plots(
_draw_one_plot(one_forecast, time_column_name, grains, pdf) _draw_one_plot(one_forecast, time_column_name, grains, pdf)
pdf.close() pdf.close()
forecast_df.to_csv(os.path.join(output_dir, FORECASTS_FILE), index=False) forecast_df.to_csv(os.path.join(output_dir, FORECASTS_FILE), index=False)
# Remove np.NaN and np.inf from the prediction and actuals data.
forecast_df.replace([np.inf, -np.inf], np.nan, inplace=True)
forecast_df.dropna(subset=[ACTUALS, PREDICTIONS], inplace=True)
metrics = compute_all_metrics(forecast_df, grains + [BACKTEST_ITER]) metrics = compute_all_metrics(forecast_df, grains + [BACKTEST_ITER])
metrics.to_csv(os.path.join(output_dir, SCORES_FILE), index=False) metrics.to_csv(os.path.join(output_dir, SCORES_FILE), index=False)

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-backtest-many-models
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,3 @@
dependencies:
- pip:
- azureml-contrib-automl-pipeline-steps

View File

@@ -43,20 +43,11 @@ def init():
global output_dir global output_dir
global automl_settings global automl_settings
global model_uid global model_uid
global forecast_quantiles
logger.info("Initialization of the run.") logger.info("Initialization of the run.")
parser = argparse.ArgumentParser("Parsing input arguments.") parser = argparse.ArgumentParser("Parsing input arguments.")
parser.add_argument("--output-dir", dest="out", required=True) parser.add_argument("--output-dir", dest="out", required=True)
parser.add_argument("--model-name", dest="model", default=None) parser.add_argument("--model-name", dest="model", default=None)
parser.add_argument("--model-uid", dest="model_uid", default=None) parser.add_argument("--model-uid", dest="model_uid", default=None)
parser.add_argument(
"--forecast_quantiles",
nargs="*",
type=float,
help="forecast quantiles list",
default=None,
)
parsed_args, _ = parser.parse_known_args() parsed_args, _ = parser.parse_known_args()
model_name = parsed_args.model model_name = parsed_args.model
@@ -64,7 +55,6 @@ def init():
target_column_name = automl_settings.get("label_column_name") target_column_name = automl_settings.get("label_column_name")
output_dir = parsed_args.out output_dir = parsed_args.out
model_uid = parsed_args.model_uid model_uid = parsed_args.model_uid
forecast_quantiles = parsed_args.forecast_quantiles
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
os.environ["AUTOML_IGNORE_PACKAGE_VERSION_INCOMPATIBILITIES".lower()] = "True" os.environ["AUTOML_IGNORE_PACKAGE_VERSION_INCOMPATIBILITIES".lower()] = "True"
@@ -136,18 +126,23 @@ def run_backtest(data_input_name: str, file_name: str, experiment: Experiment):
) )
print(f"The model {best_run.properties['model_name']} was registered.") print(f"The model {best_run.properties['model_name']} was registered.")
# By default we will have forecast quantiles of 0.5, which is our target _, x_pred = fitted_model.forecast(X_test)
if forecast_quantiles: x_pred.reset_index(inplace=True, drop=False)
if 0.5 not in forecast_quantiles: columns = [automl_settings[constants.TimeSeries.TIME_COLUMN_NAME]]
forecast_quantiles.append(0.5) if automl_settings.get(constants.TimeSeries.GRAIN_COLUMN_NAMES):
fitted_model.quantiles = forecast_quantiles # We know that fitted_model.grain_column_names is a list.
columns.extend(fitted_model.grain_column_names)
x_pred = fitted_model.forecast_quantiles(X_test) columns.append(constants.TimeSeriesInternal.DUMMY_TARGET_COLUMN)
# Remove featurized columns.
x_pred = x_pred[columns]
x_pred.rename(
{constants.TimeSeriesInternal.DUMMY_TARGET_COLUMN: "predicted_level"},
axis=1,
inplace=True,
)
x_pred["actual_level"] = y_test x_pred["actual_level"] = y_test
x_pred["backtest_iteration"] = f"iteration_{last_training_date}" x_pred["backtest_iteration"] = f"iteration_{last_training_date}"
x_pred.rename({0.5: "predicted_level"}, axis=1, inplace=True)
date_safe = RE_INVALID_SYMBOLS.sub("_", last_training_date) date_safe = RE_INVALID_SYMBOLS.sub("_", last_training_date)
x_pred.to_csv(os.path.join(output_dir, f"iteration_{date_safe}.csv"), index=False) x_pred.to_csv(os.path.join(output_dir, f"iteration_{date_safe}.csv"), index=False)
return x_pred return x_pred

View File

@@ -5,7 +5,6 @@ import json
import os import os
import re import re
import numpy as np
import pandas as pd import pandas as pd
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
@@ -147,9 +146,6 @@ def calculate_scores_and_build_plots(
_draw_one_plot(one_forecast, time_column_name, grains, pdf) _draw_one_plot(one_forecast, time_column_name, grains, pdf)
pdf.close() pdf.close()
forecast_df.to_csv(os.path.join(output_dir, FORECASTS_FILE), index=False) forecast_df.to_csv(os.path.join(output_dir, FORECASTS_FILE), index=False)
# Remove np.NaN and np.inf from the prediction and actuals data.
forecast_df.replace([np.inf, -np.inf], np.nan, inplace=True)
forecast_df.dropna(subset=[ACTUALS, PREDICTIONS], inplace=True)
metrics = compute_all_metrics(forecast_df, grains + [BACKTEST_ITER]) metrics = compute_all_metrics(forecast_df, grains + [BACKTEST_ITER])
metrics.to_csv(os.path.join(output_dir, SCORES_FILE), index=False) metrics.to_csv(os.path.join(output_dir, SCORES_FILE), index=False)

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-backtest-single-model
dependencies:
- pip:
- azureml-sdk

View File

@@ -31,7 +31,6 @@ def get_backtest_pipeline(
step_number: int, step_number: int,
model_name: Optional[str] = None, model_name: Optional[str] = None,
model_uid: Optional[str] = None, model_uid: Optional[str] = None,
forecast_quantiles: Optional[list] = None,
) -> Pipeline: ) -> Pipeline:
""" """
:param experiment: The experiment used to run the pipeline. :param experiment: The experiment used to run the pipeline.
@@ -45,7 +44,6 @@ def get_backtest_pipeline(
:param step_size: The number of periods to step back in backtesting. :param step_size: The number of periods to step back in backtesting.
:param step_number: The number of backtesting iterations. :param step_number: The number of backtesting iterations.
:param model_uid: The uid to mark models from this run of the experiment. :param model_uid: The uid to mark models from this run of the experiment.
:param forecast_quantiles: The forecast quantiles that are required in the inference.
:return: The pipeline to be used for model retraining. :return: The pipeline to be used for model retraining.
**Note:** The output will be uploaded in the pipeline output **Note:** The output will be uploaded in the pipeline output
called 'score'. called 'score'.
@@ -74,8 +72,6 @@ def get_backtest_pipeline(
run_config.docker.use_docker = True run_config.docker.use_docker = True
run_config.environment = env run_config.environment = env
utilities.set_environment_variables_for_run(run_config)
split_data = PipelineData(name="split_data_output", datastore=None).as_dataset() split_data = PipelineData(name="split_data_output", datastore=None).as_dataset()
split_step = PythonScriptStep( split_step = PythonScriptStep(
name="split_data_for_backtest", name="split_data_for_backtest",
@@ -118,7 +114,6 @@ def get_backtest_pipeline(
run_invocation_timeout=3600, run_invocation_timeout=3600,
node_count=node_count, node_count=node_count,
) )
utilities.set_environment_variables_for_run(back_test_config)
forecasts = PipelineData(name="forecasts", datastore=None) forecasts = PipelineData(name="forecasts", datastore=None)
if model_name: if model_name:
parallel_step_name = "{}-backtest".format(model_name.replace("_", "-")) parallel_step_name = "{}-backtest".format(model_name.replace("_", "-"))
@@ -137,9 +132,6 @@ def get_backtest_pipeline(
if model_uid is not None: if model_uid is not None:
prs_args.append("--model-uid") prs_args.append("--model-uid")
prs_args.append(model_uid) prs_args.append(model_uid)
if forecast_quantiles:
prs_args.append("--forecast_quantiles")
prs_args.extend(forecast_quantiles)
backtest_prs = ParallelRunStep( backtest_prs = ParallelRunStep(
name=parallel_step_name, name=parallel_step_name,
parallel_run_config=back_test_config, parallel_run_config=back_test_config,
@@ -157,7 +149,12 @@ def get_backtest_pipeline(
inputs=[forecasts.as_mount()], inputs=[forecasts.as_mount()],
outputs=[data_results], outputs=[data_results],
source_directory=PROJECT_FOLDER, source_directory=PROJECT_FOLDER,
arguments=["--forecasts", forecasts, "--output-dir", data_results], arguments=[
"--forecasts",
forecasts,
"--output-dir",
data_results,
],
runconfig=run_config, runconfig=run_config,
compute_target=compute_target, compute_target=compute_target,
allow_reuse=False, allow_reuse=False,

View File

@@ -0,0 +1,20 @@
DATE,grain,BeerProduction
2017-01-01,grain,9049
2017-02-01,grain,10458
2017-03-01,grain,12489
2017-04-01,grain,11499
2017-05-01,grain,13553
2017-06-01,grain,14740
2017-07-01,grain,11424
2017-08-01,grain,13412
2017-09-01,grain,11917
2017-10-01,grain,12721
2017-11-01,grain,13272
2017-12-01,grain,14278
2018-01-01,grain,9572
2018-02-01,grain,10423
2018-03-01,grain,12667
2018-04-01,grain,11904
2018-05-01,grain,14120
2018-06-01,grain,14565
2018-07-01,grain,12622
1 DATE grain BeerProduction
2 2017-01-01 grain 9049
3 2017-02-01 grain 10458
4 2017-03-01 grain 12489
5 2017-04-01 grain 11499
6 2017-05-01 grain 13553
7 2017-06-01 grain 14740
8 2017-07-01 grain 11424
9 2017-08-01 grain 13412
10 2017-09-01 grain 11917
11 2017-10-01 grain 12721
12 2017-11-01 grain 13272
13 2017-12-01 grain 14278
14 2018-01-01 grain 9572
15 2018-02-01 grain 10423
16 2018-03-01 grain 12667
17 2018-04-01 grain 11904
18 2018-05-01 grain 14120
19 2018-06-01 grain 14565
20 2018-07-01 grain 12622

View File

@@ -0,0 +1,301 @@
DATE,grain,BeerProduction
1992-01-01,grain,3459
1992-02-01,grain,3458
1992-03-01,grain,4002
1992-04-01,grain,4564
1992-05-01,grain,4221
1992-06-01,grain,4529
1992-07-01,grain,4466
1992-08-01,grain,4137
1992-09-01,grain,4126
1992-10-01,grain,4259
1992-11-01,grain,4240
1992-12-01,grain,4936
1993-01-01,grain,3031
1993-02-01,grain,3261
1993-03-01,grain,4160
1993-04-01,grain,4377
1993-05-01,grain,4307
1993-06-01,grain,4696
1993-07-01,grain,4458
1993-08-01,grain,4457
1993-09-01,grain,4364
1993-10-01,grain,4236
1993-11-01,grain,4500
1993-12-01,grain,4974
1994-01-01,grain,3075
1994-02-01,grain,3377
1994-03-01,grain,4443
1994-04-01,grain,4261
1994-05-01,grain,4460
1994-06-01,grain,4985
1994-07-01,grain,4324
1994-08-01,grain,4719
1994-09-01,grain,4374
1994-10-01,grain,4248
1994-11-01,grain,4784
1994-12-01,grain,4971
1995-01-01,grain,3370
1995-02-01,grain,3484
1995-03-01,grain,4269
1995-04-01,grain,3994
1995-05-01,grain,4715
1995-06-01,grain,4974
1995-07-01,grain,4223
1995-08-01,grain,5000
1995-09-01,grain,4235
1995-10-01,grain,4554
1995-11-01,grain,4851
1995-12-01,grain,4826
1996-01-01,grain,3699
1996-02-01,grain,3983
1996-03-01,grain,4262
1996-04-01,grain,4619
1996-05-01,grain,5219
1996-06-01,grain,4836
1996-07-01,grain,4941
1996-08-01,grain,5062
1996-09-01,grain,4365
1996-10-01,grain,5012
1996-11-01,grain,4850
1996-12-01,grain,5097
1997-01-01,grain,3758
1997-02-01,grain,3825
1997-03-01,grain,4454
1997-04-01,grain,4635
1997-05-01,grain,5210
1997-06-01,grain,5057
1997-07-01,grain,5231
1997-08-01,grain,5034
1997-09-01,grain,4970
1997-10-01,grain,5342
1997-11-01,grain,4831
1997-12-01,grain,5965
1998-01-01,grain,3796
1998-02-01,grain,4019
1998-03-01,grain,4898
1998-04-01,grain,5090
1998-05-01,grain,5237
1998-06-01,grain,5447
1998-07-01,grain,5435
1998-08-01,grain,5107
1998-09-01,grain,5515
1998-10-01,grain,5583
1998-11-01,grain,5346
1998-12-01,grain,6286
1999-01-01,grain,4032
1999-02-01,grain,4435
1999-03-01,grain,5479
1999-04-01,grain,5483
1999-05-01,grain,5587
1999-06-01,grain,6176
1999-07-01,grain,5621
1999-08-01,grain,5889
1999-09-01,grain,5828
1999-10-01,grain,5849
1999-11-01,grain,6180
1999-12-01,grain,6771
2000-01-01,grain,4243
2000-02-01,grain,4952
2000-03-01,grain,6008
2000-04-01,grain,5353
2000-05-01,grain,6435
2000-06-01,grain,6673
2000-07-01,grain,5636
2000-08-01,grain,6630
2000-09-01,grain,5887
2000-10-01,grain,6322
2000-11-01,grain,6520
2000-12-01,grain,6678
2001-01-01,grain,5082
2001-02-01,grain,5216
2001-03-01,grain,5893
2001-04-01,grain,5894
2001-05-01,grain,6799
2001-06-01,grain,6667
2001-07-01,grain,6374
2001-08-01,grain,6840
2001-09-01,grain,5575
2001-10-01,grain,6545
2001-11-01,grain,6789
2001-12-01,grain,7180
2002-01-01,grain,5117
2002-02-01,grain,5442
2002-03-01,grain,6337
2002-04-01,grain,6525
2002-05-01,grain,7216
2002-06-01,grain,6761
2002-07-01,grain,6958
2002-08-01,grain,7070
2002-09-01,grain,6148
2002-10-01,grain,6924
2002-11-01,grain,6716
2002-12-01,grain,7975
2003-01-01,grain,5326
2003-02-01,grain,5609
2003-03-01,grain,6414
2003-04-01,grain,6741
2003-05-01,grain,7144
2003-06-01,grain,7133
2003-07-01,grain,7568
2003-08-01,grain,7266
2003-09-01,grain,6634
2003-10-01,grain,7626
2003-11-01,grain,6843
2003-12-01,grain,8540
2004-01-01,grain,5629
2004-02-01,grain,5898
2004-03-01,grain,7045
2004-04-01,grain,7094
2004-05-01,grain,7333
2004-06-01,grain,7918
2004-07-01,grain,7289
2004-08-01,grain,7396
2004-09-01,grain,7259
2004-10-01,grain,7268
2004-11-01,grain,7731
2004-12-01,grain,9058
2005-01-01,grain,5557
2005-02-01,grain,6237
2005-03-01,grain,7723
2005-04-01,grain,7262
2005-05-01,grain,8241
2005-06-01,grain,8757
2005-07-01,grain,7352
2005-08-01,grain,8496
2005-09-01,grain,7741
2005-10-01,grain,7710
2005-11-01,grain,8247
2005-12-01,grain,8902
2006-01-01,grain,6066
2006-02-01,grain,6590
2006-03-01,grain,7923
2006-04-01,grain,7335
2006-05-01,grain,8843
2006-06-01,grain,9327
2006-07-01,grain,7792
2006-08-01,grain,9156
2006-09-01,grain,8037
2006-10-01,grain,8640
2006-11-01,grain,9128
2006-12-01,grain,9545
2007-01-01,grain,6627
2007-02-01,grain,6743
2007-03-01,grain,8195
2007-04-01,grain,7828
2007-05-01,grain,9570
2007-06-01,grain,9484
2007-07-01,grain,8608
2007-08-01,grain,9543
2007-09-01,grain,8123
2007-10-01,grain,9649
2007-11-01,grain,9390
2007-12-01,grain,10065
2008-01-01,grain,7093
2008-02-01,grain,7483
2008-03-01,grain,8365
2008-04-01,grain,8895
2008-05-01,grain,9794
2008-06-01,grain,9977
2008-07-01,grain,9553
2008-08-01,grain,9375
2008-09-01,grain,9225
2008-10-01,grain,9948
2008-11-01,grain,8758
2008-12-01,grain,10839
2009-01-01,grain,7266
2009-02-01,grain,7578
2009-03-01,grain,8688
2009-04-01,grain,9162
2009-05-01,grain,9369
2009-06-01,grain,10167
2009-07-01,grain,9507
2009-08-01,grain,8923
2009-09-01,grain,9272
2009-10-01,grain,9075
2009-11-01,grain,8949
2009-12-01,grain,10843
2010-01-01,grain,6558
2010-02-01,grain,7481
2010-03-01,grain,9475
2010-04-01,grain,9424
2010-05-01,grain,9351
2010-06-01,grain,10552
2010-07-01,grain,9077
2010-08-01,grain,9273
2010-09-01,grain,9420
2010-10-01,grain,9413
2010-11-01,grain,9866
2010-12-01,grain,11455
2011-01-01,grain,6901
2011-02-01,grain,8014
2011-03-01,grain,9832
2011-04-01,grain,9281
2011-05-01,grain,9967
2011-06-01,grain,11344
2011-07-01,grain,9106
2011-08-01,grain,10469
2011-09-01,grain,10085
2011-10-01,grain,9612
2011-11-01,grain,10328
2011-12-01,grain,11483
2012-01-01,grain,7486
2012-02-01,grain,8641
2012-03-01,grain,9709
2012-04-01,grain,9423
2012-05-01,grain,11342
2012-06-01,grain,11274
2012-07-01,grain,9845
2012-08-01,grain,11163
2012-09-01,grain,9532
2012-10-01,grain,10754
2012-11-01,grain,10953
2012-12-01,grain,11922
2013-01-01,grain,8395
2013-02-01,grain,8888
2013-03-01,grain,10110
2013-04-01,grain,10493
2013-05-01,grain,12218
2013-06-01,grain,11385
2013-07-01,grain,11186
2013-08-01,grain,11462
2013-09-01,grain,10494
2013-10-01,grain,11540
2013-11-01,grain,11138
2013-12-01,grain,12709
2014-01-01,grain,8557
2014-02-01,grain,9059
2014-03-01,grain,10055
2014-04-01,grain,10977
2014-05-01,grain,11792
2014-06-01,grain,11904
2014-07-01,grain,10965
2014-08-01,grain,10981
2014-09-01,grain,10828
2014-10-01,grain,11817
2014-11-01,grain,10470
2014-12-01,grain,13310
2015-01-01,grain,8400
2015-02-01,grain,9062
2015-03-01,grain,10722
2015-04-01,grain,11107
2015-05-01,grain,11508
2015-06-01,grain,12904
2015-07-01,grain,11869
2015-08-01,grain,11224
2015-09-01,grain,12022
2015-10-01,grain,11983
2015-11-01,grain,11506
2015-12-01,grain,14183
2016-01-01,grain,8650
2016-02-01,grain,10323
2016-03-01,grain,12110
2016-04-01,grain,11424
2016-05-01,grain,12243
2016-06-01,grain,13686
2016-07-01,grain,10956
2016-08-01,grain,12706
2016-09-01,grain,12279
2016-10-01,grain,11914
2016-11-01,grain,13025
2016-12-01,grain,14431
1 DATE grain BeerProduction
2 1992-01-01 grain 3459
3 1992-02-01 grain 3458
4 1992-03-01 grain 4002
5 1992-04-01 grain 4564
6 1992-05-01 grain 4221
7 1992-06-01 grain 4529
8 1992-07-01 grain 4466
9 1992-08-01 grain 4137
10 1992-09-01 grain 4126
11 1992-10-01 grain 4259
12 1992-11-01 grain 4240
13 1992-12-01 grain 4936
14 1993-01-01 grain 3031
15 1993-02-01 grain 3261
16 1993-03-01 grain 4160
17 1993-04-01 grain 4377
18 1993-05-01 grain 4307
19 1993-06-01 grain 4696
20 1993-07-01 grain 4458
21 1993-08-01 grain 4457
22 1993-09-01 grain 4364
23 1993-10-01 grain 4236
24 1993-11-01 grain 4500
25 1993-12-01 grain 4974
26 1994-01-01 grain 3075
27 1994-02-01 grain 3377
28 1994-03-01 grain 4443
29 1994-04-01 grain 4261
30 1994-05-01 grain 4460
31 1994-06-01 grain 4985
32 1994-07-01 grain 4324
33 1994-08-01 grain 4719
34 1994-09-01 grain 4374
35 1994-10-01 grain 4248
36 1994-11-01 grain 4784
37 1994-12-01 grain 4971
38 1995-01-01 grain 3370
39 1995-02-01 grain 3484
40 1995-03-01 grain 4269
41 1995-04-01 grain 3994
42 1995-05-01 grain 4715
43 1995-06-01 grain 4974
44 1995-07-01 grain 4223
45 1995-08-01 grain 5000
46 1995-09-01 grain 4235
47 1995-10-01 grain 4554
48 1995-11-01 grain 4851
49 1995-12-01 grain 4826
50 1996-01-01 grain 3699
51 1996-02-01 grain 3983
52 1996-03-01 grain 4262
53 1996-04-01 grain 4619
54 1996-05-01 grain 5219
55 1996-06-01 grain 4836
56 1996-07-01 grain 4941
57 1996-08-01 grain 5062
58 1996-09-01 grain 4365
59 1996-10-01 grain 5012
60 1996-11-01 grain 4850
61 1996-12-01 grain 5097
62 1997-01-01 grain 3758
63 1997-02-01 grain 3825
64 1997-03-01 grain 4454
65 1997-04-01 grain 4635
66 1997-05-01 grain 5210
67 1997-06-01 grain 5057
68 1997-07-01 grain 5231
69 1997-08-01 grain 5034
70 1997-09-01 grain 4970
71 1997-10-01 grain 5342
72 1997-11-01 grain 4831
73 1997-12-01 grain 5965
74 1998-01-01 grain 3796
75 1998-02-01 grain 4019
76 1998-03-01 grain 4898
77 1998-04-01 grain 5090
78 1998-05-01 grain 5237
79 1998-06-01 grain 5447
80 1998-07-01 grain 5435
81 1998-08-01 grain 5107
82 1998-09-01 grain 5515
83 1998-10-01 grain 5583
84 1998-11-01 grain 5346
85 1998-12-01 grain 6286
86 1999-01-01 grain 4032
87 1999-02-01 grain 4435
88 1999-03-01 grain 5479
89 1999-04-01 grain 5483
90 1999-05-01 grain 5587
91 1999-06-01 grain 6176
92 1999-07-01 grain 5621
93 1999-08-01 grain 5889
94 1999-09-01 grain 5828
95 1999-10-01 grain 5849
96 1999-11-01 grain 6180
97 1999-12-01 grain 6771
98 2000-01-01 grain 4243
99 2000-02-01 grain 4952
100 2000-03-01 grain 6008
101 2000-04-01 grain 5353
102 2000-05-01 grain 6435
103 2000-06-01 grain 6673
104 2000-07-01 grain 5636
105 2000-08-01 grain 6630
106 2000-09-01 grain 5887
107 2000-10-01 grain 6322
108 2000-11-01 grain 6520
109 2000-12-01 grain 6678
110 2001-01-01 grain 5082
111 2001-02-01 grain 5216
112 2001-03-01 grain 5893
113 2001-04-01 grain 5894
114 2001-05-01 grain 6799
115 2001-06-01 grain 6667
116 2001-07-01 grain 6374
117 2001-08-01 grain 6840
118 2001-09-01 grain 5575
119 2001-10-01 grain 6545
120 2001-11-01 grain 6789
121 2001-12-01 grain 7180
122 2002-01-01 grain 5117
123 2002-02-01 grain 5442
124 2002-03-01 grain 6337
125 2002-04-01 grain 6525
126 2002-05-01 grain 7216
127 2002-06-01 grain 6761
128 2002-07-01 grain 6958
129 2002-08-01 grain 7070
130 2002-09-01 grain 6148
131 2002-10-01 grain 6924
132 2002-11-01 grain 6716
133 2002-12-01 grain 7975
134 2003-01-01 grain 5326
135 2003-02-01 grain 5609
136 2003-03-01 grain 6414
137 2003-04-01 grain 6741
138 2003-05-01 grain 7144
139 2003-06-01 grain 7133
140 2003-07-01 grain 7568
141 2003-08-01 grain 7266
142 2003-09-01 grain 6634
143 2003-10-01 grain 7626
144 2003-11-01 grain 6843
145 2003-12-01 grain 8540
146 2004-01-01 grain 5629
147 2004-02-01 grain 5898
148 2004-03-01 grain 7045
149 2004-04-01 grain 7094
150 2004-05-01 grain 7333
151 2004-06-01 grain 7918
152 2004-07-01 grain 7289
153 2004-08-01 grain 7396
154 2004-09-01 grain 7259
155 2004-10-01 grain 7268
156 2004-11-01 grain 7731
157 2004-12-01 grain 9058
158 2005-01-01 grain 5557
159 2005-02-01 grain 6237
160 2005-03-01 grain 7723
161 2005-04-01 grain 7262
162 2005-05-01 grain 8241
163 2005-06-01 grain 8757
164 2005-07-01 grain 7352
165 2005-08-01 grain 8496
166 2005-09-01 grain 7741
167 2005-10-01 grain 7710
168 2005-11-01 grain 8247
169 2005-12-01 grain 8902
170 2006-01-01 grain 6066
171 2006-02-01 grain 6590
172 2006-03-01 grain 7923
173 2006-04-01 grain 7335
174 2006-05-01 grain 8843
175 2006-06-01 grain 9327
176 2006-07-01 grain 7792
177 2006-08-01 grain 9156
178 2006-09-01 grain 8037
179 2006-10-01 grain 8640
180 2006-11-01 grain 9128
181 2006-12-01 grain 9545
182 2007-01-01 grain 6627
183 2007-02-01 grain 6743
184 2007-03-01 grain 8195
185 2007-04-01 grain 7828
186 2007-05-01 grain 9570
187 2007-06-01 grain 9484
188 2007-07-01 grain 8608
189 2007-08-01 grain 9543
190 2007-09-01 grain 8123
191 2007-10-01 grain 9649
192 2007-11-01 grain 9390
193 2007-12-01 grain 10065
194 2008-01-01 grain 7093
195 2008-02-01 grain 7483
196 2008-03-01 grain 8365
197 2008-04-01 grain 8895
198 2008-05-01 grain 9794
199 2008-06-01 grain 9977
200 2008-07-01 grain 9553
201 2008-08-01 grain 9375
202 2008-09-01 grain 9225
203 2008-10-01 grain 9948
204 2008-11-01 grain 8758
205 2008-12-01 grain 10839
206 2009-01-01 grain 7266
207 2009-02-01 grain 7578
208 2009-03-01 grain 8688
209 2009-04-01 grain 9162
210 2009-05-01 grain 9369
211 2009-06-01 grain 10167
212 2009-07-01 grain 9507
213 2009-08-01 grain 8923
214 2009-09-01 grain 9272
215 2009-10-01 grain 9075
216 2009-11-01 grain 8949
217 2009-12-01 grain 10843
218 2010-01-01 grain 6558
219 2010-02-01 grain 7481
220 2010-03-01 grain 9475
221 2010-04-01 grain 9424
222 2010-05-01 grain 9351
223 2010-06-01 grain 10552
224 2010-07-01 grain 9077
225 2010-08-01 grain 9273
226 2010-09-01 grain 9420
227 2010-10-01 grain 9413
228 2010-11-01 grain 9866
229 2010-12-01 grain 11455
230 2011-01-01 grain 6901
231 2011-02-01 grain 8014
232 2011-03-01 grain 9832
233 2011-04-01 grain 9281
234 2011-05-01 grain 9967
235 2011-06-01 grain 11344
236 2011-07-01 grain 9106
237 2011-08-01 grain 10469
238 2011-09-01 grain 10085
239 2011-10-01 grain 9612
240 2011-11-01 grain 10328
241 2011-12-01 grain 11483
242 2012-01-01 grain 7486
243 2012-02-01 grain 8641
244 2012-03-01 grain 9709
245 2012-04-01 grain 9423
246 2012-05-01 grain 11342
247 2012-06-01 grain 11274
248 2012-07-01 grain 9845
249 2012-08-01 grain 11163
250 2012-09-01 grain 9532
251 2012-10-01 grain 10754
252 2012-11-01 grain 10953
253 2012-12-01 grain 11922
254 2013-01-01 grain 8395
255 2013-02-01 grain 8888
256 2013-03-01 grain 10110
257 2013-04-01 grain 10493
258 2013-05-01 grain 12218
259 2013-06-01 grain 11385
260 2013-07-01 grain 11186
261 2013-08-01 grain 11462
262 2013-09-01 grain 10494
263 2013-10-01 grain 11540
264 2013-11-01 grain 11138
265 2013-12-01 grain 12709
266 2014-01-01 grain 8557
267 2014-02-01 grain 9059
268 2014-03-01 grain 10055
269 2014-04-01 grain 10977
270 2014-05-01 grain 11792
271 2014-06-01 grain 11904
272 2014-07-01 grain 10965
273 2014-08-01 grain 10981
274 2014-09-01 grain 10828
275 2014-10-01 grain 11817
276 2014-11-01 grain 10470
277 2014-12-01 grain 13310
278 2015-01-01 grain 8400
279 2015-02-01 grain 9062
280 2015-03-01 grain 10722
281 2015-04-01 grain 11107
282 2015-05-01 grain 11508
283 2015-06-01 grain 12904
284 2015-07-01 grain 11869
285 2015-08-01 grain 11224
286 2015-09-01 grain 12022
287 2015-10-01 grain 11983
288 2015-11-01 grain 11506
289 2015-12-01 grain 14183
290 2016-01-01 grain 8650
291 2016-02-01 grain 10323
292 2016-03-01 grain 12110
293 2016-04-01 grain 11424
294 2016-05-01 grain 12243
295 2016-06-01 grain 13686
296 2016-07-01 grain 10956
297 2016-08-01 grain 12706
298 2016-09-01 grain 12279
299 2016-10-01 grain 11914
300 2016-11-01 grain 13025
301 2016-12-01 grain 14431

View File

@@ -0,0 +1,728 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.png)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"# Automated Machine Learning\n",
"**Beer Production Forecasting**\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Introduction\n",
"This notebook demonstrates demand forecasting for Beer Production Dataset using AutoML.\n",
"\n",
"AutoML highlights here include using Deep Learning forecasts, Arima, Prophet, Remote Execution and Remote Inferencing, and working with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"Notebook synopsis:\n",
"\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a time-series model exploring Regression learners, Arima, Prophet and DNNs\n",
"4. Evaluating the fitted model using a rolling test "
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"\n",
"from pandas.tseries.frequencies import to_offset\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
"from azureml.train.estimator import Estimator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.38.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = \"beer-remote-cpu\"\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output[\"Subscription ID\"] = ws.subscription_id\n",
"output[\"Workspace\"] = ws.name\n",
"output[\"Resource Group\"] = ws.resource_group\n",
"output[\"Location\"] = ws.location\n",
"output[\"Run History Name\"] = experiment_name\n",
"pd.set_option(\"display.max_colwidth\", -1)\n",
"outputDf = pd.DataFrame(data=output, index=[\"\"])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Using AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"beer-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cluster, use it.\")\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"STANDARD_DS12_V2\", max_nodes=4\n",
" )\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Data\n",
"Read Beer demand data from file, and preview data."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Let's set up what we know about the dataset. \n",
"\n",
"**Target column** is what we want to forecast.\n",
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Time series identifier columns** are identified by values of the columns listed `time_series_id_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"**Forecast frequency (freq)** This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from pandas import DataFrame\n",
"from pandas import Grouper\n",
"from pandas import concat\n",
"from pandas.plotting import register_matplotlib_converters\n",
"\n",
"register_matplotlib_converters()\n",
"plt.figure(figsize=(20, 10))\n",
"plt.tight_layout()\n",
"\n",
"plt.subplot(2, 1, 1)\n",
"plt.title(\"Beer Production By Year\")\n",
"df = pd.read_csv(\n",
" \"Beer_no_valid_split_train.csv\", parse_dates=True, index_col=\"DATE\"\n",
").drop(columns=\"grain\")\n",
"test_df = pd.read_csv(\n",
" \"Beer_no_valid_split_test.csv\", parse_dates=True, index_col=\"DATE\"\n",
").drop(columns=\"grain\")\n",
"plt.plot(df)\n",
"\n",
"plt.subplot(2, 1, 2)\n",
"plt.title(\"Beer Production By Month\")\n",
"groups = df.groupby(df.index.month)\n",
"months = concat([DataFrame(x[1].values) for x in groups], axis=1)\n",
"months = DataFrame(months)\n",
"months.columns = range(1, 13)\n",
"months.boxplot()\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"target_column_name = \"BeerProduction\"\n",
"time_column_name = \"DATE\"\n",
"time_series_id_column_names = []\n",
"freq = \"M\" # Monthly data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split Training data into Train and Validation set and Upload to Datastores"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from helper import split_fraction_by_grain\n",
"from helper import split_full_for_forecasting\n",
"\n",
"train, valid = split_full_for_forecasting(df, time_column_name)\n",
"train.to_csv(\"train.csv\")\n",
"valid.to_csv(\"valid.csv\")\n",
"test_df.to_csv(\"test.csv\")\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(\n",
" files=[\"./train.csv\"],\n",
" target_path=\"beer-dataset/tabular/\",\n",
" overwrite=True,\n",
" show_progress=True,\n",
")\n",
"datastore.upload_files(\n",
" files=[\"./valid.csv\"],\n",
" target_path=\"beer-dataset/tabular/\",\n",
" overwrite=True,\n",
" show_progress=True,\n",
")\n",
"datastore.upload_files(\n",
" files=[\"./test.csv\"],\n",
" target_path=\"beer-dataset/tabular/\",\n",
" overwrite=True,\n",
" show_progress=True,\n",
")\n",
"\n",
"from azureml.core import Dataset\n",
"\n",
"train_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, \"beer-dataset/tabular/train.csv\")]\n",
")\n",
"valid_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, \"beer-dataset/tabular/valid.csv\")]\n",
")\n",
"test_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, \"beer-dataset/tabular/test.csv\")]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 12 periods (i.e. 12 months). Notice that this is much shorter than the number of months in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"forecast_horizon = 12"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**enable_dnn**|Enable Forecasting DNNs|\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n",
" freq=\"MS\", # Set the forecast frequency to be monthly (start of the month)\n",
")\n",
"\n",
"# We will disable the enable_early_stopping flag to ensure the DNN model is recommended for demonstration purpose.\n",
"automl_config = AutoMLConfig(\n",
" task=\"forecasting\",\n",
" primary_metric=\"normalized_root_mean_squared_error\",\n",
" experiment_timeout_hours=1,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" validation_data=valid_dataset,\n",
" verbosity=logging.INFO,\n",
" compute_target=compute_target,\n",
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" enable_dnn=True,\n",
" enable_early_stopping=False,\n",
" forecasting_parameters=forecasting_parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. The experiment can be continued for more iterations if more accurate results are required. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"# from azureml.train.automl.run import AutoMLRun\n",
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Retrieve the Best Model for Each Algorithm\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from helper import get_result_df\n",
"\n",
"summary_df = get_result_df(remote_run)\n",
"summary_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core.run import Run\n",
"from azureml.widgets import RunDetails\n",
"\n",
"forecast_model = \"TCNForecaster\"\n",
"if not forecast_model in summary_df[\"run_id\"]:\n",
" forecast_model = \"ForecastTCN\"\n",
"\n",
"best_dnn_run_id = summary_df[\"run_id\"][forecast_model]\n",
"best_dnn_run = Run(experiment, best_dnn_run_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"best_dnn_run.parent\n",
"RunDetails(best_dnn_run.parent).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"best_dnn_run\n",
"RunDetails(best_dnn_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Evaluate on Test Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. \n",
"\n",
"We always score on the original dataset whose schema matches the training set schema."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"\n",
"test_dataset = Dataset.Tabular.from_delimited_files(\n",
" path=[(datastore, \"beer-dataset/tabular/test.csv\")]\n",
")\n",
"# preview the first 3 rows of the dataset\n",
"test_dataset.take(5).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target = ws.compute_targets[\"beer-cluster\"]\n",
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"\n",
"script_folder = os.path.join(os.getcwd(), \"inference\")\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy(\"infer.py\", script_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from helper import run_inference\n",
"\n",
"test_run = run_inference(\n",
" test_experiment,\n",
" compute_target,\n",
" script_folder,\n",
" best_dnn_run,\n",
" test_dataset,\n",
" valid_dataset,\n",
" forecast_horizon,\n",
" target_column_name,\n",
" time_column_name,\n",
" freq,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(test_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from helper import run_multiple_inferences\n",
"\n",
"summary_df = run_multiple_inferences(\n",
" summary_df,\n",
" experiment,\n",
" test_experiment,\n",
" compute_target,\n",
" script_folder,\n",
" test_dataset,\n",
" valid_dataset,\n",
" forecast_horizon,\n",
" target_column_name,\n",
" time_column_name,\n",
" freq,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"for run_name, run_summary in summary_df.iterrows():\n",
" print(run_name)\n",
" print(run_summary)\n",
" run_id = run_summary.run_id\n",
" test_run_id = run_summary.test_run_id\n",
" test_run = Run(test_experiment, test_run_id)\n",
" test_run.wait_for_completion()\n",
" test_score = test_run.get_metrics()[run_summary.primary_metric]\n",
" summary_df.loc[summary_df.run_id == run_id, \"Test Score\"] = test_score\n",
" print(\"Test Score: \", test_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"summary_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "jialiu"
}
],
"hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,183 @@
import pandas as pd
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
from azureml.automl.core.shared import constants
def split_fraction_by_grain(df, fraction, time_column_name, grain_column_names=None):
if not grain_column_names:
df["tmp_grain_column"] = "grain"
grain_column_names = ["tmp_grain_column"]
"""Group df by grain and split on last n rows for each group."""
df_grouped = df.sort_values(time_column_name).groupby(
grain_column_names, group_keys=False
)
df_head = df_grouped.apply(
lambda dfg: dfg.iloc[: -int(len(dfg) * fraction)] if fraction > 0 else dfg
)
df_tail = df_grouped.apply(
lambda dfg: dfg.iloc[-int(len(dfg) * fraction) :] if fraction > 0 else dfg[:0]
)
if "tmp_grain_column" in grain_column_names:
for df2 in (df, df_head, df_tail):
df2.drop("tmp_grain_column", axis=1, inplace=True)
grain_column_names.remove("tmp_grain_column")
return df_head, df_tail
def split_full_for_forecasting(
df, time_column_name, grain_column_names=None, test_split=0.2
):
index_name = df.index.name
# Assumes that there isn't already a column called tmpindex
df["tmpindex"] = df.index
train_df, test_df = split_fraction_by_grain(
df, test_split, time_column_name, grain_column_names
)
train_df = train_df.set_index("tmpindex")
train_df.index.name = index_name
test_df = test_df.set_index("tmpindex")
test_df.index.name = index_name
df.drop("tmpindex", axis=1, inplace=True)
return train_df, test_df
def get_result_df(remote_run):
children = list(remote_run.get_children(recursive=True))
summary_df = pd.DataFrame(
index=["run_id", "run_algorithm", "primary_metric", "Score"]
)
goal_minimize = False
for run in children:
if (
run.get_status().lower() == constants.RunState.COMPLETE_RUN
and "run_algorithm" in run.properties
and "score" in run.properties
):
# We only count in the completed child runs.
summary_df[run.id] = [
run.id,
run.properties["run_algorithm"],
run.properties["primary_metric"],
float(run.properties["score"]),
]
if "goal" in run.properties:
goal_minimize = run.properties["goal"].split("_")[-1] == "min"
summary_df = summary_df.T.sort_values(
"Score", ascending=goal_minimize
).drop_duplicates(["run_algorithm"])
summary_df = summary_df.set_index("run_algorithm")
return summary_df
def run_inference(
test_experiment,
compute_target,
script_folder,
train_run,
test_dataset,
lookback_dataset,
max_horizon,
target_column_name,
time_column_name,
freq,
):
model_base_name = "model.pkl"
if "model_data_location" in train_run.properties:
model_location = train_run.properties["model_data_location"]
_, model_base_name = model_location.rsplit("/", 1)
train_run.download_file(
"outputs/{}".format(model_base_name), "inference/{}".format(model_base_name)
)
train_run.download_file("outputs/conda_env_v_1_0_0.yml", "inference/condafile.yml")
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path="inference/condafile.yml"
)
est = Estimator(
source_directory=script_folder,
entry_script="infer.py",
script_params={
"--max_horizon": max_horizon,
"--target_column_name": target_column_name,
"--time_column_name": time_column_name,
"--frequency": freq,
"--model_path": model_base_name,
},
inputs=[
test_dataset.as_named_input("test_data"),
lookback_dataset.as_named_input("lookback_data"),
],
compute_target=compute_target,
environment_definition=inference_env,
)
run = test_experiment.submit(
est,
tags={
"training_run_id": train_run.id,
"run_algorithm": train_run.properties["run_algorithm"],
"valid_score": train_run.properties["score"],
"primary_metric": train_run.properties["primary_metric"],
},
)
run.log("run_algorithm", run.tags["run_algorithm"])
return run
def run_multiple_inferences(
summary_df,
train_experiment,
test_experiment,
compute_target,
script_folder,
test_dataset,
lookback_dataset,
max_horizon,
target_column_name,
time_column_name,
freq,
):
for run_name, run_summary in summary_df.iterrows():
print(run_name)
print(run_summary)
run_id = run_summary.run_id
train_run = Run(train_experiment, run_id)
test_run = run_inference(
test_experiment,
compute_target,
script_folder,
train_run,
test_dataset,
lookback_dataset,
max_horizon,
target_column_name,
time_column_name,
freq,
)
print(test_run)
summary_df.loc[summary_df.run_id == run_id, "test_run_id"] = test_run.id
return summary_df

View File

@@ -0,0 +1,386 @@
import argparse
import os
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset
from sklearn.externals import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
try:
import torch
_torch_present = True
except ImportError:
_torch_present = False
def align_outputs(
y_predicted,
X_trans,
X_test,
y_test,
predicted_column_name="predicted",
horizon_colname="horizon_origin",
):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if horizon_colname in X_trans:
df_fcst = pd.DataFrame(
{
predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname],
}
)
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns="index")
together = df_fcst.merge(X_test_full, how="right")
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[
together[[target_column_name, predicted_column_name]].notnull().all(axis=1)
]
return clean
def do_rolling_forecast_with_lookback(
fitted_model, X_test, y_test, max_horizon, X_lookback, y_lookback, freq="D"
):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
print("Using lookback of size: ", y_lookback.size)
df_list = []
origin_time = X_test[time_column_name].min()
X = X_lookback.append(X_test)
y = np.concatenate((y_lookback, y_test), axis=0)
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X[time_column_name] < horizon_time
X_test_expand = X[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
# y_fcst, X_trans = y_query_expand, X_test_expand
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within
# the current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X[test_roll_wind],
y[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq="D"):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X_test[time_column_name] < horizon_time
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X_test[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y_test[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X_test)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))
def map_location_cuda(storage, loc):
return storage.cuda()
parser = argparse.ArgumentParser()
parser.add_argument(
"--max_horizon",
type=int,
dest="max_horizon",
default=10,
help="Max Horizon for forecasting",
)
parser.add_argument(
"--target_column_name",
type=str,
dest="target_column_name",
help="Target Column Name",
)
parser.add_argument(
"--time_column_name", type=str, dest="time_column_name", help="Time Column Name"
)
parser.add_argument(
"--frequency", type=str, dest="freq", help="Frequency of prediction"
)
parser.add_argument(
"--model_path",
type=str,
dest="model_path",
default="model.pkl",
help="Filename of model to be loaded",
)
args = parser.parse_args()
max_horizon = args.max_horizon
target_column_name = args.target_column_name
time_column_name = args.time_column_name
freq = args.freq
model_path = args.model_path
print("args passed are: ")
print(max_horizon)
print(target_column_name)
print(time_column_name)
print(freq)
print(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets["test_data"]
lookback_dataset = run.input_datasets["lookback_data"]
grain_column_names = []
df = test_dataset.to_pandas_dataframe()
print("Read df")
print(df)
X_test_df = test_dataset.drop_columns(columns=[target_column_name])
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
y_lookback_df = lookback_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
_, ext = os.path.splitext(model_path)
if ext == ".pt":
# Load the fc-tcn torch model.
assert _torch_present
if torch.cuda.is_available():
map_location = map_location_cuda
else:
map_location = "cpu"
with open(model_path, "rb") as fh:
fitted_model = torch.load(fh, map_location=map_location)
else:
# Load the sklearn pipeline.
fitted_model = joblib.load(model_path)
if hasattr(fitted_model, "get_lookback"):
lookback = fitted_model.get_lookback()
df_all = do_rolling_forecast_with_lookback(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
X_lookback_df.to_pandas_dataframe()[-lookback:],
y_lookback_df.to_pandas_dataframe().values.T[0][-lookback:],
freq,
)
else:
df_all = do_rolling_forecast(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
freq,
)
print(df_all)
print("target values:::")
print(df_all[target_column_name])
print("predicted values:::")
print(df_all["predicted"])
# Use the AutoML scoring module
regression_metrics = list(constants.REGRESSION_SCALAR_SET)
y_test = np.array(df_all[target_column_name])
y_pred = np.array(df_all["predicted"])
scores = scoring.score_regression(y_test, y_pred, regression_metrics)
print("scores:")
print(scores)
for key, value in scores.items():
run.log(key, value)
print("Simple forecasting model")
rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all["predicted"]))
print("[Test Data] \nRoot Mean squared error: %.2f" % rmse)
mae = mean_absolute_error(df_all[target_column_name], df_all["predicted"])
print("mean_absolute_error score: %.2f" % mae)
print("MAPE: %.2f" % MAPE(df_all[target_column_name], df_all["predicted"]))
run.log("rmse", rmse)
run.log("mae", mae)

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-bike-share
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,6 +1,6 @@
import argparse import argparse
from azureml.core import Dataset, Run from azureml.core import Dataset, Run
import joblib from sklearn.externals import joblib
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument( parser.add_argument(
@@ -36,18 +36,18 @@ y_test_df = (
fitted_model = joblib.load("model.pkl") fitted_model = joblib.load("model.pkl")
X_rf = fitted_model.rolling_forecast(X_test_df, y_test_df.values, step=1) y_pred, X_trans = fitted_model.rolling_evaluation(X_test_df, y_test_df.values)
# Add predictions, actuals, and horizon relative to rolling origin to the test feature data # Add predictions, actuals, and horizon relative to rolling origin to the test feature data
assign_dict = { assign_dict = {
fitted_model.forecast_origin_column_name: "forecast_origin", "horizon_origin": X_trans["horizon_origin"].values,
fitted_model.forecast_column_name: "predicted", "predicted": y_pred,
fitted_model.actual_column_name: target_column_name, target_column_name: y_test_df[target_column_name].values,
} }
X_rf.rename(columns=assign_dict, inplace=True) df_all = X_test_df.assign(**assign_dict)
file_name = "outputs/predictions.csv" file_name = "outputs/predictions.csv"
export_csv = X_rf.to_csv(file_name, header=True) export_csv = df_all.to_csv(file_name, header=True)
# Upload the predictions into artifacts # Upload the predictions into artifacts
run.upload_file(name=file_name, path_or_stream=file_name) run.upload_file(name=file_name, path_or_stream=file_name)

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk

View File

@@ -6,7 +6,7 @@ compute instance.
import argparse import argparse
from azureml.core import Dataset, Run from azureml.core import Dataset, Run
import joblib from sklearn.externals import joblib
from pandas.tseries.frequencies import to_offset from pandas.tseries.frequencies import to_offset
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-function
dependencies:
- pip:
- azureml-sdk

View File

@@ -79,7 +79,9 @@ def get_result_df(remote_run):
if "goal" in run.properties: if "goal" in run.properties:
goal_minimize = run.properties["goal"].split("_")[-1] == "min" goal_minimize = run.properties["goal"].split("_")[-1] == "min"
summary_df = summary_df.T.sort_values("Score", ascending=goal_minimize) summary_df = summary_df.T.sort_values(
"Score", ascending=goal_minimize
).drop_duplicates(["run_algorithm"])
summary_df = summary_df.set_index("run_algorithm") summary_df = summary_df.set_index("run_algorithm")
return summary_df return summary_df
@@ -103,8 +105,13 @@ def run_inference(
train_run.download_file( train_run.download_file(
"outputs/{}".format(model_base_name), "inference/{}".format(model_base_name) "outputs/{}".format(model_base_name), "inference/{}".format(model_base_name)
) )
train_run.download_file("outputs/conda_env_v_1_0_0.yml", "inference/condafile.yml")
inference_env = train_run.get_environment() inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path="inference/condafile.yml"
)
est = Estimator( est = Estimator(
source_directory=script_folder, source_directory=script_folder,

View File

@@ -4,7 +4,8 @@ import os
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import joblib from pandas.tseries.frequencies import to_offset
from sklearn.externals import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.automl.runtime.shared.score import scoring, constants from azureml.automl.runtime.shared.score import scoring, constants
@@ -18,8 +19,219 @@ except ImportError:
_torch_present = False _torch_present = False
def map_location_cuda(storage, loc): def align_outputs(
return storage.cuda() y_predicted,
X_trans,
X_test,
y_test,
predicted_column_name="predicted",
horizon_colname="horizon_origin",
):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if horizon_colname in X_trans:
df_fcst = pd.DataFrame(
{
predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname],
}
)
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns="index")
together = df_fcst.merge(X_test_full, how="right")
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[
together[[target_column_name, predicted_column_name]].notnull().all(axis=1)
]
return clean
def do_rolling_forecast_with_lookback(
fitted_model, X_test, y_test, max_horizon, X_lookback, y_lookback, freq="D"
):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
print("Using lookback of size: ", y_lookback.size)
df_list = []
origin_time = X_test[time_column_name].min()
X = X_lookback.append(X_test)
y = np.concatenate((y_lookback, y_test), axis=0)
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X[time_column_name] < horizon_time
X_test_expand = X[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
# y_fcst, X_trans = y_query_expand, X_test_expand
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within
# the current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X[test_roll_wind],
y[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq="D"):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X_test[time_column_name] < horizon_time
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X_test[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y_test[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X_test)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def APE(actual, pred): def APE(actual, pred):
@@ -42,6 +254,10 @@ def MAPE(actual, pred):
return np.mean(APE(actual_safe, pred_safe)) return np.mean(APE(actual_safe, pred_safe))
def map_location_cuda(storage, loc):
return storage.cuda()
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument( parser.add_argument(
"--max_horizon", "--max_horizon",
@@ -87,6 +303,7 @@ print(model_path)
run = Run.get_context() run = Run.get_context()
# get input dataset by name # get input dataset by name
test_dataset = run.input_datasets["test_data"] test_dataset = run.input_datasets["test_data"]
lookback_dataset = run.input_datasets["lookback_data"]
grain_column_names = [] grain_column_names = []
@@ -95,8 +312,15 @@ df = test_dataset.to_pandas_dataframe()
print("Read df") print("Read df")
print(df) print(df)
X_test_df = df X_test_df = test_dataset.drop_columns(columns=[target_column_name])
y_test = df.pop(target_column_name).to_numpy() y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
y_lookback_df = lookback_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
_, ext = os.path.splitext(model_path) _, ext = os.path.splitext(model_path)
if ext == ".pt": if ext == ".pt":
@@ -112,20 +336,37 @@ else:
# Load the sklearn pipeline. # Load the sklearn pipeline.
fitted_model = joblib.load(model_path) fitted_model = joblib.load(model_path)
X_rf = fitted_model.rolling_forecast(X_test_df, y_test, step=1) if hasattr(fitted_model, "get_lookback"):
assign_dict = { lookback = fitted_model.get_lookback()
fitted_model.forecast_origin_column_name: "forecast_origin", df_all = do_rolling_forecast_with_lookback(
fitted_model.forecast_column_name: "predicted", fitted_model,
fitted_model.actual_column_name: target_column_name, X_test_df.to_pandas_dataframe(),
} y_test_df.to_pandas_dataframe().values.T[0],
X_rf.rename(columns=assign_dict, inplace=True) max_horizon,
X_lookback_df.to_pandas_dataframe()[-lookback:],
y_lookback_df.to_pandas_dataframe().values.T[0][-lookback:],
freq,
)
else:
df_all = do_rolling_forecast(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
freq,
)
print(X_rf.head()) print(df_all)
print("target values:::")
print(df_all[target_column_name])
print("predicted values:::")
print(df_all["predicted"])
# Use the AutoML scoring module # Use the AutoML scoring module
regression_metrics = list(constants.REGRESSION_SCALAR_SET) regression_metrics = list(constants.REGRESSION_SCALAR_SET)
y_test = np.array(X_rf[target_column_name]) y_test = np.array(df_all[target_column_name])
y_pred = np.array(X_rf["predicted"]) y_pred = np.array(df_all["predicted"])
scores = scoring.score_regression(y_test, y_pred, regression_metrics) scores = scoring.score_regression(y_test, y_pred, regression_metrics)
print("scores:") print("scores:")
@@ -135,11 +376,11 @@ for key, value in scores.items():
run.log(key, value) run.log(key, value)
print("Simple forecasting model") print("Simple forecasting model")
rmse = np.sqrt(mean_squared_error(X_rf[target_column_name], X_rf["predicted"])) rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all["predicted"]))
print("[Test Data] \nRoot Mean squared error: %.2f" % rmse) print("[Test Data] \nRoot Mean squared error: %.2f" % rmse)
mae = mean_absolute_error(X_rf[target_column_name], X_rf["predicted"]) mae = mean_absolute_error(df_all[target_column_name], df_all["predicted"])
print("mean_absolute_error score: %.2f" % mae) print("mean_absolute_error score: %.2f" % mae)
print("MAPE: %.2f" % MAPE(X_rf[target_column_name], X_rf["predicted"])) print("MAPE: %.2f" % MAPE(df_all[target_column_name], df_all["predicted"]))
run.log("rmse", rmse) run.log("rmse", rmse)
run.log("mae", mae) run.log("mae", mae)

View File

@@ -0,0 +1,94 @@
---
page_type: sample
languages:
- python
products:
- azure-machine-learning
description: Tutorial showing how to solve a complex machine learning time series forecasting problems at scale by using Azure Automated ML and Hierarchical time series accelerator.
---
## Microsoft Solution Accelerator: Hierachical Time Series Forecasting
In most applications, customers have a need to understand their forecasts at a macro and micro level of the business. Whether that be predicting sales of products at different geographic locations, or understanding the expected workforce demand for different organizations at a company, the ability to train a machine learning model to intelligently forecast on hierarchy data is essential.
This business pattern is common across a wide variety of industries and applicable to many real world use cases. Below are some examples of where the hierarchical time series pattern is useful.
| Industry | Scenario |
|----------------|--------------------------------------------|
| *Restaurant Chain* | Building demand forecasting models across thousands of restaurants and several countries. |
| *Retail Organization* | Building workforce optimization models for thousands of stores. |
| *Retail Organization*| Price optimization models for hundreds of thousands of products available. |
### Technical Summary
A hierarchical time series is a structure in which each of the unique series are arranged into a hierarchy based on dimensions such as geography, or product type. The table below shows an example of data whose unique attributes form a hierarchy. Our hierarchy is defined by the `product type` such as headphones or tablets, the `product category` which splits product types into accessories and devices, and the `region` the products are sold in. The table below demonstrates the first input of each unique series in the hierarchy.
![data-table](./media/data-table.png)
To further visualize this, the leaf levels of the hierarchy contain all the time series with unique combinations of attribute values. Each higher level in the hierarchy will consider one less dimension for defining the time series and will aggregate each set of `child nodes` from the lower level into a `parent node`.
![hierachy-sample](./media/hierarchy-sample-ms.PNG)
> **Note:** If no unique root level exists in the data, Automated Machine Learning will create a node `automl_top_level` for users to train or forecasts totals.
## Prerequisites
To use this solution accelerator, all you need is access to an [Azure subscription](https://azure.microsoft.com/free/) and an [Azure Machine Learning Workspace](https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace) that you'll create below.
A basic understanding of Azure Machine Learning and hierarchical time series concepts will be helpful for understanding the solution. The following resources can help introduce you to these concepts:
1. [Azure Machine Learning Overview](https://azure.microsoft.com/services/machine-learning/)
2. [Azure Machine Learning Tutorials](https://docs.microsoft.com/azure/machine-learning/tutorial-1st-experiment-sdk-setup)
3. [Azure Machine Learning Sample Notebooks on Github](https://github.com/Azure/azureml-examples/)
4. [Forecasting: Principles and Practice, Hierarchical time series](https://otexts.com/fpp2/hts.html)
## Getting started
### 1. Set up the Compute Instance
Please create a [Compute Instance](https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-instance#create) and clone the git repo to your workspace.
### 2. Run the Notebook
Once your environment is set up, go to JupyterLab and run the notebook auto-ml-hierarchical-timeseries.ipynb on Compute Instance you created. It would run through the steps outlined sequentially. By the end, you'll know how to train, score, and make predictions using the hierarchical time series model pattern on Azure Machine Learning.
| Notebook | Description |
|----------------|--------------------------------------------|
| `auto-ml-forecasting-hierarchical-timeseries.ipynb`|Creates a pipeline to train machine learning models for the defined hierarchy and forecast at the desired hierarchy level using Automated ML. |
![Work Flow](./media/workflow.PNG)
## Key Concepts
### Automated Machine Learning
[Automated Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-automated-ml) also referred to as automated ML or AutoML, is the process of automating the time consuming, iterative tasks of machine learning model development. It allows data scientists, analysts, and developers to build ML models with high scale, efficiency, and productivity all while sustaining model quality.
### Pipelines
[Pipelines](https://docs.microsoft.com/azure/machine-learning/concept-ml-pipelines) allow you to create workflows in your machine learning projects. These workflows have a number of benefits including speed, simplicity, repeatability, and modularity.
### ParallelRunStep
[ParallelRunStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.parallel_run_step.parallelrunstep?view=azure-ml-py) enables the parallel training of models and is commonly used for batch inferencing. This [document](https://docs.microsoft.com/azure/machine-learning/how-to-use-parallel-run-step) walks through some of the key concepts around ParallelRunStep.
### Other Concepts
In additional to ParallelRunStep, Pipelines and Automated Machine Learning, you'll also be working with the following concepts including [workspace](https://docs.microsoft.com/azure/machine-learning/concept-workspace), [datasets](https://docs.microsoft.com/azure/machine-learning/concept-data#datasets), [compute targets](https://docs.microsoft.com/azure/machine-learning/concept-compute-target#train), [python script steps](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py), and [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/).
## Contributing
This project welcomes contributions and suggestions. To learn more visit the [contributing](CONTRIBUTING.md) section.
Most contributions require you to agree to a Contributor License Agreement (CLA)
declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-hierarchical-timeseries
dependencies:
- pip:
- azureml-sdk

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

View File

@@ -0,0 +1,3 @@
dependencies:
- pip:
- azureml-contrib-automl-pipeline-steps

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-many-models
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,39 +0,0 @@
from pathlib import Path
from azureml.core import Run
import argparse
import os
def main(args):
output = Path(args.output)
output.mkdir(parents=True, exist_ok=True)
run_context = Run.get_context()
input_path = run_context.input_datasets["train_10_models"]
for file_name in os.listdir(input_path):
input_file = os.path.join(input_path, file_name)
with open(input_file, "r") as f:
content = f.read()
# Apply any data pre-processing techniques here
output_file = os.path.join(output, file_name)
with open(output_file, "w") as f:
f.write(content)
def my_parse_args():
parser = argparse.ArgumentParser("Test")
parser.add_argument("--input", type=str)
parser.add_argument("--output", type=str)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = my_parse_args()
main(args)

View File

@@ -1,37 +0,0 @@
from pathlib import Path
from azureml.core import Run
import argparse
def main(args):
output = Path(args.output)
output.mkdir(parents=True, exist_ok=True)
run_context = Run.get_context()
dataset = run_context.input_datasets["train_10_models"]
df = dataset.to_pandas_dataframe()
# Drop the column "Revenue" from the dataset to avoid information leak as
# "Quantity" = "Revenue" / "Price". Please modify the logic based on your data.
drop_column_name = "Revenue"
if drop_column_name in df.columns:
df.drop(drop_column_name, axis=1, inplace=True)
# Apply any data pre-processing techniques here
df.to_parquet(output / "data_prepared_result.parquet", compression=None)
def my_parse_args():
parser = argparse.ArgumentParser("Test")
parser.add_argument("--input", type=str)
parser.add_argument("--output", type=str)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = my_parse_args()
main(args)

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- pip:
- azureml-sdk

View File

@@ -6,7 +6,7 @@ compute instance.
import argparse import argparse
from azureml.core import Dataset, Run from azureml.core import Dataset, Run
import joblib from sklearn.externals import joblib
from pandas.tseries.frequencies import to_offset from pandas.tseries.frequencies import to_offset
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()

View File

@@ -1,834 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-pipelines/auto-ml-forecasting-pipelines.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<font color=\"red\" size=\"5\"><strong>!Important!</strong> </br>This notebook is outdated and is not supported by the AutoML Team. Please use the supported version ([link](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/pipelines/1h_automl_in_pipeline/automl-forecasting-in-pipeline)).</font>\n",
"</br>\n",
"</br>\n",
"<font color=\"red\" size=\"5\">\n",
"For examples illustrating how to build pipelines with components, please use the following links:</font>\n",
"<ul>\n",
" <li><a href=\"https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/pipelines/1k_demand_forecasting_with_pipeline_components/automl-forecasting-demand-many-models-in-pipeline\">Many Models</a></li>\n",
" <li><a href=\"https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/pipelines/1k_demand_forecasting_with_pipeline_components/automl-forecasting-demand-hierarchical-timeseries-in-pipeline\">Hierarchical Time Series</a></li>\n",
" <li><a href=\"https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-distributed-tcn\">Distributed TCN</a></li>\n",
"</ul>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training and Inferencing AutoML Forecasting Model Using Pipelines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this notebook, we demonstrate how to use piplines to train and inference on AutoML Forecasting model. Two pipelines will be created: one for training AutoML model, and the other is for inference on AutoML model. We'll also demonstrate how to schedule the inference pipeline so you can get inference results periodically (with refreshed test dataset). Make sure you have executed the [configuration notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) before running this notebook. In this notebook you will learn how to:\n",
"\n",
"- Configure AutoML using AutoMLConfig for forecasting tasks using pipeline AutoMLSteps.\n",
"- Create and register an AutoML model using AzureML pipeline.\n",
"- Inference and schdelue the pipeline using registered model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"import os\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.38.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the ws = Workspace.from_config() line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see aka.ms/aml-notebook-auth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"dstor = ws.get_default_datastore()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = \"forecasting-pipeline\"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output[\"Subscription ID\"] = ws.subscription_id\n",
"output[\"Workspace\"] = ws.name\n",
"output[\"Resource Group\"] = ws.resource_group\n",
"output[\"Location\"] = ws.location\n",
"output[\"Run History Name\"] = experiment_name\n",
"pd.set_option(\"display.max_colwidth\", None)\n",
"outputDf = pd.DataFrame(data=output, index=[\"\"])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute \n",
"\n",
"#### Create or Attach existing AmlCompute\n",
"\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"amlcompute_cluster_name = \"forecast-step-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
" print(\"Found existing cluster, use it.\")\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"STANDARD_DS12_V2\", max_nodes=4\n",
" )\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"You are now ready to load the historical orange juice sales data. For demonstration purposes, we extract sales time-series for just a few of the stores. We will load the CSV file into a plain pandas DataFrame; the time column in the CSV is called _WeekStarting_, so it will be specially parsed into the datetime type."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_column_name = \"WeekStarting\"\n",
"train = pd.read_csv(\"oj-train.csv\", parse_dates=[time_column_name])\n",
"\n",
"train.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each row in the DataFrame holds a quantity of weekly sales for an OJ brand at a single store. The data also includes the sales price, a flag indicating if the OJ brand was advertised in the store that week, and some customer demographic information based on the store location. For historical reasons, the data also include the logarithm of the sales quantity. The Dominick's grocery data is commonly used to illustrate econometric modeling techniques where logarithms of quantities are generally preferred. \n",
"\n",
"The task is now to build a time-series model for the _Quantity_ column. It is important to note that this dataset is comprised of many individual time-series - one for each unique combination of _Store_ and _Brand_. To distinguish the individual time-series, we define the **time_series_id_column_names** - the columns whose values determine the boundaries between time-series: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_series_id_column_names = [\"Store\", \"Brand\"]\n",
"nseries = train.groupby(time_series_id_column_names).ngroups\n",
"print(\"Data contains {0} individual time-series.\".format(nseries))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test Splitting\n",
"We now split the data into a training and a testing set for later forecast prediction. The test set will contain the final 4 weeks of observed sales for each time-series. The splits should be stratified by series, so we use a group-by statement on the time series identifier columns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n_test_periods = 4\n",
"\n",
"test = pd.read_csv(\"oj-test.csv\", parse_dates=[time_column_name])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to datastore\n",
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace), is paired with the storage account, which contains the default data store. We will use it to upload the train and test data and create [tabular datasets](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training and testing. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.data.dataset_factory import TabularDatasetFactory\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"train_dataset = TabularDatasetFactory.register_pandas_dataframe(\n",
" train, target=(datastore, \"dataset/\"), name=\"dominicks_OJ_train_pipeline\"\n",
")\n",
"\n",
"test_dataset = TabularDatasetFactory.register_pandas_dataframe(\n",
" test, target=(datastore, \"dataset/\"), name=\"dominicks_OJ_test_pipeline\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modeling\n",
"\n",
"For forecasting tasks, AutoML uses pre-processing and estimation steps that are specific to time-series. AutoML will undertake the following pre-processing steps:\n",
"* Detect time-series sample frequency (e.g. hourly, daily, weekly) and create new records for absent time points to make the series regular. A regular time series has a well-defined frequency and has a value at every sample point in a contiguous time span \n",
"* Impute missing values in the target (via forward-fill) and feature columns (using median column values) \n",
"* Create features based on time series identifiers to enable fixed effects across different series\n",
"* Create time-based features to assist in learning seasonal patterns\n",
"* Encode categorical variables to numeric quantities\n",
"\n",
"In this notebook, AutoML will train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series. If you're looking for training multiple models for different time-series, please see the many-models notebook.\n",
"\n",
"You are almost ready to start an AutoML training job. First, we need to define the target column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_column_name = \"Quantity\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting Parameters\n",
"To define forecasting parameters for your experiment training, you can leverage the ForecastingParameters class. The table below details the forecasting parameter we will be passing into our experiment.\n",
"\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|\n",
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
"|**cv_step_size**|Number of periods between two consecutive cross-validation folds. The default value is \"auto\", in which case AutoMl determines the cross-validation step size automatically, if a validation set is not provided. Or users could specify an integer value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name,\n",
" forecast_horizon=n_test_periods,\n",
" time_series_id_column_names=time_series_id_column_names,\n",
" freq=\"W-THU\", # Set the forecast frequency to be weekly (start on each Thursday),\n",
" cv_step_size=\"auto\",\n",
")\n",
"\n",
"automl_config = AutoMLConfig(\n",
" task=\"forecasting\",\n",
" debug_log=\"automl_oj_sales_errors.log\",\n",
" primary_metric=\"normalized_mean_absolute_error\",\n",
" experiment_timeout_hours=0.25,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
" enable_early_stopping=True,\n",
" n_cross_validations=\"auto\", # Feel free to set to a small integer (>=2) if runtime is an issue.\n",
" verbosity=logging.INFO,\n",
" max_cores_per_iteration=-1,\n",
" forecasting_parameters=forecasting_parameters,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PipelineData, TrainingOutput\n",
"from azureml.pipeline.steps import AutoMLStep\n",
"from azureml.pipeline.core import Pipeline, PipelineParameter\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"\n",
"metrics_output_name = \"metrics_output\"\n",
"best_model_output_name = \"best_model_output\"\n",
"model_file_name = \"model_file\"\n",
"metrics_data_name = \"metrics_data\"\n",
"\n",
"metrics_data = PipelineData(\n",
" name=metrics_data_name,\n",
" datastore=datastore,\n",
" pipeline_output_name=metrics_output_name,\n",
" training_output=TrainingOutput(type=\"Metrics\"),\n",
")\n",
"model_data = PipelineData(\n",
" name=model_file_name,\n",
" datastore=datastore,\n",
" pipeline_output_name=best_model_output_name,\n",
" training_output=TrainingOutput(type=\"Model\"),\n",
")\n",
"\n",
"automl_step = AutoMLStep(\n",
" name=\"automl_module\",\n",
" automl_config=automl_config,\n",
" outputs=[metrics_data, model_data],\n",
" allow_reuse=False,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Model Step"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Run Configuration and Environment\n",
"To have a pipeline step run, we first need an environment to run the jobs. The environment can be build using the following code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"\n",
"conda_run_config.docker.use_docker = True\n",
"\n",
"cd = CondaDependencies.create(\n",
" pip_packages=[\n",
" \"azureml-sdk[automl]\",\n",
" \"applicationinsights\",\n",
" \"azureml-opendatasets\",\n",
" \"azureml-defaults\",\n",
" ],\n",
" conda_packages=[\"numpy==1.19.5\"],\n",
" pin_sdk_version=False,\n",
")\n",
"conda_run_config.environment.python.conda_dependencies = cd\n",
"\n",
"print(\"run config is ready\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Step to register the model.\n",
"The following code generates a step to register the model to the workspace from previous step. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The model name with which to register the trained model in the workspace.\n",
"model_name_str = \"ojmodel\"\n",
"model_name = PipelineParameter(\"model_name\", default_value=model_name_str)\n",
"\n",
"\n",
"register_model_step = PythonScriptStep(\n",
" script_name=\"register_model.py\",\n",
" name=\"register_model\",\n",
" source_directory=\"scripts\",\n",
" allow_reuse=False,\n",
" arguments=[\n",
" \"--model_name\",\n",
" model_name,\n",
" \"--model_path\",\n",
" model_data,\n",
" \"--ds_name\",\n",
" \"dominicks_OJ_train\",\n",
" ],\n",
" inputs=[model_data],\n",
" compute_target=compute_target,\n",
" runconfig=conda_run_config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Build the Pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline = Pipeline(\n",
" description=\"training_pipeline\",\n",
" workspace=ws,\n",
" steps=[automl_step, register_model_step],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit Pipeline Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline_run = experiment.submit(training_pipeline)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get metrics for each runs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_dir = \"train_output\"\n",
"pipeline_output = training_pipeline_run.get_pipeline_output(\"metrics_output\")\n",
"pipeline_output.download(output_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"file_path = os.path.join(output_dir, pipeline_output.path_on_datastore)\n",
"with open(file_path) as f:\n",
" metrics = json.load(f)\n",
"for run_id, metrics in metrics.items():\n",
" print(\"{}: {}\".format(run_id, metrics[\"normalized_root_mean_squared_error\"][0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are several ways to do the inference, for here we will demonstrate how to use the registered model and pipeline to do the inference. (how to register a model https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Inference Pipeline Environment\n",
"To trigger an inference pipeline run, we first need a running environment for run that contains all the appropriate packages for the model unpickling. This environment can be either assess from the training run or using the `yml` file that comes with the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.run import AutoMLRun\n",
"\n",
"for step in training_pipeline_run.get_steps():\n",
" if step.properties.get(\"StepType\") == \"AutoMLStep\":\n",
" automl_run = AutoMLRun(experiment, step.id)\n",
" break\n",
"\n",
"best_run = automl_run.get_best_child()\n",
"inference_env = best_run.get_environment()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After we have the environment for the inference, we could build run config based on this environment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_config = RunConfiguration()\n",
"run_config.environment = inference_env"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Build and submit the inference pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The inference pipeline will create two different format of outputs, 1) a tabular dataset that contains the prediction and 2) an `OutputFileDatasetConfig` that can be used for the sequential pipeline steps."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.data import OutputFileDatasetConfig\n",
"\n",
"output_data = OutputFileDatasetConfig(name=\"prediction_result\")\n",
"\n",
"output_ds_name = \"oj-output\"\n",
"\n",
"inference_step = PythonScriptStep(\n",
" name=\"infer-results\",\n",
" source_directory=\"scripts\",\n",
" script_name=\"infer.py\",\n",
" arguments=[\n",
" \"--model_name\",\n",
" model_name_str,\n",
" \"--ouput_dataset_name\",\n",
" output_ds_name,\n",
" \"--test_dataset_name\",\n",
" test_dataset.name,\n",
" \"--target_column_name\",\n",
" target_column_name,\n",
" \"--output_path\",\n",
" output_data,\n",
" ],\n",
" compute_target=compute_target,\n",
" allow_reuse=False,\n",
" runconfig=run_config,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inference_pipeline = Pipeline(ws, [inference_step])\n",
"inference_run = experiment.submit(inference_pipeline)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inference_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the predicted data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"\n",
"inference_ds = Dataset.get_by_name(ws, output_ds_name)\n",
"inference_df = inference_ds.to_pandas_dataframe()\n",
"inference_df.tail(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Schedule Pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This section is about how to schedule a pipeline for periodically predictions. For more info about pipeline schedule and pipeline endpoint, please follow this [notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inference_published_pipeline = inference_pipeline.publish(\n",
" name=\"OJ Inference Test\", description=\"OJ Inference Test\"\n",
")\n",
"print(\"Newly published pipeline id: {}\".format(inference_published_pipeline.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If `test_dataset` is going to refresh every 4 weeks before Friday 16:00 and we want to predict every 4 weeks (forecast_horizon), we can schedule our pipeline to run every 4 weeks at 16:00 to get daily inference results. You can refresh your test dataset (a newer version will be created) periodically when new data is available (i.e. target column in test dataset would have values in the beginning as context data, and followed by NaNs to be predicted). The inference pipeline will pick up context to further improve the forecast accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# schedule\n",
"\n",
"from azureml.pipeline.core.schedule import ScheduleRecurrence, Schedule\n",
"\n",
"recurrence = ScheduleRecurrence(\n",
" frequency=\"Week\", interval=4, week_days=[\"Friday\"], hours=[16], minutes=[0]\n",
")\n",
"\n",
"schedule = Schedule.create(\n",
" workspace=ws,\n",
" name=\"OJ_Inference_schedule\",\n",
" pipeline_id=inference_published_pipeline.id,\n",
" experiment_name=\"Schedule-run-OJ\",\n",
" recurrence=recurrence,\n",
" wait_for_provisioning=True,\n",
" description=\"Schedule Run\",\n",
")\n",
"\n",
"# You may want to make sure that the schedule is provisioned properly\n",
"# before making any further changes to the schedule\n",
"\n",
"print(\"Created schedule with id: {}\".format(schedule.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Optional] Disable schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"schedule.disable()"
]
}
],
"metadata": {
"authors": [
{
"name": "jialiu"
}
],
"category": "tutorial",
"celltoolbar": "Raw Cell Format",
"compute": [
"Remote"
],
"datasets": [
"Orange Juice Sales"
],
"deployment": [
"Azure Container Instance"
],
"exclude_from_index": false,
"framework": [
"Azure ML AutoML"
],
"friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"tags": [
"None"
],
"task": "Forecasting",
"vscode": {
"interpreter": {
"hash": "6bd77c88278e012ef31757c15997a7bea8c943977c43d6909403c00ae11d43ca"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,37 +0,0 @@
WeekStarting,Store,Brand,Advert,Price,Age60,COLLEGE,INCOME,Hincome150,Large HH,Minorities,WorkingWoman,SSTRDIST,SSTRVOL,CPDIST5,CPWVOL5
1992-09-10,2,dominicks,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-10,2,minute.maid,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-10,2,tropicana,0,2.64,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-10,5,dominicks,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-10,5,minute.maid,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-10,5,tropicana,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-10,8,dominicks,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-10,8,minute.maid,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-10,8,tropicana,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-17,2,dominicks,0,1.77,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-17,2,minute.maid,0,2.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-17,2,tropicana,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-17,5,dominicks,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-17,5,minute.maid,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-17,5,tropicana,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-17,8,dominicks,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-17,8,minute.maid,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-17,8,tropicana,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-24,2,dominicks,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-24,2,minute.maid,0,2.67,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-24,2,tropicana,1,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-24,5,dominicks,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-24,5,minute.maid,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-24,5,tropicana,1,2.78,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-24,8,dominicks,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-24,8,minute.maid,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-24,8,tropicana,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-10-01,2,dominicks,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-10-01,2,minute.maid,1,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-10-01,2,tropicana,0,2.97,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-10-01,5,dominicks,0,1.85,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-10-01,5,minute.maid,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-10-01,5,tropicana,0,2.78,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-10-01,8,dominicks,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-10-01,8,minute.maid,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-10-01,8,tropicana,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1 WeekStarting Store Brand Advert Price Age60 COLLEGE INCOME Hincome150 Large HH Minorities WorkingWoman SSTRDIST SSTRVOL CPDIST5 CPWVOL5
2 1992-09-10 2 dominicks 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
3 1992-09-10 2 minute.maid 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
4 1992-09-10 2 tropicana 0 2.64 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
5 1992-09-10 5 dominicks 0 1.85 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
6 1992-09-10 5 minute.maid 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
7 1992-09-10 5 tropicana 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
8 1992-09-10 8 dominicks 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
9 1992-09-10 8 minute.maid 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
10 1992-09-10 8 tropicana 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
11 1992-09-17 2 dominicks 0 1.77 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
12 1992-09-17 2 minute.maid 0 2.83 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
13 1992-09-17 2 tropicana 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
14 1992-09-17 5 dominicks 0 1.85 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
15 1992-09-17 5 minute.maid 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
16 1992-09-17 5 tropicana 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
17 1992-09-17 8 dominicks 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
18 1992-09-17 8 minute.maid 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
19 1992-09-17 8 tropicana 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
20 1992-09-24 2 dominicks 0 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
21 1992-09-24 2 minute.maid 0 2.67 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
22 1992-09-24 2 tropicana 1 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
23 1992-09-24 5 dominicks 0 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
24 1992-09-24 5 minute.maid 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
25 1992-09-24 5 tropicana 1 2.78 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
26 1992-09-24 8 dominicks 0 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
27 1992-09-24 8 minute.maid 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
28 1992-09-24 8 tropicana 1 2.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
29 1992-10-01 2 dominicks 0 1.82 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
30 1992-10-01 2 minute.maid 1 2.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
31 1992-10-01 2 tropicana 0 2.97 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
32 1992-10-01 5 dominicks 0 1.85 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
33 1992-10-01 5 minute.maid 1 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
34 1992-10-01 5 tropicana 0 2.78 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
35 1992-10-01 8 dominicks 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
36 1992-10-01 8 minute.maid 1 2.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
37 1992-10-01 8 tropicana 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947

View File

@@ -1,997 +0,0 @@
WeekStarting,Store,Brand,Quantity,Advert,Price,Age60,COLLEGE,INCOME,Hincome150,Large HH,Minorities,WorkingWoman,SSTRDIST,SSTRVOL,CPDIST5,CPWVOL5
1990-06-14,2,dominicks,10560,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-06-14,2,minute.maid,4480,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-06-14,2,tropicana,8256,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-06-14,5,dominicks,1792,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-14,5,minute.maid,4224,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-14,5,tropicana,5888,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-14,8,dominicks,14336,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-14,8,minute.maid,6080,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-14,8,tropicana,8896,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-21,8,dominicks,6400,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-21,8,minute.maid,51968,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-21,8,tropicana,7296,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-28,5,dominicks,2496,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-28,5,minute.maid,4352,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-28,5,tropicana,6976,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-06-28,8,dominicks,3968,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-28,8,minute.maid,4928,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-06-28,8,tropicana,10368,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-05,5,dominicks,2944,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-05,5,minute.maid,4928,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-05,5,tropicana,6528,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-05,8,dominicks,4352,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-05,8,minute.maid,5312,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-05,8,tropicana,6976,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-12,5,dominicks,1024,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-12,5,minute.maid,31168,1,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-12,5,tropicana,4928,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-12,8,dominicks,3520,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-12,8,minute.maid,39424,1,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-12,8,tropicana,6464,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-19,8,dominicks,6464,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-19,8,minute.maid,5568,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-19,8,tropicana,8192,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-26,2,dominicks,8000,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-07-26,2,minute.maid,4672,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-07-26,2,tropicana,6144,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-07-26,5,dominicks,4224,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-26,5,minute.maid,10048,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-26,5,tropicana,5312,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-07-26,8,dominicks,5952,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-26,8,minute.maid,14592,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-07-26,8,tropicana,7936,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-02,2,dominicks,6848,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-02,2,minute.maid,20160,1,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-02,2,tropicana,3840,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-02,5,dominicks,4544,1,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-02,5,minute.maid,21760,1,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-02,5,tropicana,5120,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-02,8,dominicks,8832,1,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-02,8,minute.maid,22208,1,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-02,8,tropicana,6656,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-09,2,dominicks,2880,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-09,2,minute.maid,2688,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-09,2,tropicana,8000,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-09,5,dominicks,1728,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-09,5,minute.maid,4544,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-09,5,tropicana,7936,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-09,8,dominicks,7232,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-09,8,minute.maid,5760,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-09,8,tropicana,8256,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-16,5,dominicks,1216,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-16,5,minute.maid,52224,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-16,5,tropicana,6080,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-16,8,dominicks,5504,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-16,8,minute.maid,54016,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-16,8,tropicana,5568,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-23,2,dominicks,1600,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-23,2,minute.maid,3008,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-23,2,tropicana,8896,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-23,5,dominicks,1152,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-23,5,minute.maid,3584,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-23,5,tropicana,4160,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-23,8,dominicks,4800,0,2.09,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-23,8,minute.maid,5824,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-23,8,tropicana,7488,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-30,2,dominicks,25344,1,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-30,2,minute.maid,4672,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-30,2,tropicana,7168,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-08-30,5,dominicks,30144,1,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-30,5,minute.maid,5120,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-30,5,tropicana,5888,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-08-30,8,dominicks,52672,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-30,8,minute.maid,6528,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-08-30,8,tropicana,6144,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-06,2,dominicks,10752,0,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-06,2,minute.maid,2752,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-06,2,tropicana,10880,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-06,5,dominicks,8960,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-06,5,minute.maid,4416,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-06,5,tropicana,9536,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-06,8,dominicks,16448,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-06,8,minute.maid,5440,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-06,8,tropicana,11008,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-13,2,dominicks,6656,0,1.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-13,2,minute.maid,26176,1,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-13,2,tropicana,7744,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-13,5,dominicks,8192,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-13,5,minute.maid,30208,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-13,5,tropicana,8320,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-13,8,dominicks,19072,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-13,8,minute.maid,36544,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-13,8,tropicana,5760,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-20,2,dominicks,6592,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-20,2,minute.maid,3712,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-20,2,tropicana,8512,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-09-20,5,dominicks,6528,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-20,5,minute.maid,4160,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-20,5,tropicana,8000,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-20,8,dominicks,13376,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-20,8,minute.maid,3776,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-20,8,tropicana,10112,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-27,5,dominicks,34688,1,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-27,5,minute.maid,4992,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-27,5,tropicana,5824,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-09-27,8,dominicks,61440,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-27,8,minute.maid,5504,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-09-27,8,tropicana,8448,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-04,5,dominicks,4672,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-04,5,minute.maid,13952,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-04,5,tropicana,10624,1,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-04,8,dominicks,13760,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-04,8,minute.maid,12416,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-04,8,tropicana,8448,1,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-11,2,dominicks,1728,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-11,2,minute.maid,30656,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-11,2,tropicana,5504,0,3.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-11,5,dominicks,1088,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-11,5,minute.maid,47680,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-11,5,tropicana,6656,0,3.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-11,8,dominicks,3136,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-11,8,minute.maid,53696,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-11,8,tropicana,7424,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-18,2,dominicks,33792,1,1.24,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-18,2,minute.maid,3840,0,2.98,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-18,2,tropicana,5888,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-18,5,dominicks,69440,1,1.24,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-18,5,minute.maid,7616,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-18,5,tropicana,5184,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-18,8,dominicks,186176,1,1.14,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-18,8,minute.maid,5696,0,2.51,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-18,8,tropicana,5824,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-25,2,dominicks,1920,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-25,2,minute.maid,2816,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-25,2,tropicana,8384,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-10-25,5,dominicks,1280,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-25,5,minute.maid,8896,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-25,5,tropicana,4928,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-10-25,8,dominicks,3712,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-25,8,minute.maid,4864,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-10-25,8,tropicana,6656,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-01,2,dominicks,8960,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-01,2,minute.maid,23104,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-01,2,tropicana,5952,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-01,5,dominicks,35456,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-01,5,minute.maid,28544,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-01,5,tropicana,5888,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-01,8,dominicks,35776,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-01,8,minute.maid,37184,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-01,8,tropicana,6272,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-08,2,dominicks,11392,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-08,2,minute.maid,3392,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-08,2,tropicana,6848,0,3.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-08,5,dominicks,13824,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-08,5,minute.maid,5440,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-08,5,tropicana,5312,0,3.51,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-08,8,dominicks,26880,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-08,8,minute.maid,5504,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-08,8,tropicana,6912,0,3.04,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-15,2,dominicks,28416,0,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-15,2,minute.maid,26304,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-15,2,tropicana,9216,0,3.87,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-15,5,dominicks,14208,0,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-15,5,minute.maid,52416,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-15,5,tropicana,9984,0,3.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-15,8,dominicks,71680,0,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-15,8,minute.maid,51008,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-15,8,tropicana,10496,0,3.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-22,2,dominicks,17152,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-22,2,minute.maid,6336,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-22,2,tropicana,12160,0,2.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-22,5,dominicks,29312,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-22,5,minute.maid,11712,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-22,5,tropicana,8448,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-22,8,dominicks,25088,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-22,8,minute.maid,11072,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-22,8,tropicana,11840,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-29,2,dominicks,26560,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-29,2,minute.maid,9920,0,3.17,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-29,2,tropicana,12672,0,2.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-11-29,5,dominicks,52992,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-29,5,minute.maid,13952,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-29,5,tropicana,10880,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-11-29,8,dominicks,91456,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-29,8,minute.maid,12160,0,2.62,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-11-29,8,tropicana,9664,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-06,2,dominicks,6336,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-06,2,minute.maid,25280,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-06,2,tropicana,6528,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-06,5,dominicks,15680,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-06,5,minute.maid,36160,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-06,5,tropicana,5696,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-06,8,dominicks,23808,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-06,8,minute.maid,30528,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-06,8,tropicana,6272,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-13,2,dominicks,26368,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-13,2,minute.maid,14848,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-13,2,tropicana,6144,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-13,5,dominicks,43520,1,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-13,5,minute.maid,12864,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-13,5,tropicana,5696,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-13,8,dominicks,89856,1,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-13,8,minute.maid,12096,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-13,8,tropicana,7168,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-20,2,dominicks,896,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-20,2,minute.maid,12288,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-20,2,tropicana,21120,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-20,5,dominicks,3904,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-20,5,minute.maid,22208,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-20,5,tropicana,32384,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-20,8,dominicks,12224,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-20,8,minute.maid,16448,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-20,8,tropicana,29504,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-27,2,dominicks,1472,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-27,2,minute.maid,6272,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-27,2,tropicana,12416,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1990-12-27,5,dominicks,896,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-27,5,minute.maid,9984,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-27,5,tropicana,10752,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1990-12-27,8,dominicks,3776,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-27,8,minute.maid,9344,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1990-12-27,8,tropicana,8704,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-03,2,dominicks,1344,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-03,2,minute.maid,9152,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-03,2,tropicana,9472,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-03,5,dominicks,2240,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-03,5,minute.maid,14016,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-03,5,tropicana,6912,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-03,8,dominicks,13824,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-03,8,minute.maid,16128,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-03,8,tropicana,9280,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-10,2,dominicks,111680,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-10,2,minute.maid,4160,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-10,2,tropicana,17920,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-10,5,dominicks,125760,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-10,5,minute.maid,6080,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-10,5,tropicana,13440,0,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-10,8,dominicks,251072,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-10,8,minute.maid,5376,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-10,8,tropicana,12224,0,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-17,2,dominicks,1856,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-17,2,minute.maid,10176,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-17,2,tropicana,9408,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-17,5,dominicks,1408,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-17,5,minute.maid,7808,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-17,5,tropicana,7808,0,2.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-17,8,dominicks,4864,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-17,8,minute.maid,6656,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-17,8,tropicana,10368,0,2.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-24,2,dominicks,5568,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-24,2,minute.maid,29056,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-24,2,tropicana,6272,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-24,5,dominicks,7232,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-24,5,minute.maid,40896,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-24,5,tropicana,5248,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-24,8,dominicks,10176,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-24,8,minute.maid,59712,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-24,8,tropicana,8128,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-31,2,dominicks,32064,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-31,2,minute.maid,7104,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-31,2,tropicana,6912,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-01-31,5,dominicks,41216,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-31,5,minute.maid,6272,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-31,5,tropicana,6208,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-01-31,8,dominicks,105344,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-31,8,minute.maid,9856,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-01-31,8,tropicana,5952,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-07,2,dominicks,4352,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-07,2,minute.maid,7488,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-07,2,tropicana,16768,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-07,5,dominicks,9024,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-07,5,minute.maid,7872,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-07,5,tropicana,21440,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-07,8,dominicks,33600,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-07,8,minute.maid,6720,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-07,8,tropicana,21696,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-14,2,dominicks,704,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-14,2,minute.maid,4224,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-14,2,tropicana,6272,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-14,5,dominicks,1600,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-14,5,minute.maid,6144,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-14,5,tropicana,7360,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-14,8,dominicks,4736,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-14,8,minute.maid,4224,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-14,8,tropicana,7808,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-21,2,dominicks,13760,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-21,2,minute.maid,8960,0,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-21,2,tropicana,7936,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-21,5,dominicks,2496,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-21,5,minute.maid,8448,0,2.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-21,5,tropicana,6720,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-21,8,dominicks,10304,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-21,8,minute.maid,9728,0,2.12,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-21,8,tropicana,8128,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-28,2,dominicks,43328,1,1.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-28,2,minute.maid,22464,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-28,2,tropicana,6144,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-02-28,5,dominicks,6336,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-28,5,minute.maid,18688,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-28,5,tropicana,6656,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-02-28,8,dominicks,5056,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-28,8,minute.maid,40320,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-02-28,8,tropicana,7424,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-07,2,dominicks,57600,1,1.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-07,2,minute.maid,3840,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-07,2,tropicana,7936,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-07,5,dominicks,56384,1,1.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-07,5,minute.maid,6272,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-07,5,tropicana,6016,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-07,8,dominicks,179968,1,0.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-07,8,minute.maid,5120,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-07,8,tropicana,5952,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-14,2,dominicks,704,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-14,2,minute.maid,12992,0,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-14,2,tropicana,7808,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-14,5,dominicks,1600,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-14,5,minute.maid,12096,0,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-14,5,tropicana,6144,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-14,8,dominicks,4992,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-14,8,minute.maid,19264,0,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-14,8,tropicana,7616,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-21,2,dominicks,6016,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-21,2,minute.maid,70144,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-21,2,tropicana,6080,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-21,5,dominicks,2944,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-21,5,minute.maid,73216,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-21,5,tropicana,4928,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-21,8,dominicks,6400,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-21,8,minute.maid,170432,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-21,8,tropicana,5312,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-28,2,dominicks,10368,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-28,2,minute.maid,21248,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-28,2,tropicana,42176,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-03-28,5,dominicks,13504,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-28,5,minute.maid,18944,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-28,5,tropicana,67712,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-03-28,8,dominicks,14912,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-28,8,minute.maid,39680,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-03-28,8,tropicana,161792,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-04,2,dominicks,12608,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-04,2,minute.maid,5696,1,2.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-04,2,tropicana,4928,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-04,5,dominicks,5376,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-04,5,minute.maid,6400,1,2.46,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-04,5,tropicana,8640,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-04,8,dominicks,34624,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-04,8,minute.maid,8128,1,2.17,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-04,8,tropicana,17280,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-11,2,dominicks,6336,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-11,2,minute.maid,7680,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-11,2,tropicana,29504,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-11,5,dominicks,6656,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-11,5,minute.maid,8640,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-11,5,tropicana,35520,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-11,8,dominicks,10368,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-11,8,minute.maid,9088,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-11,8,tropicana,47040,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-18,2,dominicks,140736,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-18,2,minute.maid,6336,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-18,2,tropicana,9984,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-18,5,dominicks,95680,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-18,5,minute.maid,7296,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-18,5,tropicana,9664,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-18,8,dominicks,194880,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-18,8,minute.maid,6720,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-18,8,tropicana,14464,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-25,2,dominicks,960,1,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-25,2,minute.maid,8576,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-25,2,tropicana,35200,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-04-25,5,dominicks,896,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-25,5,minute.maid,12480,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-25,5,tropicana,49088,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-04-25,8,dominicks,5696,1,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-25,8,minute.maid,7552,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-04-25,8,tropicana,52928,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-02,2,dominicks,1216,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-02,2,minute.maid,15104,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-02,2,tropicana,23936,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-02,5,dominicks,1728,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-02,5,minute.maid,14144,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-02,5,tropicana,14912,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-02,8,dominicks,7168,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-02,8,minute.maid,24768,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-02,8,tropicana,21184,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-09,2,dominicks,1664,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-09,2,minute.maid,76480,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-09,2,tropicana,7104,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-09,5,dominicks,1280,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-09,5,minute.maid,88256,1,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-09,5,tropicana,6464,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-09,8,dominicks,2880,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-09,8,minute.maid,183296,1,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-09,8,tropicana,7360,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-16,2,dominicks,4992,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-16,2,minute.maid,5056,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-16,2,tropicana,24512,1,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-16,5,dominicks,5696,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-16,5,minute.maid,6848,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-16,5,tropicana,25024,1,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-16,8,dominicks,12288,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-16,8,minute.maid,8896,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-16,8,tropicana,15744,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-05-23,2,dominicks,27968,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-23,2,minute.maid,4736,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-23,2,tropicana,6336,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-23,5,dominicks,28288,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-23,5,minute.maid,7808,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-23,5,tropicana,6272,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-30,2,dominicks,12160,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-30,2,minute.maid,4480,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-30,2,tropicana,6080,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-05-30,5,dominicks,4864,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-30,5,minute.maid,6272,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-05-30,5,tropicana,5056,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-06,2,dominicks,2240,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-06,2,minute.maid,4032,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-06,2,tropicana,33536,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-06,5,dominicks,2880,0,2.09,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-06,5,minute.maid,6144,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-06,5,tropicana,47616,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-06,8,dominicks,9280,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-06,8,minute.maid,6656,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-06,8,tropicana,46912,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-13,2,dominicks,5504,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-13,2,minute.maid,14784,1,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-13,2,tropicana,13248,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-13,5,dominicks,5760,1,1.41,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-13,5,minute.maid,27776,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-13,5,tropicana,13888,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-13,8,dominicks,25856,1,1.26,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-13,8,minute.maid,35456,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-13,8,tropicana,18240,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-20,2,dominicks,8832,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-20,2,minute.maid,12096,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-20,2,tropicana,6208,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-20,5,dominicks,15040,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-20,5,minute.maid,20800,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-20,5,tropicana,6144,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-20,8,dominicks,19264,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-20,8,minute.maid,17408,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-20,8,tropicana,6464,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-27,2,dominicks,2624,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-27,2,minute.maid,41792,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-27,2,tropicana,10624,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-06-27,5,dominicks,5120,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-27,5,minute.maid,45696,1,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-27,5,tropicana,9344,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-06-27,8,dominicks,6848,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-27,8,minute.maid,75520,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-06-27,8,tropicana,8512,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-04,2,dominicks,10432,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-04,2,minute.maid,10560,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-04,2,tropicana,44672,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-04,5,dominicks,3264,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-04,5,minute.maid,14336,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-04,5,tropicana,32896,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-04,8,dominicks,12928,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-04,8,minute.maid,21632,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-04,8,tropicana,28416,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-11,5,dominicks,9536,1,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-11,5,minute.maid,4928,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-11,5,tropicana,21056,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-11,8,dominicks,44032,1,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-11,8,minute.maid,8384,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-11,8,tropicana,16960,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-18,2,dominicks,8320,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-18,2,minute.maid,4224,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-18,2,tropicana,20096,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-18,5,dominicks,6208,0,1.59,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-18,5,minute.maid,4608,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-18,5,tropicana,15360,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-18,8,dominicks,25408,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-18,8,minute.maid,9920,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-18,8,tropicana,8320,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-25,2,dominicks,6784,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-25,2,minute.maid,2880,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-25,2,tropicana,9152,1,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-07-25,5,dominicks,6592,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-25,5,minute.maid,5248,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-25,5,tropicana,8000,1,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-07-25,8,dominicks,38336,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-25,8,minute.maid,6592,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-07-25,8,tropicana,11136,1,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-01,2,dominicks,60544,1,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-01,2,minute.maid,3968,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-01,2,tropicana,21952,0,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-01,5,dominicks,63552,1,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-01,5,minute.maid,4224,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-01,5,tropicana,21120,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-01,8,dominicks,152384,1,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-01,8,minute.maid,7168,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-01,8,tropicana,27712,0,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-08,2,dominicks,20608,0,0.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-08,2,minute.maid,3712,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-08,2,tropicana,13568,0,2.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-08,5,dominicks,27968,0,0.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-08,5,minute.maid,4288,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-08,5,tropicana,11904,0,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-08,8,dominicks,54464,0,0.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-08,8,minute.maid,6208,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-08,8,tropicana,7744,0,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-15,5,dominicks,21760,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-15,5,minute.maid,16896,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-15,5,tropicana,5056,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-15,8,dominicks,47680,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-15,8,minute.maid,30528,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-15,8,tropicana,5184,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-22,5,dominicks,2688,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-22,5,minute.maid,77184,1,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-22,5,tropicana,4608,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-22,8,dominicks,14720,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-22,8,minute.maid,155840,1,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-22,8,tropicana,6272,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-29,2,dominicks,16064,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-29,2,minute.maid,2816,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-29,2,tropicana,4160,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-08-29,5,dominicks,10432,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-29,5,minute.maid,5184,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-29,5,tropicana,6016,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-08-29,8,dominicks,53248,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-29,8,minute.maid,10752,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-08-29,8,tropicana,7744,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-05,2,dominicks,12480,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-05,2,minute.maid,4288,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-05,2,tropicana,39424,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-05,5,dominicks,9792,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-05,5,minute.maid,5248,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-05,5,tropicana,50752,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-05,8,dominicks,40576,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-05,8,minute.maid,6976,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-05,8,tropicana,53184,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-12,2,dominicks,17024,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-12,2,minute.maid,18240,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-12,2,tropicana,5632,0,3.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-12,5,dominicks,8448,0,1.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-12,5,minute.maid,20672,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-12,5,tropicana,5632,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-12,8,dominicks,25856,0,1.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-12,8,minute.maid,31872,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-12,8,tropicana,6784,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-19,2,dominicks,13440,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-19,2,minute.maid,7360,0,1.95,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-19,2,tropicana,9024,1,2.68,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-19,8,dominicks,24064,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-19,8,minute.maid,5312,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-19,8,tropicana,8000,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-26,2,dominicks,10112,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-26,2,minute.maid,7808,0,1.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-26,2,tropicana,6016,0,3.44,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-09-26,5,dominicks,6912,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-26,5,minute.maid,12352,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-26,5,tropicana,6400,0,3.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-09-26,8,dominicks,15680,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-26,8,minute.maid,33344,0,1.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-09-26,8,tropicana,6592,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-03,2,dominicks,9088,0,1.56,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-03,2,minute.maid,13504,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-03,2,tropicana,7744,0,3.14,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-03,5,dominicks,8256,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-03,5,minute.maid,12032,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-03,5,tropicana,5440,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-03,8,dominicks,16576,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-03,8,minute.maid,13504,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-03,8,tropicana,5248,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-10,2,dominicks,22848,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-10,2,minute.maid,10048,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-10,2,tropicana,6784,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-10,5,dominicks,28672,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-10,5,minute.maid,13440,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-10,5,tropicana,8128,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-10,8,dominicks,49664,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-10,8,minute.maid,13504,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-10,8,tropicana,6592,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-17,2,dominicks,6976,0,1.65,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-17,2,minute.maid,135936,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-17,2,tropicana,6784,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-17,8,dominicks,10752,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-17,8,minute.maid,335808,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-17,8,tropicana,5888,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-24,2,dominicks,4160,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-24,2,minute.maid,5056,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-24,2,tropicana,6272,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-24,5,dominicks,4416,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-24,5,minute.maid,5824,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-24,5,tropicana,7232,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-24,8,dominicks,9792,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-24,8,minute.maid,13120,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-24,8,tropicana,6336,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-31,2,dominicks,3328,0,1.83,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-31,2,minute.maid,27968,0,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-31,2,tropicana,5312,0,3.07,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-10-31,5,dominicks,1856,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-31,5,minute.maid,50112,0,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-31,5,tropicana,7168,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-10-31,8,dominicks,7104,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-31,8,minute.maid,49664,0,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-10-31,8,tropicana,5888,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-07,2,dominicks,12096,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-07,2,minute.maid,4736,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-07,2,tropicana,9216,0,3.11,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-07,5,dominicks,6528,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-07,5,minute.maid,5184,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-07,5,tropicana,7872,0,2.94,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-07,8,dominicks,9216,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-07,8,minute.maid,10880,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-07,8,tropicana,6080,0,2.94,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-14,2,dominicks,6208,0,1.76,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-14,2,minute.maid,7808,0,2.14,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-14,2,tropicana,7296,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-14,5,dominicks,6080,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-14,5,minute.maid,8384,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-14,5,tropicana,7552,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-14,8,dominicks,12608,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-14,8,minute.maid,9984,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-14,8,tropicana,6848,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-21,2,dominicks,3008,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-21,2,minute.maid,12480,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-21,2,tropicana,34240,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-21,5,dominicks,3456,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-21,5,minute.maid,10112,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-21,5,tropicana,69504,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-21,8,dominicks,16448,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-21,8,minute.maid,9216,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-21,8,tropicana,54016,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-28,2,dominicks,19456,1,1.5,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-28,2,minute.maid,9664,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-28,2,tropicana,7168,0,2.64,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-11-28,5,dominicks,25856,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-28,5,minute.maid,8384,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-28,5,tropicana,8960,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-11-28,8,dominicks,27968,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-28,8,minute.maid,7680,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-11-28,8,tropicana,10368,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-05,2,dominicks,16768,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-05,2,minute.maid,7168,0,2.06,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-05,2,tropicana,6080,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-05,5,dominicks,25728,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-05,5,minute.maid,11456,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-05,5,tropicana,6912,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-05,8,dominicks,37824,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-05,8,minute.maid,7296,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-05,8,tropicana,5568,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-12,2,dominicks,13568,1,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-12,2,minute.maid,4480,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-12,2,tropicana,5120,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-12,5,dominicks,23552,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-12,5,minute.maid,5952,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-12,5,tropicana,6656,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-12,8,dominicks,33664,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-12,8,minute.maid,8192,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-12,8,tropicana,4864,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-19,2,dominicks,6080,0,1.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-19,2,minute.maid,5952,0,2.22,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-19,2,tropicana,8320,0,2.74,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-19,5,dominicks,2944,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-19,5,minute.maid,8512,0,2.26,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-19,5,tropicana,8192,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-19,8,dominicks,17728,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-19,8,minute.maid,6080,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-19,8,tropicana,7232,0,2.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-26,2,dominicks,10432,1,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-26,2,minute.maid,21696,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-26,2,tropicana,17728,0,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1991-12-26,5,dominicks,5888,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-26,5,minute.maid,27968,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-26,5,tropicana,13440,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1991-12-26,8,dominicks,25088,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-26,8,minute.maid,15040,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1991-12-26,8,tropicana,15232,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-02,2,dominicks,11712,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-02,2,minute.maid,12032,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-02,2,tropicana,13120,0,2.35,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-02,5,dominicks,6848,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-02,5,minute.maid,24000,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-02,5,tropicana,12160,0,2.39,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-02,8,dominicks,13184,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-02,8,minute.maid,9472,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-02,8,tropicana,47040,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-09,2,dominicks,4032,0,1.76,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-09,2,minute.maid,7040,0,2.12,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-09,2,tropicana,13120,0,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-09,5,dominicks,1792,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-09,5,minute.maid,6848,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-09,5,tropicana,11840,0,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-09,8,dominicks,3136,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-09,8,minute.maid,5888,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-09,8,tropicana,9280,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-16,2,dominicks,6336,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-16,2,minute.maid,10240,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-16,2,tropicana,9792,0,2.43,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-16,5,dominicks,5248,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-16,5,minute.maid,15104,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-16,5,tropicana,8640,0,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-16,8,dominicks,5696,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-16,8,minute.maid,14336,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-16,8,tropicana,6720,0,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-23,2,dominicks,13632,0,1.47,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-23,2,minute.maid,6848,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-23,2,tropicana,3520,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-23,5,dominicks,16768,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-23,5,minute.maid,11392,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-23,5,tropicana,5888,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-23,8,dominicks,19008,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-23,8,minute.maid,11712,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-23,8,tropicana,5056,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-30,2,dominicks,45120,0,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-30,2,minute.maid,3968,0,2.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-30,2,tropicana,5504,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-01-30,5,dominicks,52160,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-30,5,minute.maid,5824,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-30,5,tropicana,7424,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-01-30,8,dominicks,121664,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-30,8,minute.maid,7936,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-01-30,8,tropicana,6080,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-06,2,dominicks,9984,0,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-06,2,minute.maid,5888,0,2.26,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-06,2,tropicana,6720,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-06,5,dominicks,16640,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-06,5,minute.maid,7488,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-06,5,tropicana,5632,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-06,8,dominicks,38848,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-06,8,minute.maid,5184,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-06,8,tropicana,10496,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-13,2,dominicks,4800,0,1.82,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-13,2,minute.maid,6208,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-13,2,tropicana,20224,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-13,5,dominicks,1344,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-13,5,minute.maid,8320,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-13,5,tropicana,33600,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-13,8,dominicks,6144,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-13,8,minute.maid,7168,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-13,8,tropicana,39040,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-20,2,dominicks,11776,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-20,2,minute.maid,72256,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-20,2,tropicana,5056,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-20,5,dominicks,4608,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-20,5,minute.maid,99904,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-20,5,tropicana,5376,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-20,8,dominicks,13632,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-20,8,minute.maid,216064,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-20,8,tropicana,4480,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-27,2,dominicks,11584,0,1.54,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-27,2,minute.maid,11520,0,2.11,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-27,2,tropicana,43584,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-02-27,5,dominicks,12672,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-27,5,minute.maid,6976,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-27,5,tropicana,54272,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-02-27,8,dominicks,9792,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-27,8,minute.maid,15040,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-02-27,8,tropicana,61760,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-05,2,dominicks,51264,1,1.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-05,2,minute.maid,5824,0,2.35,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-05,2,tropicana,25728,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-05,5,dominicks,48640,1,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-05,5,minute.maid,9984,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-05,5,tropicana,33600,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-05,8,dominicks,86912,1,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-05,8,minute.maid,11840,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-05,8,tropicana,15360,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-12,2,dominicks,14976,0,1.44,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-12,2,minute.maid,19392,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-12,2,tropicana,31808,0,1.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-12,5,dominicks,13248,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-12,5,minute.maid,32832,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-12,5,tropicana,24448,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-12,8,dominicks,24512,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-12,8,minute.maid,25472,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-12,8,tropicana,54976,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-19,2,dominicks,30784,0,1.59,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-19,2,minute.maid,9536,0,2.1,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-19,2,tropicana,20736,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-19,5,dominicks,29248,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-19,5,minute.maid,8128,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-19,5,tropicana,22784,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-19,8,dominicks,58048,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-19,8,minute.maid,16384,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-19,8,tropicana,34368,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-26,2,dominicks,12480,0,1.6,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-26,2,minute.maid,5312,0,2.28,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-26,2,tropicana,15168,0,2.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-03-26,5,dominicks,4608,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-26,5,minute.maid,6464,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-26,5,tropicana,19008,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-03-26,8,dominicks,13952,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-26,8,minute.maid,20480,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-03-26,8,tropicana,10752,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-02,2,dominicks,3264,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-02,2,minute.maid,14528,1,1.9,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-02,2,tropicana,28096,1,2.5,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-02,5,dominicks,3136,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-02,5,minute.maid,36800,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-02,5,tropicana,15808,1,2.5,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-02,8,dominicks,15168,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-02,8,minute.maid,34688,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-02,8,tropicana,20096,1,2.5,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-09,2,dominicks,8768,0,1.48,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-09,2,minute.maid,12416,0,2.12,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-09,2,tropicana,12416,0,2.58,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-09,5,dominicks,13184,0,1.58,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-09,5,minute.maid,12928,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-09,5,tropicana,14144,0,2.5,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-09,8,dominicks,14592,0,1.58,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-09,8,minute.maid,22400,0,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-09,8,tropicana,16192,0,2.5,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-16,2,dominicks,70848,1,1.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-16,2,minute.maid,5376,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-16,2,tropicana,5376,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-16,5,dominicks,67712,1,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-16,5,minute.maid,7424,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-16,5,tropicana,9600,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-16,8,dominicks,145088,1,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-16,8,minute.maid,7808,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-16,8,tropicana,6528,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-23,2,dominicks,18560,0,1.42,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-23,2,minute.maid,19008,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-23,2,tropicana,9792,0,2.67,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-23,5,dominicks,18880,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-23,5,minute.maid,34176,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-23,5,tropicana,10112,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-23,8,dominicks,43712,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-23,8,minute.maid,48064,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-23,8,tropicana,8320,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-30,2,dominicks,9152,0,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-30,2,minute.maid,3904,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-30,2,tropicana,16960,1,2.39,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-04-30,5,dominicks,6208,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-30,5,minute.maid,4160,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-30,5,tropicana,31872,1,2.24,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-04-30,8,dominicks,20608,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-30,8,minute.maid,7360,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-04-30,8,tropicana,30784,1,2.16,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-07,2,dominicks,9600,0,2.0,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-07,2,minute.maid,6336,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-07,2,tropicana,8320,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-07,5,dominicks,5952,0,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-07,5,minute.maid,5952,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-07,5,tropicana,9280,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-07,8,dominicks,18752,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-07,8,minute.maid,6272,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-07,8,tropicana,18048,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-14,2,dominicks,4800,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-14,2,minute.maid,5440,0,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-14,2,tropicana,6912,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-14,5,dominicks,4160,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-14,5,minute.maid,6528,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-14,5,tropicana,7680,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-14,8,dominicks,20160,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-14,8,minute.maid,6400,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-14,8,tropicana,12864,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-21,2,dominicks,9664,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-21,2,minute.maid,22400,1,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-21,2,tropicana,6976,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-21,5,dominicks,23488,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-21,5,minute.maid,30656,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-21,5,tropicana,8704,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-21,8,dominicks,18688,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-21,8,minute.maid,54592,1,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-21,8,tropicana,7168,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-28,2,dominicks,45568,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-28,2,minute.maid,3968,0,2.84,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-28,2,tropicana,7232,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-05-28,5,dominicks,60480,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-28,5,minute.maid,6656,0,2.66,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-28,5,tropicana,9920,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-05-28,8,dominicks,133824,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-28,8,minute.maid,8128,0,2.39,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-05-28,8,tropicana,9024,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-04,2,dominicks,20992,0,1.74,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-04,2,minute.maid,3264,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-04,2,tropicana,51520,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-04,5,dominicks,20416,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-04,5,minute.maid,4416,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-04,5,tropicana,91968,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-04,8,dominicks,63488,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-04,8,minute.maid,4928,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-04,8,tropicana,84992,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-11,2,dominicks,6592,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-11,2,minute.maid,4352,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-11,2,tropicana,22272,0,2.21,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-11,5,dominicks,6336,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-11,5,minute.maid,5696,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-11,5,tropicana,44096,0,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-11,8,dominicks,71040,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-11,8,minute.maid,5440,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-11,8,tropicana,14144,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-18,2,dominicks,4992,0,2.05,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-18,2,minute.maid,4480,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-18,2,tropicana,46144,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-25,2,dominicks,8064,0,1.24,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-25,2,minute.maid,3840,0,2.52,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-25,2,tropicana,4352,1,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-06-25,5,dominicks,1408,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-25,5,minute.maid,5696,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-25,5,tropicana,7296,1,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-06-25,8,dominicks,15360,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-25,8,minute.maid,5888,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-06-25,8,tropicana,7488,1,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-02,2,dominicks,7360,0,1.61,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-02,2,minute.maid,13312,1,2.0,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-02,2,tropicana,17280,0,2.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-02,5,dominicks,4672,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-02,5,minute.maid,39680,1,2.01,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-02,5,tropicana,12928,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-02,8,dominicks,17728,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-02,8,minute.maid,23872,1,2.02,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-02,8,tropicana,12352,0,2.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-09,2,dominicks,10048,0,1.4,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-09,2,minute.maid,3776,1,2.33,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-09,2,tropicana,5696,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-09,5,dominicks,19520,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-09,5,minute.maid,6208,1,2.19,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-09,5,tropicana,6848,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-09,8,dominicks,24256,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-09,8,minute.maid,6848,1,2.19,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-09,8,tropicana,5696,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-16,2,dominicks,10112,0,1.91,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-16,2,minute.maid,4800,0,2.89,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-16,2,tropicana,6848,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-16,5,dominicks,7872,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-16,5,minute.maid,7872,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-16,5,tropicana,8064,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-16,8,dominicks,19968,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-16,8,minute.maid,8192,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-16,8,tropicana,7680,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-23,2,dominicks,9152,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-23,2,minute.maid,24960,1,2.29,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-23,2,tropicana,4416,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-23,5,dominicks,5184,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-23,5,minute.maid,54528,1,2.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-23,5,tropicana,4992,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-23,8,dominicks,15936,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-23,8,minute.maid,55040,1,2.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-23,8,tropicana,5440,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-30,2,dominicks,36288,1,1.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-30,2,minute.maid,4544,0,2.86,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-30,2,tropicana,4672,0,3.16,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-07-30,5,dominicks,42240,1,1.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-30,5,minute.maid,6400,0,2.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-30,5,tropicana,7360,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-07-30,8,dominicks,76352,1,1.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-30,8,minute.maid,6528,0,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-07-30,8,tropicana,5632,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-06,2,dominicks,3776,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-06,2,minute.maid,3968,1,2.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-06,2,tropicana,7168,1,3.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-06,5,dominicks,6592,1,1.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-06,5,minute.maid,5888,1,2.65,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-06,5,tropicana,8384,1,2.89,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-06,8,dominicks,17408,1,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-06,8,minute.maid,6208,1,2.45,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-06,8,tropicana,8960,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-13,2,dominicks,3328,0,1.97,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-13,2,minute.maid,49600,1,1.99,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-13,2,tropicana,5056,0,3.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-13,5,dominicks,2112,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-13,5,minute.maid,56384,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-13,5,tropicana,8832,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-13,8,dominicks,17536,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-13,8,minute.maid,94720,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-13,8,tropicana,6080,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-20,2,dominicks,13824,0,1.36,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-20,2,minute.maid,23488,1,1.94,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-20,2,tropicana,13376,1,2.79,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-20,5,dominicks,21248,0,1.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-20,5,minute.maid,27072,1,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-20,5,tropicana,17728,1,2.79,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-20,8,dominicks,31232,0,1.59,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-20,8,minute.maid,55552,1,1.99,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-20,8,tropicana,8576,1,2.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-27,2,dominicks,9024,0,1.19,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-27,2,minute.maid,19008,0,1.69,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-27,2,tropicana,8128,0,2.75,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-08-27,5,dominicks,1856,0,1.29,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-27,5,minute.maid,3840,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-27,5,tropicana,9600,0,2.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-08-27,8,dominicks,19200,0,1.29,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-27,8,minute.maid,18688,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-08-27,8,tropicana,8000,0,2.89,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-03,2,dominicks,2048,0,2.09,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-03,2,minute.maid,11584,0,1.81,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-03,2,tropicana,19456,1,2.49,0.232864734,0.248934934,10.55320518,0.463887065,0.103953406,0.114279949,0.303585347,2.110122129,1.142857143,1.927279669,0.37692661299999997
1992-09-03,5,dominicks,3712,0,1.99,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-03,5,minute.maid,6144,0,1.69,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-03,5,tropicana,25664,1,2.49,0.117368032,0.32122573,10.92237097,0.535883355,0.103091585,0.053875277,0.410568032,3.801997814,0.681818182,1.600573425,0.736306837
1992-09-03,8,dominicks,12800,0,1.79,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-03,8,minute.maid,14656,0,1.69,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1992-09-03,8,tropicana,21760,1,2.49,0.252394035,0.095173274,10.59700966,0.054227156,0.131749698,0.035243328,0.283074736,2.636332801,1.5,2.905384316,0.641015947
1 WeekStarting Store Brand Quantity Advert Price Age60 COLLEGE INCOME Hincome150 Large HH Minorities WorkingWoman SSTRDIST SSTRVOL CPDIST5 CPWVOL5
2 1990-06-14 2 dominicks 10560 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
3 1990-06-14 2 minute.maid 4480 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
4 1990-06-14 2 tropicana 8256 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
5 1990-06-14 5 dominicks 1792 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
6 1990-06-14 5 minute.maid 4224 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
7 1990-06-14 5 tropicana 5888 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
8 1990-06-14 8 dominicks 14336 1 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
9 1990-06-14 8 minute.maid 6080 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
10 1990-06-14 8 tropicana 8896 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
11 1990-06-21 8 dominicks 6400 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
12 1990-06-21 8 minute.maid 51968 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
13 1990-06-21 8 tropicana 7296 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
14 1990-06-28 5 dominicks 2496 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
15 1990-06-28 5 minute.maid 4352 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
16 1990-06-28 5 tropicana 6976 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
17 1990-06-28 8 dominicks 3968 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
18 1990-06-28 8 minute.maid 4928 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
19 1990-06-28 8 tropicana 10368 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
20 1990-07-05 5 dominicks 2944 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
21 1990-07-05 5 minute.maid 4928 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
22 1990-07-05 5 tropicana 6528 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
23 1990-07-05 8 dominicks 4352 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
24 1990-07-05 8 minute.maid 5312 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
25 1990-07-05 8 tropicana 6976 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
26 1990-07-12 5 dominicks 1024 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
27 1990-07-12 5 minute.maid 31168 1 2.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
28 1990-07-12 5 tropicana 4928 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
29 1990-07-12 8 dominicks 3520 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
30 1990-07-12 8 minute.maid 39424 1 2.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
31 1990-07-12 8 tropicana 6464 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
32 1990-07-19 8 dominicks 6464 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
33 1990-07-19 8 minute.maid 5568 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
34 1990-07-19 8 tropicana 8192 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
35 1990-07-26 2 dominicks 8000 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
36 1990-07-26 2 minute.maid 4672 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
37 1990-07-26 2 tropicana 6144 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
38 1990-07-26 5 dominicks 4224 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
39 1990-07-26 5 minute.maid 10048 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
40 1990-07-26 5 tropicana 5312 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
41 1990-07-26 8 dominicks 5952 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
42 1990-07-26 8 minute.maid 14592 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
43 1990-07-26 8 tropicana 7936 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
44 1990-08-02 2 dominicks 6848 1 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
45 1990-08-02 2 minute.maid 20160 1 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
46 1990-08-02 2 tropicana 3840 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
47 1990-08-02 5 dominicks 4544 1 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
48 1990-08-02 5 minute.maid 21760 1 2.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
49 1990-08-02 5 tropicana 5120 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
50 1990-08-02 8 dominicks 8832 1 2.09 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
51 1990-08-02 8 minute.maid 22208 1 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
52 1990-08-02 8 tropicana 6656 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
53 1990-08-09 2 dominicks 2880 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
54 1990-08-09 2 minute.maid 2688 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
55 1990-08-09 2 tropicana 8000 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
56 1990-08-09 5 dominicks 1728 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
57 1990-08-09 5 minute.maid 4544 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
58 1990-08-09 5 tropicana 7936 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
59 1990-08-09 8 dominicks 7232 0 2.09 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
60 1990-08-09 8 minute.maid 5760 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
61 1990-08-09 8 tropicana 8256 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
62 1990-08-16 5 dominicks 1216 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
63 1990-08-16 5 minute.maid 52224 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
64 1990-08-16 5 tropicana 6080 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
65 1990-08-16 8 dominicks 5504 0 2.09 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
66 1990-08-16 8 minute.maid 54016 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
67 1990-08-16 8 tropicana 5568 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
68 1990-08-23 2 dominicks 1600 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
69 1990-08-23 2 minute.maid 3008 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
70 1990-08-23 2 tropicana 8896 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
71 1990-08-23 5 dominicks 1152 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
72 1990-08-23 5 minute.maid 3584 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
73 1990-08-23 5 tropicana 4160 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
74 1990-08-23 8 dominicks 4800 0 2.09 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
75 1990-08-23 8 minute.maid 5824 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
76 1990-08-23 8 tropicana 7488 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
77 1990-08-30 2 dominicks 25344 1 1.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
78 1990-08-30 2 minute.maid 4672 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
79 1990-08-30 2 tropicana 7168 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
80 1990-08-30 5 dominicks 30144 1 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
81 1990-08-30 5 minute.maid 5120 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
82 1990-08-30 5 tropicana 5888 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
83 1990-08-30 8 dominicks 52672 1 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
84 1990-08-30 8 minute.maid 6528 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
85 1990-08-30 8 tropicana 6144 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
86 1990-09-06 2 dominicks 10752 0 1.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
87 1990-09-06 2 minute.maid 2752 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
88 1990-09-06 2 tropicana 10880 0 3.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
89 1990-09-06 5 dominicks 8960 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
90 1990-09-06 5 minute.maid 4416 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
91 1990-09-06 5 tropicana 9536 0 3.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
92 1990-09-06 8 dominicks 16448 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
93 1990-09-06 8 minute.maid 5440 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
94 1990-09-06 8 tropicana 11008 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
95 1990-09-13 2 dominicks 6656 0 1.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
96 1990-09-13 2 minute.maid 26176 1 2.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
97 1990-09-13 2 tropicana 7744 0 3.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
98 1990-09-13 5 dominicks 8192 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
99 1990-09-13 5 minute.maid 30208 1 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
100 1990-09-13 5 tropicana 8320 0 3.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
101 1990-09-13 8 dominicks 19072 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
102 1990-09-13 8 minute.maid 36544 1 2.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
103 1990-09-13 8 tropicana 5760 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
104 1990-09-20 2 dominicks 6592 0 1.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
105 1990-09-20 2 minute.maid 3712 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
106 1990-09-20 2 tropicana 8512 0 3.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
107 1990-09-20 5 dominicks 6528 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
108 1990-09-20 5 minute.maid 4160 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
109 1990-09-20 5 tropicana 8000 0 3.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
110 1990-09-20 8 dominicks 13376 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
111 1990-09-20 8 minute.maid 3776 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
112 1990-09-20 8 tropicana 10112 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
113 1990-09-27 5 dominicks 34688 1 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
114 1990-09-27 5 minute.maid 4992 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
115 1990-09-27 5 tropicana 5824 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
116 1990-09-27 8 dominicks 61440 1 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
117 1990-09-27 8 minute.maid 5504 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
118 1990-09-27 8 tropicana 8448 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
119 1990-10-04 5 dominicks 4672 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
120 1990-10-04 5 minute.maid 13952 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
121 1990-10-04 5 tropicana 10624 1 3.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
122 1990-10-04 8 dominicks 13760 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
123 1990-10-04 8 minute.maid 12416 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
124 1990-10-04 8 tropicana 8448 1 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
125 1990-10-11 2 dominicks 1728 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
126 1990-10-11 2 minute.maid 30656 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
127 1990-10-11 2 tropicana 5504 0 3.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
128 1990-10-11 5 dominicks 1088 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
129 1990-10-11 5 minute.maid 47680 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
130 1990-10-11 5 tropicana 6656 0 3.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
131 1990-10-11 8 dominicks 3136 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
132 1990-10-11 8 minute.maid 53696 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
133 1990-10-11 8 tropicana 7424 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
134 1990-10-18 2 dominicks 33792 1 1.24 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
135 1990-10-18 2 minute.maid 3840 0 2.98 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
136 1990-10-18 2 tropicana 5888 0 3.56 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
137 1990-10-18 5 dominicks 69440 1 1.24 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
138 1990-10-18 5 minute.maid 7616 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
139 1990-10-18 5 tropicana 5184 0 3.51 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
140 1990-10-18 8 dominicks 186176 1 1.14 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
141 1990-10-18 8 minute.maid 5696 0 2.51 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
142 1990-10-18 8 tropicana 5824 0 3.04 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
143 1990-10-25 2 dominicks 1920 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
144 1990-10-25 2 minute.maid 2816 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
145 1990-10-25 2 tropicana 8384 0 3.56 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
146 1990-10-25 5 dominicks 1280 0 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
147 1990-10-25 5 minute.maid 8896 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
148 1990-10-25 5 tropicana 4928 0 3.51 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
149 1990-10-25 8 dominicks 3712 0 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
150 1990-10-25 8 minute.maid 4864 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
151 1990-10-25 8 tropicana 6656 0 3.04 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
152 1990-11-01 2 dominicks 8960 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
153 1990-11-01 2 minute.maid 23104 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
154 1990-11-01 2 tropicana 5952 0 3.56 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
155 1990-11-01 5 dominicks 35456 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
156 1990-11-01 5 minute.maid 28544 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
157 1990-11-01 5 tropicana 5888 0 3.51 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
158 1990-11-01 8 dominicks 35776 1 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
159 1990-11-01 8 minute.maid 37184 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
160 1990-11-01 8 tropicana 6272 0 3.04 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
161 1990-11-08 2 dominicks 11392 0 1.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
162 1990-11-08 2 minute.maid 3392 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
163 1990-11-08 2 tropicana 6848 0 3.56 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
164 1990-11-08 5 dominicks 13824 0 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
165 1990-11-08 5 minute.maid 5440 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
166 1990-11-08 5 tropicana 5312 0 3.51 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
167 1990-11-08 8 dominicks 26880 0 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
168 1990-11-08 8 minute.maid 5504 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
169 1990-11-08 8 tropicana 6912 0 3.04 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
170 1990-11-15 2 dominicks 28416 0 0.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
171 1990-11-15 2 minute.maid 26304 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
172 1990-11-15 2 tropicana 9216 0 3.87 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
173 1990-11-15 5 dominicks 14208 0 0.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
174 1990-11-15 5 minute.maid 52416 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
175 1990-11-15 5 tropicana 9984 0 3.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
176 1990-11-15 8 dominicks 71680 0 0.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
177 1990-11-15 8 minute.maid 51008 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
178 1990-11-15 8 tropicana 10496 0 3.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
179 1990-11-22 2 dominicks 17152 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
180 1990-11-22 2 minute.maid 6336 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
181 1990-11-22 2 tropicana 12160 0 2.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
182 1990-11-22 5 dominicks 29312 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
183 1990-11-22 5 minute.maid 11712 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
184 1990-11-22 5 tropicana 8448 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
185 1990-11-22 8 dominicks 25088 1 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
186 1990-11-22 8 minute.maid 11072 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
187 1990-11-22 8 tropicana 11840 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
188 1990-11-29 2 dominicks 26560 1 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
189 1990-11-29 2 minute.maid 9920 0 3.17 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
190 1990-11-29 2 tropicana 12672 0 2.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
191 1990-11-29 5 dominicks 52992 1 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
192 1990-11-29 5 minute.maid 13952 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
193 1990-11-29 5 tropicana 10880 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
194 1990-11-29 8 dominicks 91456 1 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
195 1990-11-29 8 minute.maid 12160 0 2.62 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
196 1990-11-29 8 tropicana 9664 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
197 1990-12-06 2 dominicks 6336 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
198 1990-12-06 2 minute.maid 25280 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
199 1990-12-06 2 tropicana 6528 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
200 1990-12-06 5 dominicks 15680 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
201 1990-12-06 5 minute.maid 36160 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
202 1990-12-06 5 tropicana 5696 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
203 1990-12-06 8 dominicks 23808 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
204 1990-12-06 8 minute.maid 30528 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
205 1990-12-06 8 tropicana 6272 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
206 1990-12-13 2 dominicks 26368 1 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
207 1990-12-13 2 minute.maid 14848 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
208 1990-12-13 2 tropicana 6144 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
209 1990-12-13 5 dominicks 43520 1 1.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
210 1990-12-13 5 minute.maid 12864 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
211 1990-12-13 5 tropicana 5696 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
212 1990-12-13 8 dominicks 89856 1 1.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
213 1990-12-13 8 minute.maid 12096 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
214 1990-12-13 8 tropicana 7168 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
215 1990-12-20 2 dominicks 896 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
216 1990-12-20 2 minute.maid 12288 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
217 1990-12-20 2 tropicana 21120 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
218 1990-12-20 5 dominicks 3904 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
219 1990-12-20 5 minute.maid 22208 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
220 1990-12-20 5 tropicana 32384 0 2.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
221 1990-12-20 8 dominicks 12224 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
222 1990-12-20 8 minute.maid 16448 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
223 1990-12-20 8 tropicana 29504 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
224 1990-12-27 2 dominicks 1472 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
225 1990-12-27 2 minute.maid 6272 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
226 1990-12-27 2 tropicana 12416 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
227 1990-12-27 5 dominicks 896 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
228 1990-12-27 5 minute.maid 9984 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
229 1990-12-27 5 tropicana 10752 0 2.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
230 1990-12-27 8 dominicks 3776 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
231 1990-12-27 8 minute.maid 9344 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
232 1990-12-27 8 tropicana 8704 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
233 1991-01-03 2 dominicks 1344 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
234 1991-01-03 2 minute.maid 9152 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
235 1991-01-03 2 tropicana 9472 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
236 1991-01-03 5 dominicks 2240 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
237 1991-01-03 5 minute.maid 14016 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
238 1991-01-03 5 tropicana 6912 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
239 1991-01-03 8 dominicks 13824 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
240 1991-01-03 8 minute.maid 16128 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
241 1991-01-03 8 tropicana 9280 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
242 1991-01-10 2 dominicks 111680 1 0.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
243 1991-01-10 2 minute.maid 4160 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
244 1991-01-10 2 tropicana 17920 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
245 1991-01-10 5 dominicks 125760 1 0.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
246 1991-01-10 5 minute.maid 6080 0 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
247 1991-01-10 5 tropicana 13440 0 2.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
248 1991-01-10 8 dominicks 251072 1 0.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
249 1991-01-10 8 minute.maid 5376 0 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
250 1991-01-10 8 tropicana 12224 0 2.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
251 1991-01-17 2 dominicks 1856 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
252 1991-01-17 2 minute.maid 10176 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
253 1991-01-17 2 tropicana 9408 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
254 1991-01-17 5 dominicks 1408 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
255 1991-01-17 5 minute.maid 7808 0 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
256 1991-01-17 5 tropicana 7808 0 2.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
257 1991-01-17 8 dominicks 4864 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
258 1991-01-17 8 minute.maid 6656 0 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
259 1991-01-17 8 tropicana 10368 0 2.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
260 1991-01-24 2 dominicks 5568 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
261 1991-01-24 2 minute.maid 29056 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
262 1991-01-24 2 tropicana 6272 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
263 1991-01-24 5 dominicks 7232 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
264 1991-01-24 5 minute.maid 40896 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
265 1991-01-24 5 tropicana 5248 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
266 1991-01-24 8 dominicks 10176 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
267 1991-01-24 8 minute.maid 59712 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
268 1991-01-24 8 tropicana 8128 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
269 1991-01-31 2 dominicks 32064 1 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
270 1991-01-31 2 minute.maid 7104 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
271 1991-01-31 2 tropicana 6912 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
272 1991-01-31 5 dominicks 41216 1 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
273 1991-01-31 5 minute.maid 6272 0 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
274 1991-01-31 5 tropicana 6208 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
275 1991-01-31 8 dominicks 105344 1 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
276 1991-01-31 8 minute.maid 9856 0 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
277 1991-01-31 8 tropicana 5952 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
278 1991-02-07 2 dominicks 4352 0 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
279 1991-02-07 2 minute.maid 7488 0 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
280 1991-02-07 2 tropicana 16768 0 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
281 1991-02-07 5 dominicks 9024 0 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
282 1991-02-07 5 minute.maid 7872 0 2.41 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
283 1991-02-07 5 tropicana 21440 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
284 1991-02-07 8 dominicks 33600 0 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
285 1991-02-07 8 minute.maid 6720 0 2.12 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
286 1991-02-07 8 tropicana 21696 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
287 1991-02-14 2 dominicks 704 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
288 1991-02-14 2 minute.maid 4224 0 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
289 1991-02-14 2 tropicana 6272 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
290 1991-02-14 5 dominicks 1600 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
291 1991-02-14 5 minute.maid 6144 0 2.41 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
292 1991-02-14 5 tropicana 7360 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
293 1991-02-14 8 dominicks 4736 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
294 1991-02-14 8 minute.maid 4224 0 2.12 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
295 1991-02-14 8 tropicana 7808 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
296 1991-02-21 2 dominicks 13760 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
297 1991-02-21 2 minute.maid 8960 0 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
298 1991-02-21 2 tropicana 7936 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
299 1991-02-21 5 dominicks 2496 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
300 1991-02-21 5 minute.maid 8448 0 2.41 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
301 1991-02-21 5 tropicana 6720 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
302 1991-02-21 8 dominicks 10304 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
303 1991-02-21 8 minute.maid 9728 0 2.12 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
304 1991-02-21 8 tropicana 8128 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
305 1991-02-28 2 dominicks 43328 1 1.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
306 1991-02-28 2 minute.maid 22464 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
307 1991-02-28 2 tropicana 6144 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
308 1991-02-28 5 dominicks 6336 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
309 1991-02-28 5 minute.maid 18688 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
310 1991-02-28 5 tropicana 6656 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
311 1991-02-28 8 dominicks 5056 1 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
312 1991-02-28 8 minute.maid 40320 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
313 1991-02-28 8 tropicana 7424 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
314 1991-03-07 2 dominicks 57600 1 1.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
315 1991-03-07 2 minute.maid 3840 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
316 1991-03-07 2 tropicana 7936 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
317 1991-03-07 5 dominicks 56384 1 1.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
318 1991-03-07 5 minute.maid 6272 0 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
319 1991-03-07 5 tropicana 6016 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
320 1991-03-07 8 dominicks 179968 1 0.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
321 1991-03-07 8 minute.maid 5120 0 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
322 1991-03-07 8 tropicana 5952 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
323 1991-03-14 2 dominicks 704 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
324 1991-03-14 2 minute.maid 12992 0 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
325 1991-03-14 2 tropicana 7808 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
326 1991-03-14 5 dominicks 1600 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
327 1991-03-14 5 minute.maid 12096 0 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
328 1991-03-14 5 tropicana 6144 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
329 1991-03-14 8 dominicks 4992 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
330 1991-03-14 8 minute.maid 19264 0 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
331 1991-03-14 8 tropicana 7616 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
332 1991-03-21 2 dominicks 6016 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
333 1991-03-21 2 minute.maid 70144 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
334 1991-03-21 2 tropicana 6080 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
335 1991-03-21 5 dominicks 2944 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
336 1991-03-21 5 minute.maid 73216 1 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
337 1991-03-21 5 tropicana 4928 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
338 1991-03-21 8 dominicks 6400 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
339 1991-03-21 8 minute.maid 170432 1 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
340 1991-03-21 8 tropicana 5312 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
341 1991-03-28 2 dominicks 10368 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
342 1991-03-28 2 minute.maid 21248 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
343 1991-03-28 2 tropicana 42176 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
344 1991-03-28 5 dominicks 13504 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
345 1991-03-28 5 minute.maid 18944 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
346 1991-03-28 5 tropicana 67712 1 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
347 1991-03-28 8 dominicks 14912 1 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
348 1991-03-28 8 minute.maid 39680 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
349 1991-03-28 8 tropicana 161792 1 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
350 1991-04-04 2 dominicks 12608 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
351 1991-04-04 2 minute.maid 5696 1 2.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
352 1991-04-04 2 tropicana 4928 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
353 1991-04-04 5 dominicks 5376 0 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
354 1991-04-04 5 minute.maid 6400 1 2.46 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
355 1991-04-04 5 tropicana 8640 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
356 1991-04-04 8 dominicks 34624 0 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
357 1991-04-04 8 minute.maid 8128 1 2.17 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
358 1991-04-04 8 tropicana 17280 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
359 1991-04-11 2 dominicks 6336 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
360 1991-04-11 2 minute.maid 7680 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
361 1991-04-11 2 tropicana 29504 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
362 1991-04-11 5 dominicks 6656 0 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
363 1991-04-11 5 minute.maid 8640 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
364 1991-04-11 5 tropicana 35520 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
365 1991-04-11 8 dominicks 10368 0 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
366 1991-04-11 8 minute.maid 9088 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
367 1991-04-11 8 tropicana 47040 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
368 1991-04-18 2 dominicks 140736 1 0.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
369 1991-04-18 2 minute.maid 6336 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
370 1991-04-18 2 tropicana 9984 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
371 1991-04-18 5 dominicks 95680 1 0.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
372 1991-04-18 5 minute.maid 7296 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
373 1991-04-18 5 tropicana 9664 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
374 1991-04-18 8 dominicks 194880 1 0.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
375 1991-04-18 8 minute.maid 6720 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
376 1991-04-18 8 tropicana 14464 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
377 1991-04-25 2 dominicks 960 1 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
378 1991-04-25 2 minute.maid 8576 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
379 1991-04-25 2 tropicana 35200 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
380 1991-04-25 5 dominicks 896 1 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
381 1991-04-25 5 minute.maid 12480 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
382 1991-04-25 5 tropicana 49088 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
383 1991-04-25 8 dominicks 5696 1 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
384 1991-04-25 8 minute.maid 7552 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
385 1991-04-25 8 tropicana 52928 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
386 1991-05-02 2 dominicks 1216 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
387 1991-05-02 2 minute.maid 15104 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
388 1991-05-02 2 tropicana 23936 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
389 1991-05-02 5 dominicks 1728 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
390 1991-05-02 5 minute.maid 14144 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
391 1991-05-02 5 tropicana 14912 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
392 1991-05-02 8 dominicks 7168 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
393 1991-05-02 8 minute.maid 24768 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
394 1991-05-02 8 tropicana 21184 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
395 1991-05-09 2 dominicks 1664 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
396 1991-05-09 2 minute.maid 76480 1 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
397 1991-05-09 2 tropicana 7104 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
398 1991-05-09 5 dominicks 1280 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
399 1991-05-09 5 minute.maid 88256 1 1.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
400 1991-05-09 5 tropicana 6464 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
401 1991-05-09 8 dominicks 2880 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
402 1991-05-09 8 minute.maid 183296 1 1.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
403 1991-05-09 8 tropicana 7360 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
404 1991-05-16 2 dominicks 4992 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
405 1991-05-16 2 minute.maid 5056 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
406 1991-05-16 2 tropicana 24512 1 2.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
407 1991-05-16 5 dominicks 5696 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
408 1991-05-16 5 minute.maid 6848 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
409 1991-05-16 5 tropicana 25024 1 2.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
410 1991-05-16 8 dominicks 12288 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
411 1991-05-16 8 minute.maid 8896 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
412 1991-05-16 8 tropicana 15744 1 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
413 1991-05-23 2 dominicks 27968 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
414 1991-05-23 2 minute.maid 4736 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
415 1991-05-23 2 tropicana 6336 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
416 1991-05-23 5 dominicks 28288 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
417 1991-05-23 5 minute.maid 7808 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
418 1991-05-23 5 tropicana 6272 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
419 1991-05-30 2 dominicks 12160 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
420 1991-05-30 2 minute.maid 4480 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
421 1991-05-30 2 tropicana 6080 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
422 1991-05-30 5 dominicks 4864 0 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
423 1991-05-30 5 minute.maid 6272 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
424 1991-05-30 5 tropicana 5056 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
425 1991-06-06 2 dominicks 2240 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
426 1991-06-06 2 minute.maid 4032 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
427 1991-06-06 2 tropicana 33536 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
428 1991-06-06 5 dominicks 2880 0 2.09 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
429 1991-06-06 5 minute.maid 6144 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
430 1991-06-06 5 tropicana 47616 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
431 1991-06-06 8 dominicks 9280 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
432 1991-06-06 8 minute.maid 6656 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
433 1991-06-06 8 tropicana 46912 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
434 1991-06-13 2 dominicks 5504 1 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
435 1991-06-13 2 minute.maid 14784 1 1.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
436 1991-06-13 2 tropicana 13248 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
437 1991-06-13 5 dominicks 5760 1 1.41 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
438 1991-06-13 5 minute.maid 27776 1 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
439 1991-06-13 5 tropicana 13888 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
440 1991-06-13 8 dominicks 25856 1 1.26 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
441 1991-06-13 8 minute.maid 35456 1 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
442 1991-06-13 8 tropicana 18240 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
443 1991-06-20 2 dominicks 8832 0 1.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
444 1991-06-20 2 minute.maid 12096 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
445 1991-06-20 2 tropicana 6208 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
446 1991-06-20 5 dominicks 15040 0 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
447 1991-06-20 5 minute.maid 20800 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
448 1991-06-20 5 tropicana 6144 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
449 1991-06-20 8 dominicks 19264 0 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
450 1991-06-20 8 minute.maid 17408 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
451 1991-06-20 8 tropicana 6464 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
452 1991-06-27 2 dominicks 2624 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
453 1991-06-27 2 minute.maid 41792 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
454 1991-06-27 2 tropicana 10624 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
455 1991-06-27 5 dominicks 5120 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
456 1991-06-27 5 minute.maid 45696 1 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
457 1991-06-27 5 tropicana 9344 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
458 1991-06-27 8 dominicks 6848 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
459 1991-06-27 8 minute.maid 75520 1 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
460 1991-06-27 8 tropicana 8512 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
461 1991-07-04 2 dominicks 10432 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
462 1991-07-04 2 minute.maid 10560 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
463 1991-07-04 2 tropicana 44672 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
464 1991-07-04 5 dominicks 3264 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
465 1991-07-04 5 minute.maid 14336 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
466 1991-07-04 5 tropicana 32896 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
467 1991-07-04 8 dominicks 12928 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
468 1991-07-04 8 minute.maid 21632 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
469 1991-07-04 8 tropicana 28416 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
470 1991-07-11 5 dominicks 9536 1 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
471 1991-07-11 5 minute.maid 4928 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
472 1991-07-11 5 tropicana 21056 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
473 1991-07-11 8 dominicks 44032 1 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
474 1991-07-11 8 minute.maid 8384 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
475 1991-07-11 8 tropicana 16960 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
476 1991-07-18 2 dominicks 8320 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
477 1991-07-18 2 minute.maid 4224 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
478 1991-07-18 2 tropicana 20096 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
479 1991-07-18 5 dominicks 6208 0 1.59 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
480 1991-07-18 5 minute.maid 4608 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
481 1991-07-18 5 tropicana 15360 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
482 1991-07-18 8 dominicks 25408 0 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
483 1991-07-18 8 minute.maid 9920 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
484 1991-07-18 8 tropicana 8320 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
485 1991-07-25 2 dominicks 6784 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
486 1991-07-25 2 minute.maid 2880 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
487 1991-07-25 2 tropicana 9152 1 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
488 1991-07-25 5 dominicks 6592 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
489 1991-07-25 5 minute.maid 5248 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
490 1991-07-25 5 tropicana 8000 1 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
491 1991-07-25 8 dominicks 38336 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
492 1991-07-25 8 minute.maid 6592 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
493 1991-07-25 8 tropicana 11136 1 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
494 1991-08-01 2 dominicks 60544 1 0.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
495 1991-08-01 2 minute.maid 3968 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
496 1991-08-01 2 tropicana 21952 0 2.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
497 1991-08-01 5 dominicks 63552 1 0.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
498 1991-08-01 5 minute.maid 4224 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
499 1991-08-01 5 tropicana 21120 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
500 1991-08-01 8 dominicks 152384 1 0.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
501 1991-08-01 8 minute.maid 7168 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
502 1991-08-01 8 tropicana 27712 0 2.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
503 1991-08-08 2 dominicks 20608 0 0.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
504 1991-08-08 2 minute.maid 3712 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
505 1991-08-08 2 tropicana 13568 0 2.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
506 1991-08-08 5 dominicks 27968 0 0.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
507 1991-08-08 5 minute.maid 4288 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
508 1991-08-08 5 tropicana 11904 0 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
509 1991-08-08 8 dominicks 54464 0 0.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
510 1991-08-08 8 minute.maid 6208 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
511 1991-08-08 8 tropicana 7744 0 2.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
512 1991-08-15 5 dominicks 21760 1 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
513 1991-08-15 5 minute.maid 16896 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
514 1991-08-15 5 tropicana 5056 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
515 1991-08-15 8 dominicks 47680 1 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
516 1991-08-15 8 minute.maid 30528 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
517 1991-08-15 8 tropicana 5184 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
518 1991-08-22 5 dominicks 2688 0 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
519 1991-08-22 5 minute.maid 77184 1 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
520 1991-08-22 5 tropicana 4608 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
521 1991-08-22 8 dominicks 14720 0 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
522 1991-08-22 8 minute.maid 155840 1 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
523 1991-08-22 8 tropicana 6272 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
524 1991-08-29 2 dominicks 16064 0 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
525 1991-08-29 2 minute.maid 2816 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
526 1991-08-29 2 tropicana 4160 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
527 1991-08-29 5 dominicks 10432 0 1.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
528 1991-08-29 5 minute.maid 5184 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
529 1991-08-29 5 tropicana 6016 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
530 1991-08-29 8 dominicks 53248 0 1.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
531 1991-08-29 8 minute.maid 10752 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
532 1991-08-29 8 tropicana 7744 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
533 1991-09-05 2 dominicks 12480 0 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
534 1991-09-05 2 minute.maid 4288 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
535 1991-09-05 2 tropicana 39424 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
536 1991-09-05 5 dominicks 9792 0 1.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
537 1991-09-05 5 minute.maid 5248 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
538 1991-09-05 5 tropicana 50752 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
539 1991-09-05 8 dominicks 40576 0 1.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
540 1991-09-05 8 minute.maid 6976 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
541 1991-09-05 8 tropicana 53184 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
542 1991-09-12 2 dominicks 17024 0 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
543 1991-09-12 2 minute.maid 18240 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
544 1991-09-12 2 tropicana 5632 0 3.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
545 1991-09-12 5 dominicks 8448 0 1.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
546 1991-09-12 5 minute.maid 20672 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
547 1991-09-12 5 tropicana 5632 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
548 1991-09-12 8 dominicks 25856 0 1.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
549 1991-09-12 8 minute.maid 31872 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
550 1991-09-12 8 tropicana 6784 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
551 1991-09-19 2 dominicks 13440 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
552 1991-09-19 2 minute.maid 7360 0 1.95 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
553 1991-09-19 2 tropicana 9024 1 2.68 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
554 1991-09-19 8 dominicks 24064 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
555 1991-09-19 8 minute.maid 5312 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
556 1991-09-19 8 tropicana 8000 1 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
557 1991-09-26 2 dominicks 10112 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
558 1991-09-26 2 minute.maid 7808 0 1.83 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
559 1991-09-26 2 tropicana 6016 0 3.44 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
560 1991-09-26 5 dominicks 6912 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
561 1991-09-26 5 minute.maid 12352 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
562 1991-09-26 5 tropicana 6400 0 3.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
563 1991-09-26 8 dominicks 15680 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
564 1991-09-26 8 minute.maid 33344 0 1.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
565 1991-09-26 8 tropicana 6592 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
566 1991-10-03 2 dominicks 9088 0 1.56 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
567 1991-10-03 2 minute.maid 13504 0 1.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
568 1991-10-03 2 tropicana 7744 0 3.14 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
569 1991-10-03 5 dominicks 8256 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
570 1991-10-03 5 minute.maid 12032 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
571 1991-10-03 5 tropicana 5440 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
572 1991-10-03 8 dominicks 16576 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
573 1991-10-03 8 minute.maid 13504 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
574 1991-10-03 8 tropicana 5248 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
575 1991-10-10 2 dominicks 22848 1 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
576 1991-10-10 2 minute.maid 10048 0 1.91 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
577 1991-10-10 2 tropicana 6784 0 3.07 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
578 1991-10-10 5 dominicks 28672 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
579 1991-10-10 5 minute.maid 13440 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
580 1991-10-10 5 tropicana 8128 0 2.94 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
581 1991-10-10 8 dominicks 49664 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
582 1991-10-10 8 minute.maid 13504 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
583 1991-10-10 8 tropicana 6592 0 2.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
584 1991-10-17 2 dominicks 6976 0 1.65 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
585 1991-10-17 2 minute.maid 135936 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
586 1991-10-17 2 tropicana 6784 0 3.07 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
587 1991-10-17 8 dominicks 10752 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
588 1991-10-17 8 minute.maid 335808 1 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
589 1991-10-17 8 tropicana 5888 0 2.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
590 1991-10-24 2 dominicks 4160 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
591 1991-10-24 2 minute.maid 5056 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
592 1991-10-24 2 tropicana 6272 0 3.07 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
593 1991-10-24 5 dominicks 4416 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
594 1991-10-24 5 minute.maid 5824 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
595 1991-10-24 5 tropicana 7232 0 2.94 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
596 1991-10-24 8 dominicks 9792 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
597 1991-10-24 8 minute.maid 13120 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
598 1991-10-24 8 tropicana 6336 0 2.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
599 1991-10-31 2 dominicks 3328 0 1.83 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
600 1991-10-31 2 minute.maid 27968 0 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
601 1991-10-31 2 tropicana 5312 0 3.07 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
602 1991-10-31 5 dominicks 1856 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
603 1991-10-31 5 minute.maid 50112 0 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
604 1991-10-31 5 tropicana 7168 0 2.94 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
605 1991-10-31 8 dominicks 7104 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
606 1991-10-31 8 minute.maid 49664 0 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
607 1991-10-31 8 tropicana 5888 0 2.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
608 1991-11-07 2 dominicks 12096 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
609 1991-11-07 2 minute.maid 4736 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
610 1991-11-07 2 tropicana 9216 0 3.11 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
611 1991-11-07 5 dominicks 6528 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
612 1991-11-07 5 minute.maid 5184 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
613 1991-11-07 5 tropicana 7872 0 2.94 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
614 1991-11-07 8 dominicks 9216 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
615 1991-11-07 8 minute.maid 10880 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
616 1991-11-07 8 tropicana 6080 0 2.94 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
617 1991-11-14 2 dominicks 6208 0 1.76 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
618 1991-11-14 2 minute.maid 7808 0 2.14 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
619 1991-11-14 2 tropicana 7296 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
620 1991-11-14 5 dominicks 6080 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
621 1991-11-14 5 minute.maid 8384 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
622 1991-11-14 5 tropicana 7552 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
623 1991-11-14 8 dominicks 12608 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
624 1991-11-14 8 minute.maid 9984 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
625 1991-11-14 8 tropicana 6848 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
626 1991-11-21 2 dominicks 3008 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
627 1991-11-21 2 minute.maid 12480 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
628 1991-11-21 2 tropicana 34240 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
629 1991-11-21 5 dominicks 3456 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
630 1991-11-21 5 minute.maid 10112 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
631 1991-11-21 5 tropicana 69504 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
632 1991-11-21 8 dominicks 16448 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
633 1991-11-21 8 minute.maid 9216 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
634 1991-11-21 8 tropicana 54016 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
635 1991-11-28 2 dominicks 19456 1 1.5 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
636 1991-11-28 2 minute.maid 9664 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
637 1991-11-28 2 tropicana 7168 0 2.64 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
638 1991-11-28 5 dominicks 25856 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
639 1991-11-28 5 minute.maid 8384 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
640 1991-11-28 5 tropicana 8960 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
641 1991-11-28 8 dominicks 27968 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
642 1991-11-28 8 minute.maid 7680 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
643 1991-11-28 8 tropicana 10368 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
644 1991-12-05 2 dominicks 16768 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
645 1991-12-05 2 minute.maid 7168 0 2.06 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
646 1991-12-05 2 tropicana 6080 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
647 1991-12-05 5 dominicks 25728 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
648 1991-12-05 5 minute.maid 11456 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
649 1991-12-05 5 tropicana 6912 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
650 1991-12-05 8 dominicks 37824 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
651 1991-12-05 8 minute.maid 7296 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
652 1991-12-05 8 tropicana 5568 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
653 1991-12-12 2 dominicks 13568 1 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
654 1991-12-12 2 minute.maid 4480 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
655 1991-12-12 2 tropicana 5120 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
656 1991-12-12 5 dominicks 23552 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
657 1991-12-12 5 minute.maid 5952 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
658 1991-12-12 5 tropicana 6656 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
659 1991-12-12 8 dominicks 33664 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
660 1991-12-12 8 minute.maid 8192 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
661 1991-12-12 8 tropicana 4864 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
662 1991-12-19 2 dominicks 6080 0 1.61 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
663 1991-12-19 2 minute.maid 5952 0 2.22 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
664 1991-12-19 2 tropicana 8320 0 2.74 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
665 1991-12-19 5 dominicks 2944 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
666 1991-12-19 5 minute.maid 8512 0 2.26 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
667 1991-12-19 5 tropicana 8192 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
668 1991-12-19 8 dominicks 17728 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
669 1991-12-19 8 minute.maid 6080 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
670 1991-12-19 8 tropicana 7232 0 2.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
671 1991-12-26 2 dominicks 10432 1 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
672 1991-12-26 2 minute.maid 21696 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
673 1991-12-26 2 tropicana 17728 0 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
674 1991-12-26 5 dominicks 5888 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
675 1991-12-26 5 minute.maid 27968 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
676 1991-12-26 5 tropicana 13440 0 2.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
677 1991-12-26 8 dominicks 25088 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
678 1991-12-26 8 minute.maid 15040 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
679 1991-12-26 8 tropicana 15232 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
680 1992-01-02 2 dominicks 11712 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
681 1992-01-02 2 minute.maid 12032 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
682 1992-01-02 2 tropicana 13120 0 2.35 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
683 1992-01-02 5 dominicks 6848 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
684 1992-01-02 5 minute.maid 24000 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
685 1992-01-02 5 tropicana 12160 0 2.39 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
686 1992-01-02 8 dominicks 13184 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
687 1992-01-02 8 minute.maid 9472 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
688 1992-01-02 8 tropicana 47040 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
689 1992-01-09 2 dominicks 4032 0 1.76 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
690 1992-01-09 2 minute.maid 7040 0 2.12 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
691 1992-01-09 2 tropicana 13120 0 2.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
692 1992-01-09 5 dominicks 1792 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
693 1992-01-09 5 minute.maid 6848 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
694 1992-01-09 5 tropicana 11840 0 2.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
695 1992-01-09 8 dominicks 3136 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
696 1992-01-09 8 minute.maid 5888 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
697 1992-01-09 8 tropicana 9280 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
698 1992-01-16 2 dominicks 6336 0 1.82 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
699 1992-01-16 2 minute.maid 10240 1 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
700 1992-01-16 2 tropicana 9792 0 2.43 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
701 1992-01-16 5 dominicks 5248 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
702 1992-01-16 5 minute.maid 15104 1 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
703 1992-01-16 5 tropicana 8640 0 2.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
704 1992-01-16 8 dominicks 5696 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
705 1992-01-16 8 minute.maid 14336 1 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
706 1992-01-16 8 tropicana 6720 0 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
707 1992-01-23 2 dominicks 13632 0 1.47 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
708 1992-01-23 2 minute.maid 6848 1 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
709 1992-01-23 2 tropicana 3520 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
710 1992-01-23 5 dominicks 16768 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
711 1992-01-23 5 minute.maid 11392 1 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
712 1992-01-23 5 tropicana 5888 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
713 1992-01-23 8 dominicks 19008 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
714 1992-01-23 8 minute.maid 11712 1 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
715 1992-01-23 8 tropicana 5056 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
716 1992-01-30 2 dominicks 45120 0 1.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
717 1992-01-30 2 minute.maid 3968 0 2.61 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
718 1992-01-30 2 tropicana 5504 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
719 1992-01-30 5 dominicks 52160 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
720 1992-01-30 5 minute.maid 5824 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
721 1992-01-30 5 tropicana 7424 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
722 1992-01-30 8 dominicks 121664 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
723 1992-01-30 8 minute.maid 7936 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
724 1992-01-30 8 tropicana 6080 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
725 1992-02-06 2 dominicks 9984 0 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
726 1992-02-06 2 minute.maid 5888 0 2.26 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
727 1992-02-06 2 tropicana 6720 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
728 1992-02-06 5 dominicks 16640 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
729 1992-02-06 5 minute.maid 7488 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
730 1992-02-06 5 tropicana 5632 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
731 1992-02-06 8 dominicks 38848 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
732 1992-02-06 8 minute.maid 5184 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
733 1992-02-06 8 tropicana 10496 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
734 1992-02-13 2 dominicks 4800 0 1.82 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
735 1992-02-13 2 minute.maid 6208 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
736 1992-02-13 2 tropicana 20224 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
737 1992-02-13 5 dominicks 1344 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
738 1992-02-13 5 minute.maid 8320 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
739 1992-02-13 5 tropicana 33600 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
740 1992-02-13 8 dominicks 6144 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
741 1992-02-13 8 minute.maid 7168 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
742 1992-02-13 8 tropicana 39040 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
743 1992-02-20 2 dominicks 11776 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
744 1992-02-20 2 minute.maid 72256 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
745 1992-02-20 2 tropicana 5056 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
746 1992-02-20 5 dominicks 4608 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
747 1992-02-20 5 minute.maid 99904 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
748 1992-02-20 5 tropicana 5376 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
749 1992-02-20 8 dominicks 13632 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
750 1992-02-20 8 minute.maid 216064 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
751 1992-02-20 8 tropicana 4480 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
752 1992-02-27 2 dominicks 11584 0 1.54 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
753 1992-02-27 2 minute.maid 11520 0 2.11 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
754 1992-02-27 2 tropicana 43584 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
755 1992-02-27 5 dominicks 12672 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
756 1992-02-27 5 minute.maid 6976 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
757 1992-02-27 5 tropicana 54272 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
758 1992-02-27 8 dominicks 9792 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
759 1992-02-27 8 minute.maid 15040 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
760 1992-02-27 8 tropicana 61760 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
761 1992-03-05 2 dominicks 51264 1 1.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
762 1992-03-05 2 minute.maid 5824 0 2.35 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
763 1992-03-05 2 tropicana 25728 0 1.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
764 1992-03-05 5 dominicks 48640 1 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
765 1992-03-05 5 minute.maid 9984 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
766 1992-03-05 5 tropicana 33600 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
767 1992-03-05 8 dominicks 86912 1 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
768 1992-03-05 8 minute.maid 11840 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
769 1992-03-05 8 tropicana 15360 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
770 1992-03-12 2 dominicks 14976 0 1.44 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
771 1992-03-12 2 minute.maid 19392 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
772 1992-03-12 2 tropicana 31808 0 1.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
773 1992-03-12 5 dominicks 13248 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
774 1992-03-12 5 minute.maid 32832 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
775 1992-03-12 5 tropicana 24448 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
776 1992-03-12 8 dominicks 24512 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
777 1992-03-12 8 minute.maid 25472 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
778 1992-03-12 8 tropicana 54976 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
779 1992-03-19 2 dominicks 30784 0 1.59 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
780 1992-03-19 2 minute.maid 9536 0 2.1 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
781 1992-03-19 2 tropicana 20736 0 1.91 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
782 1992-03-19 5 dominicks 29248 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
783 1992-03-19 5 minute.maid 8128 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
784 1992-03-19 5 tropicana 22784 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
785 1992-03-19 8 dominicks 58048 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
786 1992-03-19 8 minute.maid 16384 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
787 1992-03-19 8 tropicana 34368 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
788 1992-03-26 2 dominicks 12480 0 1.6 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
789 1992-03-26 2 minute.maid 5312 0 2.28 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
790 1992-03-26 2 tropicana 15168 0 2.81 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
791 1992-03-26 5 dominicks 4608 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
792 1992-03-26 5 minute.maid 6464 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
793 1992-03-26 5 tropicana 19008 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
794 1992-03-26 8 dominicks 13952 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
795 1992-03-26 8 minute.maid 20480 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
796 1992-03-26 8 tropicana 10752 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
797 1992-04-02 2 dominicks 3264 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
798 1992-04-02 2 minute.maid 14528 1 1.9 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
799 1992-04-02 2 tropicana 28096 1 2.5 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
800 1992-04-02 5 dominicks 3136 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
801 1992-04-02 5 minute.maid 36800 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
802 1992-04-02 5 tropicana 15808 1 2.5 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
803 1992-04-02 8 dominicks 15168 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
804 1992-04-02 8 minute.maid 34688 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
805 1992-04-02 8 tropicana 20096 1 2.5 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
806 1992-04-09 2 dominicks 8768 0 1.48 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
807 1992-04-09 2 minute.maid 12416 0 2.12 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
808 1992-04-09 2 tropicana 12416 0 2.58 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
809 1992-04-09 5 dominicks 13184 0 1.58 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
810 1992-04-09 5 minute.maid 12928 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
811 1992-04-09 5 tropicana 14144 0 2.5 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
812 1992-04-09 8 dominicks 14592 0 1.58 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
813 1992-04-09 8 minute.maid 22400 0 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
814 1992-04-09 8 tropicana 16192 0 2.5 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
815 1992-04-16 2 dominicks 70848 1 1.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
816 1992-04-16 2 minute.maid 5376 0 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
817 1992-04-16 2 tropicana 5376 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
818 1992-04-16 5 dominicks 67712 1 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
819 1992-04-16 5 minute.maid 7424 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
820 1992-04-16 5 tropicana 9600 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
821 1992-04-16 8 dominicks 145088 1 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
822 1992-04-16 8 minute.maid 7808 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
823 1992-04-16 8 tropicana 6528 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
824 1992-04-23 2 dominicks 18560 0 1.42 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
825 1992-04-23 2 minute.maid 19008 1 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
826 1992-04-23 2 tropicana 9792 0 2.67 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
827 1992-04-23 5 dominicks 18880 0 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
828 1992-04-23 5 minute.maid 34176 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
829 1992-04-23 5 tropicana 10112 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
830 1992-04-23 8 dominicks 43712 0 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
831 1992-04-23 8 minute.maid 48064 1 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
832 1992-04-23 8 tropicana 8320 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
833 1992-04-30 2 dominicks 9152 0 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
834 1992-04-30 2 minute.maid 3904 0 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
835 1992-04-30 2 tropicana 16960 1 2.39 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
836 1992-04-30 5 dominicks 6208 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
837 1992-04-30 5 minute.maid 4160 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
838 1992-04-30 5 tropicana 31872 1 2.24 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
839 1992-04-30 8 dominicks 20608 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
840 1992-04-30 8 minute.maid 7360 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
841 1992-04-30 8 tropicana 30784 1 2.16 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
842 1992-05-07 2 dominicks 9600 0 2.0 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
843 1992-05-07 2 minute.maid 6336 0 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
844 1992-05-07 2 tropicana 8320 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
845 1992-05-07 5 dominicks 5952 0 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
846 1992-05-07 5 minute.maid 5952 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
847 1992-05-07 5 tropicana 9280 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
848 1992-05-07 8 dominicks 18752 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
849 1992-05-07 8 minute.maid 6272 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
850 1992-05-07 8 tropicana 18048 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
851 1992-05-14 2 dominicks 4800 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
852 1992-05-14 2 minute.maid 5440 0 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
853 1992-05-14 2 tropicana 6912 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
854 1992-05-14 5 dominicks 4160 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
855 1992-05-14 5 minute.maid 6528 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
856 1992-05-14 5 tropicana 7680 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
857 1992-05-14 8 dominicks 20160 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
858 1992-05-14 8 minute.maid 6400 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
859 1992-05-14 8 tropicana 12864 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
860 1992-05-21 2 dominicks 9664 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
861 1992-05-21 2 minute.maid 22400 1 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
862 1992-05-21 2 tropicana 6976 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
863 1992-05-21 5 dominicks 23488 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
864 1992-05-21 5 minute.maid 30656 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
865 1992-05-21 5 tropicana 8704 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
866 1992-05-21 8 dominicks 18688 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
867 1992-05-21 8 minute.maid 54592 1 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
868 1992-05-21 8 tropicana 7168 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
869 1992-05-28 2 dominicks 45568 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
870 1992-05-28 2 minute.maid 3968 0 2.84 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
871 1992-05-28 2 tropicana 7232 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
872 1992-05-28 5 dominicks 60480 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
873 1992-05-28 5 minute.maid 6656 0 2.66 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
874 1992-05-28 5 tropicana 9920 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
875 1992-05-28 8 dominicks 133824 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
876 1992-05-28 8 minute.maid 8128 0 2.39 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
877 1992-05-28 8 tropicana 9024 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
878 1992-06-04 2 dominicks 20992 0 1.74 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
879 1992-06-04 2 minute.maid 3264 0 2.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
880 1992-06-04 2 tropicana 51520 1 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
881 1992-06-04 5 dominicks 20416 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
882 1992-06-04 5 minute.maid 4416 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
883 1992-06-04 5 tropicana 91968 1 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
884 1992-06-04 8 dominicks 63488 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
885 1992-06-04 8 minute.maid 4928 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
886 1992-06-04 8 tropicana 84992 1 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
887 1992-06-11 2 dominicks 6592 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
888 1992-06-11 2 minute.maid 4352 0 2.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
889 1992-06-11 2 tropicana 22272 0 2.21 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
890 1992-06-11 5 dominicks 6336 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
891 1992-06-11 5 minute.maid 5696 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
892 1992-06-11 5 tropicana 44096 0 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
893 1992-06-11 8 dominicks 71040 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
894 1992-06-11 8 minute.maid 5440 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
895 1992-06-11 8 tropicana 14144 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
896 1992-06-18 2 dominicks 4992 0 2.05 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
897 1992-06-18 2 minute.maid 4480 0 2.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
898 1992-06-18 2 tropicana 46144 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
899 1992-06-25 2 dominicks 8064 0 1.24 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
900 1992-06-25 2 minute.maid 3840 0 2.52 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
901 1992-06-25 2 tropicana 4352 1 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
902 1992-06-25 5 dominicks 1408 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
903 1992-06-25 5 minute.maid 5696 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
904 1992-06-25 5 tropicana 7296 1 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
905 1992-06-25 8 dominicks 15360 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
906 1992-06-25 8 minute.maid 5888 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
907 1992-06-25 8 tropicana 7488 1 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
908 1992-07-02 2 dominicks 7360 0 1.61 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
909 1992-07-02 2 minute.maid 13312 1 2.0 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
910 1992-07-02 2 tropicana 17280 0 2.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
911 1992-07-02 5 dominicks 4672 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
912 1992-07-02 5 minute.maid 39680 1 2.01 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
913 1992-07-02 5 tropicana 12928 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
914 1992-07-02 8 dominicks 17728 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
915 1992-07-02 8 minute.maid 23872 1 2.02 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
916 1992-07-02 8 tropicana 12352 0 2.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
917 1992-07-09 2 dominicks 10048 0 1.4 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
918 1992-07-09 2 minute.maid 3776 1 2.33 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
919 1992-07-09 2 tropicana 5696 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
920 1992-07-09 5 dominicks 19520 0 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
921 1992-07-09 5 minute.maid 6208 1 2.19 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
922 1992-07-09 5 tropicana 6848 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
923 1992-07-09 8 dominicks 24256 0 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
924 1992-07-09 8 minute.maid 6848 1 2.19 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
925 1992-07-09 8 tropicana 5696 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
926 1992-07-16 2 dominicks 10112 0 1.91 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
927 1992-07-16 2 minute.maid 4800 0 2.89 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
928 1992-07-16 2 tropicana 6848 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
929 1992-07-16 5 dominicks 7872 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
930 1992-07-16 5 minute.maid 7872 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
931 1992-07-16 5 tropicana 8064 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
932 1992-07-16 8 dominicks 19968 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
933 1992-07-16 8 minute.maid 8192 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
934 1992-07-16 8 tropicana 7680 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
935 1992-07-23 2 dominicks 9152 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
936 1992-07-23 2 minute.maid 24960 1 2.29 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
937 1992-07-23 2 tropicana 4416 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
938 1992-07-23 5 dominicks 5184 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
939 1992-07-23 5 minute.maid 54528 1 2.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
940 1992-07-23 5 tropicana 4992 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
941 1992-07-23 8 dominicks 15936 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
942 1992-07-23 8 minute.maid 55040 1 2.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
943 1992-07-23 8 tropicana 5440 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
944 1992-07-30 2 dominicks 36288 1 1.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
945 1992-07-30 2 minute.maid 4544 0 2.86 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
946 1992-07-30 2 tropicana 4672 0 3.16 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
947 1992-07-30 5 dominicks 42240 1 1.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
948 1992-07-30 5 minute.maid 6400 0 2.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
949 1992-07-30 5 tropicana 7360 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
950 1992-07-30 8 dominicks 76352 1 1.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
951 1992-07-30 8 minute.maid 6528 0 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
952 1992-07-30 8 tropicana 5632 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
953 1992-08-06 2 dominicks 3776 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
954 1992-08-06 2 minute.maid 3968 1 2.81 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
955 1992-08-06 2 tropicana 7168 1 3.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
956 1992-08-06 5 dominicks 6592 1 1.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
957 1992-08-06 5 minute.maid 5888 1 2.65 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
958 1992-08-06 5 tropicana 8384 1 2.89 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
959 1992-08-06 8 dominicks 17408 1 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
960 1992-08-06 8 minute.maid 6208 1 2.45 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
961 1992-08-06 8 tropicana 8960 1 2.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
962 1992-08-13 2 dominicks 3328 0 1.97 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
963 1992-08-13 2 minute.maid 49600 1 1.99 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
964 1992-08-13 2 tropicana 5056 0 3.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
965 1992-08-13 5 dominicks 2112 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
966 1992-08-13 5 minute.maid 56384 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
967 1992-08-13 5 tropicana 8832 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
968 1992-08-13 8 dominicks 17536 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
969 1992-08-13 8 minute.maid 94720 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
970 1992-08-13 8 tropicana 6080 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
971 1992-08-20 2 dominicks 13824 0 1.36 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
972 1992-08-20 2 minute.maid 23488 1 1.94 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
973 1992-08-20 2 tropicana 13376 1 2.79 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
974 1992-08-20 5 dominicks 21248 0 1.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
975 1992-08-20 5 minute.maid 27072 1 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
976 1992-08-20 5 tropicana 17728 1 2.79 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
977 1992-08-20 8 dominicks 31232 0 1.59 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
978 1992-08-20 8 minute.maid 55552 1 1.99 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
979 1992-08-20 8 tropicana 8576 1 2.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
980 1992-08-27 2 dominicks 9024 0 1.19 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
981 1992-08-27 2 minute.maid 19008 0 1.69 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
982 1992-08-27 2 tropicana 8128 0 2.75 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
983 1992-08-27 5 dominicks 1856 0 1.29 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
984 1992-08-27 5 minute.maid 3840 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
985 1992-08-27 5 tropicana 9600 0 2.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
986 1992-08-27 8 dominicks 19200 0 1.29 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
987 1992-08-27 8 minute.maid 18688 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
988 1992-08-27 8 tropicana 8000 0 2.89 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
989 1992-09-03 2 dominicks 2048 0 2.09 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
990 1992-09-03 2 minute.maid 11584 0 1.81 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
991 1992-09-03 2 tropicana 19456 1 2.49 0.232864734 0.248934934 10.55320518 0.463887065 0.103953406 0.114279949 0.303585347 2.110122129 1.142857143 1.927279669 0.37692661299999997
992 1992-09-03 5 dominicks 3712 0 1.99 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
993 1992-09-03 5 minute.maid 6144 0 1.69 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
994 1992-09-03 5 tropicana 25664 1 2.49 0.117368032 0.32122573 10.92237097 0.535883355 0.103091585 0.053875277 0.410568032 3.801997814 0.681818182 1.600573425 0.736306837
995 1992-09-03 8 dominicks 12800 0 1.79 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
996 1992-09-03 8 minute.maid 14656 0 1.69 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947
997 1992-09-03 8 tropicana 21760 1 2.49 0.252394035 0.095173274 10.59700966 0.054227156 0.131749698 0.035243328 0.283074736 2.636332801 1.5 2.905384316 0.641015947

View File

@@ -1,155 +0,0 @@
import argparse
from datetime import datetime
import os
import uuid
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset
import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.data.dataset_factory import TabularDatasetFactory
from azureml.automl.runtime.shared.score import scoring, constants as metrics_constants
import azureml.automl.core.shared.constants as constants
from azureml.core import Run, Dataset, Model
try:
import torch
_torch_present = True
except ImportError:
_torch_present = False
def infer_forecasting_dataset_tcn(
X_test, y_test, model, output_path, output_dataset_name="results"
):
y_pred, df_all = model.forecast(X_test, y_test)
run = Run.get_context()
TabularDatasetFactory.register_pandas_dataframe(
df_all,
target=(
run.experiment.workspace.get_default_datastore(),
datetime.now().strftime("%Y-%m-%d-") + str(uuid.uuid4())[:6],
),
name=output_dataset_name,
)
df_all.to_csv(os.path.join(output_path, output_dataset_name + ".csv"), index=False)
def map_location_cuda(storage, loc):
return storage.cuda()
def get_model(model_path, model_file_name):
# _, ext = os.path.splitext(model_path)
model_full_path = os.path.join(model_path, model_file_name)
print(model_full_path)
if model_file_name.endswith("pt"):
# Load the fc-tcn torch model.
assert _torch_present, "Loading DNN models needs torch to be presented."
if torch.cuda.is_available():
map_location = map_location_cuda
else:
map_location = "cpu"
with open(model_full_path, "rb") as fh:
fitted_model = torch.load(fh, map_location=map_location)
else:
# Load the sklearn pipeline.
fitted_model = joblib.load(model_full_path)
return fitted_model
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, dest="model_name", help="Model to be loaded"
)
parser.add_argument(
"--ouput_dataset_name",
type=str,
dest="ouput_dataset_name",
default="results",
help="Dataset name of the final output",
)
parser.add_argument(
"--target_column_name",
type=str,
dest="target_column_name",
help="The target column name.",
)
parser.add_argument(
"--test_dataset_name",
type=str,
dest="test_dataset_name",
default="results",
help="Dataset name of the final output",
)
parser.add_argument(
"--output_path",
type=str,
dest="output_path",
default="results",
help="The output path",
)
args = parser.parse_args()
return args
def get_data(run, fitted_model, target_column_name, test_dataset_name):
# get input dataset by name
test_dataset = Dataset.get_by_name(run.experiment.workspace, test_dataset_name)
test_df = test_dataset.to_pandas_dataframe()
if target_column_name in test_df:
y_test = test_df.pop(target_column_name).values
else:
y_test = np.full(test_df.shape[0], np.nan)
return test_df, y_test
def get_model_filename(run, model_name, model_path):
model = Model(run.experiment.workspace, model_name)
if "model_file_name" in model.tags:
return model.tags["model_file_name"]
is_pkl = True
if model.tags.get("algorithm") == "TCNForecaster" or os.path.exists(
os.path.join(model_path, "model.pt")
):
is_pkl = False
return "model.pkl" if is_pkl else "model.pt"
if __name__ == "__main__":
run = Run.get_context()
args = get_args()
model_name = args.model_name
ouput_dataset_name = args.ouput_dataset_name
test_dataset_name = args.test_dataset_name
target_column_name = args.target_column_name
print("args passed are: ")
print(model_name)
print(test_dataset_name)
print(ouput_dataset_name)
print(target_column_name)
model_path = Model.get_model_path(model_name)
model_file_name = get_model_filename(run, model_name, model_path)
print(model_file_name)
fitted_model = get_model(model_path, model_file_name)
X_test_df, y_test = get_data(
run, fitted_model, target_column_name, test_dataset_name
)
infer_forecasting_dataset_tcn(
X_test_df, y_test, fitted_model, args.output_path, ouput_dataset_name
)

View File

@@ -1,64 +0,0 @@
import argparse
import os
import uuid
import shutil
from azureml.core.model import Model, Dataset
from azureml.core.run import Run, _OfflineRun
from azureml.core import Workspace
import azureml.automl.core.shared.constants as constants
from azureml.train.automl.run import AutoMLRun
def get_best_automl_run(pipeline_run):
all_children = [c for c in pipeline_run.get_children()]
automl_step = [
c for c in all_children if c.properties.get("runTemplate") == "AutoML"
]
for c in all_children:
print(c, c.properties)
automlrun = AutoMLRun(pipeline_run.experiment, automl_step[0].id)
best = automlrun.get_best_child()
return best
def get_model_path(model_artifact_path):
return model_artifact_path.split("/")[1]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name")
parser.add_argument("--model_path")
parser.add_argument("--ds_name")
args = parser.parse_args()
print("Argument 1(model_name): %s" % args.model_name)
print("Argument 2(model_path): %s" % args.model_path)
print("Argument 3(ds_name): %s" % args.ds_name)
run = Run.get_context()
ws = None
if type(run) == _OfflineRun:
ws = Workspace.from_config()
else:
ws = run.experiment.workspace
train_ds = Dataset.get_by_name(ws, args.ds_name)
datasets = [(Dataset.Scenario.TRAINING, train_ds)]
new_dir = str(uuid.uuid4())
os.makedirs(new_dir)
# Register model with training dataset
best_run = get_best_automl_run(run.parent)
model_artifact_path = best_run.properties[constants.PROPERTY_KEY_OF_MODEL_PATH]
algo = best_run.properties.get("run_algorithm")
model_artifact_dir = model_artifact_path.split("/")[0]
model_file_name = model_artifact_path.split("/")[1]
model = best_run.register_model(
args.model_name,
model_path=model_artifact_dir,
datasets=datasets,
tags={"algorithm": algo, "model_file_name": model_file_name},
)
print("Registered version {0} of model {1}".format(model.version, model.name))

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-univariate-recipe-experiment-settings
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-univariate-recipe-run-experiment
dependencies:
- pip:
- azureml-sdk

View File

@@ -7,7 +7,7 @@ compute instance.
import argparse import argparse
from azureml.core import Dataset, Run from azureml.core import Dataset, Run
from azureml.automl.core.shared.constants import TimeSeriesInternal from azureml.automl.core.shared.constants import TimeSeriesInternal
import joblib from sklearn.externals import joblib
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument( parser.add_argument(

View File

@@ -46,11 +46,11 @@ def kpss_test(series, **kw):
""" """
if kw["store"]: if kw["store"]:
statistic, p_value, critical_values, rstore = stattools.kpss( statistic, p_value, critical_values, rstore = stattools.kpss(
series, regression=kw["reg_type"], nlags=kw["lags"], store=kw["store"] series, regression=kw["reg_type"], lags=kw["lags"], store=kw["store"]
) )
else: else:
statistic, p_value, lags, critical_values = stattools.kpss( statistic, p_value, lags, critical_values = stattools.kpss(
series, regression=kw["reg_type"], nlags=kw["lags"] series, regression=kw["reg_type"], lags=kw["lags"]
) )
output = { output = {
"statistic": statistic, "statistic": statistic,

View File

@@ -0,0 +1,18 @@
---
page_type: sample
languages:
- python
products:
- azure-machine-learning
description: Notebook showing how to use Azure Machine Learning pipelines to do Batch Predictions with an Image Classification model trained using AutoML.
---
# Batch Scoring with an Image Classification Model
- Dataset: Toy dataset with images of products found in a fridge
- **[Jupyter Notebook](auto-ml-image-classification-multiclass-batch-scoring.ipynb)**
- register an Image Classification Multi-Class model already trained using AutoML
- create an Inference Dataset
- provision compute targets and create a Batch Scoring script
- use ParallelRunStep to do batch scoring
- build, run, and publish a pipeline
- enable a REST endpoint for the pipeline

View File

@@ -0,0 +1,950 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"# Batch Predictions for an Image Classification model trained using AutoML\n",
"In this notebook, we go over how you can use [Azure Machine Learning pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/tutorial-pipeline-batch-scoring-classification) to run a batch scoring image classification job.\n",
"\n",
"**Please note:** For this notebook you can use an existing image classification model trained using AutoML for Images or use the simple model training we included below for convenience. For detailed instructions on how to train an image classification model with AutoML, please refer to the official [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models) and to the [image classification multiclass notebook](https://github.com/Azure/azureml-examples/blob/main/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass/auto-ml-image-classification-multiclass.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Important:** This feature is currently in public preview. This preview version is provided without a service-level agreement. Certain features might not be supported or might have constrained capabilities. For more information, see [Supplemental Terms of Use for Microsoft Azure Previews](https://azure.microsoft.com/en-us/support/legal/preview-supplemental-terms/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Environment Setup\n",
"Please follow the [\"Setup a new conda environment\"](https://github.com/Azure/azureml-examples/tree/main/python-sdk/tutorials/automl-with-azureml#3-setup-a-new-conda-environment) instructions to get started."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.35.0 of the Azure ML SDK.\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK.\")\n",
"assert (\n",
" azureml.core.VERSION >= \"1.35\"\n",
"), \"Please upgrade the Azure ML SDK by running '!pip install --upgrade azureml-sdk' then restart the kernel.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## You will perform the following tasks:\n",
"\n",
"* Register a Model already trained using AutoML for Image Classification.\n",
"* Create an Inference Dataset.\n",
"* Provision compute targets and create a Batch Scoring script.\n",
"* Use ParallelRunStep to do batch scoring.\n",
"* Build, run, and publish a pipeline.\n",
"* Enable a REST endpoint for the pipeline."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workspace setup\n",
"\n",
"An [Azure ML Workspace](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#workspace) is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models.\n",
"\n",
"Create an Azure ML Workspace within your Azure subscription or load an existing workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workspace default datastore is used to store inference input images and outputs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def_data_store = ws.get_default_datastore()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute target setup\n",
"You will need to provide a [Compute Target](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#computes) that will be used for your AutoML model training. AutoML models for image tasks require [GPU SKUs](https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu) such as the ones from the NC, NCv2, NCv3, ND, NDv2 and NCasT4 series. We recommend using the NCsv3-series (with v100 GPUs) for faster training. Using a compute target with a multi-GPU VM SKU will leverage the multiple GPUs to speed up training. Additionally, setting up a compute target with multiple nodes will allow for faster model training by leveraging parallelism, when tuning hyperparameters for your model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"\n",
"cluster_name = \"gpu-cluster-nc6\"\n",
"\n",
"try:\n",
" compute_target = ws.compute_targets[cluster_name]\n",
" print(\"Found existing compute target.\")\n",
"except KeyError:\n",
" print(\"Creating a new compute target...\")\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"Standard_NC6\",\n",
" idle_seconds_before_scaledown=600,\n",
" min_nodes=0,\n",
" max_nodes=4,\n",
" )\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(\n",
" show_output=True, min_node_count=None, timeout_in_minutes=20\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train an Image Classification model\n",
"\n",
"In this section we will do a quick model train to use for the batch scoring. For a datailed example on how to train an image classification model, please refer to the official [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models) or to the [image classification multiclass notebook](https://github.com/Azure/azureml-examples/blob/main/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass/auto-ml-image-classification-multiclass.ipynb). If you already have a model trained in the same workspace, you can skip to section [\"Create data objects\"](#Create-data-objects)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Experiment Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = \"automl-image-batchscoring\"\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download dataset with input Training Data\n",
"\n",
"All images in this notebook are hosted in [this repository](https://github.com/microsoft/computervision-recipes) and are made available under the [MIT license](https://github.com/microsoft/computervision-recipes/blob/master/LICENSE)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"from zipfile import ZipFile\n",
"\n",
"# download data\n",
"download_url = \"https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip\"\n",
"data_file = \"./fridgeObjects.zip\"\n",
"urllib.request.urlretrieve(download_url, filename=data_file)\n",
"\n",
"# extract files\n",
"with ZipFile(data_file, \"r\") as zip:\n",
" print(\"extracting files...\")\n",
" zip.extractall()\n",
" print(\"done\")\n",
"# delete zip file\n",
"os.remove(data_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Convert the downloaded data to JSONL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"\n",
"src = \"./fridgeObjects/\"\n",
"train_validation_ratio = 5\n",
"\n",
"# Retrieving default datastore that got automatically created when we setup a workspace\n",
"workspaceblobstore = ws.get_default_datastore().name\n",
"\n",
"# Path to the training and validation files\n",
"train_annotations_file = os.path.join(src, \"train_annotations.jsonl\")\n",
"validation_annotations_file = os.path.join(src, \"validation_annotations.jsonl\")\n",
"\n",
"# sample json line dictionary\n",
"json_line_sample = {\n",
" \"image_url\": \"AmlDatastore://\"\n",
" + workspaceblobstore\n",
" + \"/\"\n",
" + os.path.basename(os.path.dirname(src)),\n",
" \"label\": \"\",\n",
"}\n",
"\n",
"index = 0\n",
"# Scan each sub directary and generate jsonl line\n",
"with open(train_annotations_file, \"w\") as train_f:\n",
" with open(validation_annotations_file, \"w\") as validation_f:\n",
" for className in os.listdir(src):\n",
" subDir = src + className\n",
" if not os.path.isdir(subDir):\n",
" continue\n",
" # Scan each sub directary\n",
" print(\"Parsing \" + subDir)\n",
" for image in os.listdir(subDir):\n",
" json_line = dict(json_line_sample)\n",
" json_line[\"image_url\"] += f\"/{className}/{image}\"\n",
" json_line[\"label\"] = className\n",
"\n",
" if index % train_validation_ratio == 0:\n",
" # validation annotation\n",
" validation_f.write(json.dumps(json_line) + \"\\n\")\n",
" else:\n",
" # train annotation\n",
" train_f.write(json.dumps(json_line) + \"\\n\")\n",
" index += 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Upload the JSONL file and images to Datastore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Retrieving default datastore that got automatically created when we setup a workspace\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir=\"./fridgeObjects\", target_path=\"fridgeObjects\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create and register datasets in workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"from azureml.data import DataType\n",
"\n",
"# get existing training dataset\n",
"training_dataset_name = \"fridgeObjectsTrainingDataset\"\n",
"if training_dataset_name in ws.datasets:\n",
" training_dataset = ws.datasets.get(training_dataset_name)\n",
" print(\"Found the training dataset\", training_dataset_name)\n",
"else:\n",
" # create training dataset\n",
" training_dataset = Dataset.Tabular.from_json_lines_files(\n",
" path=ds.path(\"fridgeObjects/train_annotations.jsonl\"),\n",
" set_column_types={\"image_url\": DataType.to_stream(ds.workspace)},\n",
" )\n",
" training_dataset = training_dataset.register(\n",
" workspace=ws, name=training_dataset_name\n",
" )\n",
"# get existing validation dataset\n",
"validation_dataset_name = \"fridgeObjectsValidationDataset\"\n",
"if validation_dataset_name in ws.datasets:\n",
" validation_dataset = ws.datasets.get(validation_dataset_name)\n",
" print(\"Found the validation dataset\", validation_dataset_name)\n",
"else:\n",
" # create validation dataset\n",
" validation_dataset = Dataset.Tabular.from_json_lines_files(\n",
" path=ds.path(\"fridgeObjects/validation_annotations.jsonl\"),\n",
" set_column_types={\"image_url\": DataType.to_stream(ds.workspace)},\n",
" )\n",
" validation_dataset = validation_dataset.register(\n",
" workspace=ws, name=validation_dataset_name\n",
" )\n",
"print(\"Training dataset name: \" + training_dataset.name)\n",
"print(\"Validation dataset name: \" + validation_dataset.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Submit training 1 training run with default hyperparameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared.constants import ImageTask\n",
"from azureml.train.automl import AutoMLImageConfig\n",
"from azureml.train.hyperdrive import GridParameterSampling, choice\n",
"\n",
"image_config_vit = AutoMLImageConfig(\n",
" task=ImageTask.IMAGE_CLASSIFICATION,\n",
" compute_target=compute_target,\n",
" training_data=training_dataset,\n",
" validation_data=validation_dataset,\n",
" hyperparameter_sampling=GridParameterSampling({\"model_name\": choice(\"vitb16r224\")}),\n",
" iterations=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run = experiment.submit(image_config_vit)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run.wait_for_completion(wait_post_processing=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create data objects\n",
"\n",
"When building pipelines, `Dataset` objects are used for reading data from workspace datastores, and `PipelineData` objects are used for transferring intermediate data between pipeline steps.\n",
"\n",
"This batch scoring example only uses one pipeline step, but in use-cases with multiple steps, the typical flow will include:\n",
"\n",
"1. Using `Dataset` objects as inputs to fetch raw data, performing some transformations, then output a `PipelineData` object. \n",
"1. Use the previous step's `PipelineData` **output object** as an **input object**, repeated for subsequent steps.\n",
"\n",
"For this scenario you create `Dataset` objects corresponding to the datastore directories for the input images. You also create a `PipelineData` object for the batch scoring output data. An object reference in the `outputs` array becomes available as an **input** for a subsequent pipeline step, for scenarios where there is more than one step. In this case we are just going to build a single step pipeline.\n",
"\n",
"It is assumed that an image classification training run was already performed in this workspace and the files are already in the datastore. If this is not the case, please refer to the [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models) to know how to train an image classification model with AutoML.\n",
"\n",
"All images in this notebook are hosted in [this repository](https://github.com/microsoft/computervision-recipes) and are made available under the [MIT license](https://github.com/microsoft/computervision-recipes/blob/master/LICENSE)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.dataset import Dataset\n",
"from azureml.pipeline.core import PipelineData\n",
"\n",
"input_images = Dataset.File.from_files((def_data_store, \"fridgeObjects/**/*.jpg\"))\n",
"\n",
"output_dir = PipelineData(name=\"scores\", datastore=def_data_store)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we need to register the input datasets for batch scoring with the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_images = input_images.register(\n",
" workspace=ws, name=\"fridgeObjects_scoring_images\", create_new_version=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve the environment and metrics from the training run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.experiment import Experiment\n",
"from azureml.core import Run\n",
"\n",
"experiment_name = \"automl-image-batchscoring\"\n",
"# If your model was not trained with this notebook, replace the id below\n",
"# with the run id of the child training run (i.e., the one ending with HD_0)\n",
"training_run_id = automl_image_run.id + \"_HD_0\"\n",
"exp = Experiment(ws, experiment_name)\n",
"training_run = Run(exp, training_run_id)\n",
"\n",
"# The below will give only the requested metric\n",
"metrics = training_run.get_metrics(\"accuracy\")\n",
"best_metric = max(metrics[\"accuracy\"])\n",
"print(\"best_metric:\", best_metric)\n",
"\n",
"# Retrieve the training environment\n",
"env = training_run.get_environment()\n",
"print(env)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register model with metric and environment tags\n",
"\n",
"Now you register the model to your workspace, which allows you to easily retrieve it in the pipeline process. In the `register()` static function, the `model_name` parameter is the key you use to locate your model throughout the SDK.\n",
"Tag the model with the metrics and the environment used to train the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"tags = dict()\n",
"tags[\"accuracy\"] = best_metric\n",
"tags[\"env_name\"] = env.name\n",
"tags[\"env_version\"] = env.version\n",
"\n",
"model_name = \"fridgeObjectsClassifier\"\n",
"model = training_run.register_model(\n",
" model_name=model_name, model_path=\"train_artifacts\", tags=tags\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# List the models from the workspace\n",
"models = Model.list(ws, name=model_name, latest=True)\n",
"print(model.name)\n",
"print(model.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write a scoring script"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To do the scoring, you create a batch scoring script `batch_scoring.py`, and write it to the scripts folder in current directory. The script takes a minibatch of input images, applies the classification model, and outputs the predictions to a results file.\n",
"\n",
"The script `batch_scoring.py` takes the following parameters, which get passed from the `ParallelRunStep` that you create later:\n",
"\n",
"- `--model_name`: the name of the model being used\n",
"\n",
"While creating the batch scoring script, refer to the scoring scripts generated under the outputs folder of the Automl training runs. This will help to identify the right model settings to be used in the batch scoring script init method while loading the model.\n",
"Note: The batch scoring script we generate in the subsequent step is different from the scoring script generated by the training runs in the below screenshot. We refer to it just to identify the right model settings to be used in the batch scoring script.\n",
"\n",
"![Training run outputs](ui_outputs.PNG \"Training run outputs\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# View the batch scoring script. Use the model settings as appropriate for your model.\n",
"with open(\"./scripts/batch_scoring.py\", \"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build and run the pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the parallel-run configuration to wrap the inference script\n",
"Create the pipeline run configuration specifying the script, environment configuration, and parameters. Specify the compute target you already attached to your workspace as the target of execution of the script. This will set the run configuration of the ParallelRunStep we will define next.\n",
"\n",
"Refer this [site](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines/parallel-run) for more details on ParallelRunStep of Azure Machine Learning Pipelines."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.steps import ParallelRunConfig\n",
"\n",
"parallel_run_config = ParallelRunConfig(\n",
" environment=env,\n",
" entry_script=\"batch_scoring.py\",\n",
" source_directory=\"scripts\",\n",
" output_action=\"append_row\",\n",
" append_row_file_name=\"parallel_run_step.txt\",\n",
" mini_batch_size=\"20\", # Num files to process in one call\n",
" error_threshold=1,\n",
" compute_target=compute_target,\n",
" process_count_per_node=2,\n",
" node_count=1,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the pipeline step\n",
"\n",
"A pipeline step is an object that encapsulates everything you need for running a pipeline including:\n",
"\n",
"* environment and dependency settings\n",
"* the compute resource to run the pipeline on\n",
"* input and output data, and any custom parameters\n",
"* reference to a script to run during the step\n",
"\n",
"There are multiple classes that inherit from the parent class [`PipelineStep`](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/?view=azure-ml-py) to assist with building a step using certain frameworks and stacks. In this example, you use the [`ParallelRunStep`](https://docs.microsoft.com/en-us/python/api/azureml-contrib-pipeline-steps/azureml.contrib.pipeline.steps.parallelrunstep?view=azure-ml-py) class to define your step logic using a scoring script. `ParallelRunStep` executes the script in a distributed fashion.\n",
"\n",
"The pipelines infrastructure uses the `ArgumentParser` class to pass parameters into pipeline steps. For example, in the code below the first argument `--model_name` is given the property identifier `model_name`. In the `main()` function, this property is accessed using `Model.get_model_path(args.model_name)`.\n",
"\n",
"Note: The pipeline in this tutorial only has one step and writes the output to a file, but for multi-step pipelines, you also use `ArgumentParser` to define a directory to write output data for input to subsequent steps. See the [notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb) for an example of passing data between multiple pipeline steps using the `ArgumentParser` design pattern."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.steps import ParallelRunStep\n",
"from datetime import datetime\n",
"\n",
"parallel_step_name = \"batchscoring-\" + datetime.now().strftime(\"%Y%m%d%H%M\")\n",
"\n",
"arguments = [\"--model_name\", model_name]\n",
"\n",
"# Specify inference batch_size, otherwise uses default value. (This is different from the mini_batch_size above)\n",
"# NOTE: Large batch sizes may result in OOM errors.\n",
"# arguments = arguments + [\"--batch_size\", \"20\"]\n",
"\n",
"batch_score_step = ParallelRunStep(\n",
" name=parallel_step_name,\n",
" inputs=[input_images.as_named_input(\"input_images\")],\n",
" output=output_dir,\n",
" arguments=arguments,\n",
" parallel_run_config=parallel_run_config,\n",
" allow_reuse=False,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For a list of all classes for different step types, see the [steps package](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run the pipeline\n",
"\n",
"Now you run the pipeline. First create a `Pipeline` object with your workspace reference and the pipeline step you created. The `steps` parameter is an array of steps, and in this case, there is only one step for batch scoring. To build pipelines with multiple steps, you place the steps in order in this array.\n",
"\n",
"Next use the `Experiment.submit()` function to submit the pipeline for execution. You also specify the custom parameter `param_batch_size`. The `wait_for_completion` function will output logs during the pipeline build process, which allows you to see current progress.\n",
"\n",
"Note: The first pipeline run takes roughly **15 minutes**, as all dependencies must be downloaded, a Docker image is created, and the Python environment is provisioned/created. Running it again takes significantly less time as those resources are reused. However, total run time depends on the workload of your scripts and processes running in each pipeline step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"from azureml.pipeline.core import Pipeline\n",
"\n",
"pipeline = Pipeline(workspace=ws, steps=[batch_score_step])\n",
"pipeline_run = Experiment(ws, \"batch_scoring_automl_image\").submit(pipeline)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This will output information of the pipeline run, including the link to the details page of portal.\n",
"pipeline_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait the run for completion and show output log to console\n",
"pipeline_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download and review output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import tempfile\n",
"import os\n",
"\n",
"batch_run = pipeline_run.find_step_run(batch_score_step.name)[0]\n",
"batch_output = batch_run.get_output_data(output_dir.name)\n",
"\n",
"target_dir = tempfile.mkdtemp()\n",
"batch_output.download(local_path=target_dir)\n",
"result_file = os.path.join(\n",
" target_dir, batch_output.path_on_datastore, parallel_run_config.append_row_file_name\n",
")\n",
"result_file\n",
"\n",
"# Print the first five lines of the output\n",
"with open(result_file) as f:\n",
" for x in range(5):\n",
" print(next(f))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Choose a random file for visualization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import json\n",
"\n",
"with open(result_file, \"r\") as f:\n",
" contents = f.readlines()\n",
"rand_file = contents[random.randrange(len(contents))]\n",
"prediction = json.loads(rand_file)\n",
"print(prediction[\"filename\"])\n",
"print(prediction[\"probs\"])\n",
"print(prediction[\"labels\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download the image file from the datastore\n",
"path = (\n",
" \"fridgeObjects\"\n",
" + \"/\"\n",
" + prediction[\"filename\"].split(\"/\")[-2]\n",
" + \"/\"\n",
" + prediction[\"filename\"].split(\"/\")[-1]\n",
")\n",
"path_on_datastore = def_data_store.path(path)\n",
"single_image_ds = Dataset.File.from_files(path=path_on_datastore, validate=False)\n",
"image = single_image_ds.download()[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.image as mpimg\n",
"from PIL import Image\n",
"import numpy as np\n",
"import json\n",
"\n",
"IMAGE_SIZE = (18, 12)\n",
"plt.figure(figsize=IMAGE_SIZE)\n",
"img_np = mpimg.imread(image)\n",
"img = Image.fromarray(img_np.astype(\"uint8\"), \"RGB\")\n",
"x, y = img.size\n",
"\n",
"fig, ax = plt.subplots(1, figsize=(15, 15))\n",
"# Display the image\n",
"ax.imshow(img_np)\n",
"\n",
"label_index = np.argmax(prediction[\"probs\"])\n",
"label = prediction[\"labels\"][label_index]\n",
"conf_score = prediction[\"probs\"][label_index]\n",
"\n",
"display_text = \"{} ({})\".format(label, round(conf_score, 3))\n",
"print(display_text)\n",
"\n",
"color = \"red\"\n",
"plt.text(30, 30, display_text, color=color, fontsize=30)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Publish and run from REST endpoint"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the following code to publish the pipeline to your workspace. In your workspace in the portal, you can see metadata for the pipeline including run history and durations. You can also run the pipeline manually from the portal.\n",
"\n",
"Additionally, publishing the pipeline enables a REST endpoint to rerun the pipeline from any HTTP library on any platform."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"published_pipeline = pipeline_run.publish_pipeline(\n",
" name=\"automl-image-batch-scoring\",\n",
" description=\"Batch scoring using Automl for Image\",\n",
" version=\"1.0\",\n",
")\n",
"\n",
"published_pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To run the pipeline from the REST endpoint, you first need an OAuth2 Bearer-type authentication header. This example uses interactive authentication for illustration purposes, but for most production scenarios requiring automated or headless authentication, use service principal authentication as [described in this notebook](https://aka.ms/pl-restep-auth).\n",
"\n",
"Service principal authentication involves creating an **App Registration** in **Azure Active Directory**, generating a client secret, and then granting your service principal **role access** to your machine learning workspace. You then use the [`ServicePrincipalAuthentication`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py) class to manage your auth flow.\n",
"\n",
"Both `InteractiveLoginAuthentication` and `ServicePrincipalAuthentication` inherit from `AbstractAuthentication`, and in both cases you use the `get_authentication_header()` function in the same way to fetch the header."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"\n",
"interactive_auth = InteractiveLoginAuthentication()\n",
"auth_header = interactive_auth.get_authentication_header()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get the REST url from the `endpoint` property of the published pipeline object. You can also find the REST url in your workspace in the portal. Build an HTTP POST request to the endpoint, specifying your authentication header. Additionally, add a JSON payload object with the experiment name and the batch size parameter. As a reminder, the `process_count_per_node` is passed through to `ParallelRunStep` because you defined it is defined as a `PipelineParameter` object in the step configuration.\n",
"\n",
"Make the request to trigger the run. Access the `Id` key from the response dictionary to get the value of the run id."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"rest_endpoint = published_pipeline.endpoint\n",
"response = requests.post(\n",
" rest_endpoint,\n",
" headers=auth_header,\n",
" json={\n",
" \"ExperimentName\": \"batch_scoring\",\n",
" \"ParameterAssignments\": {\"process_count_per_node\": 2},\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" response.raise_for_status()\n",
"except Exception:\n",
" raise Exception(\n",
" \"Received bad response from the endpoint: {}\\n\"\n",
" \"Response Code: {}\\n\"\n",
" \"Headers: {}\\n\"\n",
" \"Content: {}\".format(\n",
" rest_endpoint, response.status_code, response.headers, response.content\n",
" )\n",
" )\n",
"run_id = response.json().get(\"Id\")\n",
"print(\"Submitted pipeline run: \", run_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the run id to monitor the status of the new run. This will take another 10-15 min to run and will look similar to the previous pipeline run, so if you don't need to see another pipeline run, you can skip watching the full output."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core.run import PipelineRun\n",
"\n",
"published_pipeline_run = PipelineRun(ws.experiments[\"batch_scoring\"], run_id)\n",
"published_pipeline_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait the run for completion and show output log to console\n",
"published_pipeline_run.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": [
"sanpil",
"trmccorm",
"pansav"
]
}
],
"categories": [
"tutorials"
],
"kernelspec": {
"display_name": "Python 3.6 - AzureML",
"language": "python",
"name": "python3-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"metadata": {
"interpreter": {
"hash": "0f25b6eb4724eea488a4edd67dd290abce7d142c09986fc811384b5aebc0585a"
}
},
"msauthor": "trbye"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,69 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import os
import argparse
import json
from azureml.core.model import Model
from azureml.automl.core.shared import logging_utilities
try:
from azureml.automl.dnn.vision.common.logging_utils import get_logger
from azureml.automl.dnn.vision.common.model_export_utils import (
load_model,
run_inference_batch,
)
from azureml.automl.dnn.vision.classification.inference.score import (
_score_with_model,
)
from azureml.automl.dnn.vision.common.utils import _set_logging_parameters
except ImportError:
from azureml.contrib.automl.dnn.vision.common.logging_utils import get_logger
from azureml.contrib.automl.dnn.vision.common.model_export_utils import (
load_model,
run_inference_batch,
)
from azureml.contrib.automl.dnn.vision.classification.inference.score import (
_score_with_model,
)
from azureml.contrib.automl.dnn.vision.common.utils import _set_logging_parameters
TASK_TYPE = "image-classification"
logger = get_logger("azureml.automl.core.scoring_script_images")
def init():
global model
global batch_size
# Set up logging
_set_logging_parameters(TASK_TYPE, {})
parser = argparse.ArgumentParser(
description="Retrieve model_name and batch_size from arguments."
)
parser.add_argument("--model_name", dest="model_name", required=True)
parser.add_argument("--batch_size", dest="batch_size", type=int, required=False)
args, _ = parser.parse_known_args()
batch_size = args.batch_size
model_path = os.path.join(Model.get_model_path(args.model_name), "model.pt")
print(model_path)
try:
logger.info("Loading model from path: {}.".format(model_path))
model_settings = {}
model = load_model(TASK_TYPE, model_path, **model_settings)
logger.info("Loading successful.")
except Exception as e:
logging_utilities.log_traceback(e, logger)
raise
def run(mini_batch):
logger.info("Running inference.")
result = run_inference_batch(model, mini_batch, _score_with_model, batch_size)
logger.info("Finished inferencing.")
return result

Binary file not shown.

After

Width:  |  Height:  |  Size: 258 KiB

View File

@@ -0,0 +1,15 @@
---
page_type: sample
languages:
- python
products:
- azure-machine-learning
description: Notebook showing how to use AutoML for training an Image Classification Multi-Class model. We will use a small dataset to train the model, demonstrate how you can tune hyperparameters of the model to optimize model performance and deploy the model to use in inference scenarios.
---
# Image Classification Multi-Class using AutoML for Images
- Dataset: Toy dataset with images of products found in a fridge
- **[Jupyter Notebook](auto-ml-image-classification-multiclass.ipynb)**
- train an Image Classification Multi-Class model using AutoML
- tune hyperparameters of the model to optimize model performance
- deploy the model to use in inference scenarios

View File

@@ -0,0 +1,744 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"# Training an Image Classification Multi-Class model using AutoML\n",
"In this notebook, we go over how you can use AutoML for training an Image Classification Multi-Class model. We will use a small dataset to train the model, demonstrate how you can tune hyperparameters of the model to optimize model performance and deploy the model to use in inference scenarios. For detailed information please refer to the [documentation of AutoML for Images](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![img](example_image_classification_multiclass_predictions.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Important:** This feature is currently in public preview. This preview version is provided without a service-level agreement. Certain features might not be supported or might have constrained capabilities. For more information, see [Supplemental Terms of Use for Microsoft Azure Previews](https://azure.microsoft.com/en-us/support/legal/preview-supplemental-terms/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Environment Setup\n",
"Please follow the [\"Setup a new conda environment\"](https://github.com/Azure/azureml-examples/tree/main/python-sdk/tutorials/automl-with-azureml#3-setup-a-new-conda-environment) instructions to get started."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.35.0 of the Azure ML SDK.\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK.\")\n",
"assert (\n",
" azureml.core.VERSION >= \"1.35\"\n",
"), \"Please upgrade the Azure ML SDK by running '!pip install --upgrade azureml-sdk' then restart the kernel.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workspace setup\n",
"In order to train and deploy models in Azure ML, you will first need to set up a workspace.\n",
"\n",
"An [Azure ML Workspace](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#workspace) is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models.\n",
"\n",
"Create an Azure ML Workspace within your Azure subscription or load an existing workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute target setup\n",
"You will need to provide a [Compute Target](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#computes) that will be used for your AutoML model training. AutoML models for image tasks require [GPU SKUs](https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu) such as the ones from the NC, NCv2, NCv3, ND, NDv2 and NCasT4 series. We recommend using the NCsv3-series (with v100 GPUs) for faster training. Using a compute target with a multi-GPU VM SKU will leverage the multiple GPUs to speed up training. Additionally, setting up a compute target with multiple nodes will allow for faster model training by leveraging parallelism, when tuning hyperparameters for your model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"\n",
"cluster_name = \"gpu-cluster-nc6\"\n",
"\n",
"try:\n",
" compute_target = ws.compute_targets[cluster_name]\n",
" print(\"Found existing compute target.\")\n",
"except KeyError:\n",
" print(\"Creating a new compute target...\")\n",
" compute_config = AmlCompute.provisioning_configuration(\n",
" vm_size=\"Standard_NC6\",\n",
" idle_seconds_before_scaledown=600,\n",
" min_nodes=0,\n",
" max_nodes=4,\n",
" )\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(\n",
" show_output=True, min_node_count=None, timeout_in_minutes=20\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Experiment Setup\n",
"Create an [Experiment](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#experiments) in your workspace to track your model training runs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = \"automl-image-multiclass\"\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dataset with input Training Data\n",
"\n",
"In order to generate models for computer vision, you will need to bring in labeled image data as input for model training in the form of an [AzureML Tabular Dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset). You can either use a dataset that you have exported from a [Data Labeling](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-label-data) project, or create a new Tabular Dataset with your labeled training data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook, we use a toy dataset called Fridge Objects, which consists of 134 images of 4 classes of beverage container {can, carton, milk bottle, water bottle} photos taken on different backgrounds.\n",
"\n",
"All images in this notebook are hosted in [this repository](https://github.com/microsoft/computervision-recipes) and are made available under the [MIT license](https://github.com/microsoft/computervision-recipes/blob/master/LICENSE).\n",
"\n",
"We first download and unzip the data locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"from zipfile import ZipFile\n",
"\n",
"# download data\n",
"download_url = \"https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip\"\n",
"data_file = \"./fridgeObjects.zip\"\n",
"urllib.request.urlretrieve(download_url, filename=data_file)\n",
"\n",
"# extract files\n",
"with ZipFile(data_file, \"r\") as zip:\n",
" print(\"extracting files...\")\n",
" zip.extractall()\n",
" print(\"done\")\n",
"# delete zip file\n",
"os.remove(data_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a sample image from this dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Image\n",
"\n",
"sample_image = \"./fridgeObjects/milk_bottle/99.jpg\"\n",
"Image(filename=sample_image)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert the downloaded data to JSONL\n",
"In this example, the fridge object dataset is stored in a directory. There are four different folders inside:\n",
"\n",
"- /water_bottle\n",
"- /milk_bottle\n",
"- /carton\n",
"- /can\n",
"\n",
"This is the most common data format for multiclass image classification. Each folder title corresponds to the image label for the images contained inside.\n",
"\n",
"In order to use this data to create an [AzureML Tabular Dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset), we first need to convert it to the required JSONL format. Please refer to the [documentation on how to prepare datasets](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-prepare-datasets-for-automl-images).\n",
"\n",
"The following script is creating two .jsonl files (one for training and one for validation) in the parent folder of the dataset. The train / validation ratio corresponds to 20% of the data going into the validation file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"\n",
"src = \"./fridgeObjects/\"\n",
"train_validation_ratio = 5\n",
"\n",
"# Retrieving default datastore that got automatically created when we setup a workspace\n",
"workspaceblobstore = ws.get_default_datastore().name\n",
"\n",
"# Path to the training and validation files\n",
"train_annotations_file = os.path.join(src, \"train_annotations.jsonl\")\n",
"validation_annotations_file = os.path.join(src, \"validation_annotations.jsonl\")\n",
"\n",
"# sample json line dictionary\n",
"json_line_sample = {\n",
" \"image_url\": \"AmlDatastore://\"\n",
" + workspaceblobstore\n",
" + \"/\"\n",
" + os.path.basename(os.path.dirname(src)),\n",
" \"label\": \"\",\n",
"}\n",
"\n",
"index = 0\n",
"# Scan each sub directary and generate jsonl line\n",
"with open(train_annotations_file, \"w\") as train_f:\n",
" with open(validation_annotations_file, \"w\") as validation_f:\n",
" for className in os.listdir(src):\n",
" subDir = src + className\n",
" if not os.path.isdir(subDir):\n",
" continue\n",
" # Scan each sub directary\n",
" print(\"Parsing \" + subDir)\n",
" for image in os.listdir(subDir):\n",
" json_line = dict(json_line_sample)\n",
" json_line[\"image_url\"] += f\"/{className}/{image}\"\n",
" json_line[\"label\"] = className\n",
"\n",
" if index % train_validation_ratio == 0:\n",
" # validation annotation\n",
" validation_f.write(json.dumps(json_line) + \"\\n\")\n",
" else:\n",
" # train annotation\n",
" train_f.write(json.dumps(json_line) + \"\\n\")\n",
" index += 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload the JSONL file and images to Datastore\n",
"In order to use the data for training in Azure ML, we upload it to our Azure ML Workspace via a [Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/concept-azure-machine-learning-architecture#datasets-and-datastores). The datastore provides a mechanism for you to upload/download data and interact with it from your remote compute targets. It is an abstraction over Azure Storage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Retrieving default datastore that got automatically created when we setup a workspace\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir=\"./fridgeObjects\", target_path=\"fridgeObjects\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we need to create an [AzureML Tabular Dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset) from the data we uploaded to the Datastore. We create one dataset for training and one for validation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"from azureml.data import DataType\n",
"\n",
"# get existing training dataset\n",
"training_dataset_name = \"fridgeObjectsTrainingDataset\"\n",
"if training_dataset_name in ws.datasets:\n",
" training_dataset = ws.datasets.get(training_dataset_name)\n",
" print(\"Found the training dataset\", training_dataset_name)\n",
"else:\n",
" # create training dataset\n",
" training_dataset = Dataset.Tabular.from_json_lines_files(\n",
" path=ds.path(\"fridgeObjects/train_annotations.jsonl\"),\n",
" set_column_types={\"image_url\": DataType.to_stream(ds.workspace)},\n",
" )\n",
" training_dataset = training_dataset.register(\n",
" workspace=ws, name=training_dataset_name\n",
" )\n",
"# get existing validation dataset\n",
"validation_dataset_name = \"fridgeObjectsValidationDataset\"\n",
"if validation_dataset_name in ws.datasets:\n",
" validation_dataset = ws.datasets.get(validation_dataset_name)\n",
" print(\"Found the validation dataset\", validation_dataset_name)\n",
"else:\n",
" # create validation dataset\n",
" validation_dataset = Dataset.Tabular.from_json_lines_files(\n",
" path=ds.path(\"fridgeObjects/validation_annotations.jsonl\"),\n",
" set_column_types={\"image_url\": DataType.to_stream(ds.workspace)},\n",
" )\n",
" validation_dataset = validation_dataset.register(\n",
" workspace=ws, name=validation_dataset_name\n",
" )\n",
"print(\"Training dataset name: \" + training_dataset.name)\n",
"print(\"Validation dataset name: \" + validation_dataset.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Validation dataset is optional. If no validation dataset is specified, by default 20% of your training data will be used for validation. You can control the percentage using the `split_ratio` argument - please refer to the [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models#model-agnostic-hyperparameters) for more details.\n",
"\n",
"This is what the training dataset looks like:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_dataset.to_pandas_dataframe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuring your AutoML run for image tasks\n",
"AutoML allows you to easily train models for Image Classification, Object Detection & Instance Segmentation on your image data. You can control the model algorithm to be used, specify hyperparameter values for your model as well as perform a sweep across the hyperparameter space to generate an optimal model. Parameters for configuring your AutoML Image run are specified using the `AutoMLImageConfig` - please refer to the [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models#configure-your-experiment-settings) for the details on the parameters that can be used and their values."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using AutoML for image tasks, you need to specify the model algorithms using the `model_name` parameter. You can either specify a single model or choose to sweep over multiple models. Please refer to the [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models#configure-model-algorithms-and-hyperparameters) for the list of supported model algorithms.\n",
"\n",
"### Using default hyperparameter values for the specified algorithm\n",
"Before doing a large sweep to search for the optimal models and hyperparameters, we recommend trying the default values for a given model to get a first baseline. Next, you can explore multiple hyperparameters for the same model before sweeping over multiple models and their parameters. This allows an iterative approach, as with multiple models and multiple hyperparameters for each (as we showcase in the next section), the search space grows exponentially, and you need more iterations to find optimal configurations.\n",
"\n",
"If you wish to use the default hyperparameter values for a given algorithm (say `vitb16r224`), you can specify the config for your AutoML Image runs as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared.constants import ImageTask\n",
"from azureml.train.automl import AutoMLImageConfig\n",
"from azureml.train.hyperdrive import GridParameterSampling, choice\n",
"\n",
"image_config_vit = AutoMLImageConfig(\n",
" task=ImageTask.IMAGE_CLASSIFICATION,\n",
" compute_target=compute_target,\n",
" training_data=training_dataset,\n",
" validation_data=validation_dataset,\n",
" hyperparameter_sampling=GridParameterSampling({\"model_name\": choice(\"vitb16r224\")}),\n",
" iterations=1,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submitting an AutoML run for Computer Vision tasks\n",
"Once you've created the config settings for your run, you can submit an AutoML run using the config in order to train a vision model using your training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run = experiment.submit(image_config_vit)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run.wait_for_completion(wait_post_processing=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Hyperparameter sweeping for your AutoML models for computer vision tasks\n",
"In this example, we use the AutoMLImageConfig to train an Image Classification model using the following model algorithms: `seresnext`, `resnet50`, `vitb16r224`, and `vits16r224`.\n",
"\n",
"When using AutoML for Images, you can perform a hyperparameter sweep over a defined parameter space to find the optimal model. In this example, we sweep over the hyperparameters for each algorithm, choosing from a range of values for learning_rate, number_of_epochs, layers_to_freeze, etc., to generate a model with the optimal 'accuracy'. If hyperparameter values are not specified, then default values are used for the specified algorithm.\n",
"\n",
"We use Random Sampling to pick samples from this parameter space and try a total of 10 iterations with these different samples, running 2 iterations at a time on our compute target, which has been previously set up using 4 nodes. Please note that the more parameters the space has, the more iterations you need to find optimal models.\n",
"\n",
"We leverage the Bandit early termination policy which will terminate poor performing configs (those that are not within 20% slack of the best performing config), thus significantly saving compute resources.\n",
"\n",
"For more details on model and hyperparameter sweeping, please refer to the [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared.constants import ImageTask\n",
"from azureml.train.automl import AutoMLImageConfig\n",
"from azureml.train.hyperdrive import BanditPolicy, RandomParameterSampling\n",
"from azureml.train.hyperdrive import choice, uniform\n",
"\n",
"parameter_space = {\n",
" \"learning_rate\": uniform(0.001, 0.01),\n",
" \"model\": choice(\n",
" {\n",
" \"model_name\": choice(\"vitb16r224\", \"vits16r224\"),\n",
" \"number_of_epochs\": choice(15, 30),\n",
" },\n",
" {\n",
" \"model_name\": choice(\"seresnext\", \"resnest50\"),\n",
" \"layers_to_freeze\": choice(0, 2),\n",
" },\n",
" ),\n",
"}\n",
"\n",
"tuning_settings = {\n",
" \"iterations\": 10,\n",
" \"max_concurrent_iterations\": 2,\n",
" \"hyperparameter_sampling\": RandomParameterSampling(parameter_space),\n",
" \"early_termination_policy\": BanditPolicy(\n",
" evaluation_interval=2, slack_factor=0.2, delay_evaluation=6\n",
" ),\n",
"}\n",
"\n",
"automl_image_config = AutoMLImageConfig(\n",
" task=ImageTask.IMAGE_CLASSIFICATION,\n",
" compute_target=compute_target,\n",
" training_data=training_dataset,\n",
" validation_data=validation_dataset,\n",
" **tuning_settings,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run = experiment.submit(automl_image_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_image_run.wait_for_completion(wait_post_processing=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When doing a hyperparameter sweep, it can be useful to visualize the different configurations that were tried using the HyperDrive UI. You can navigate to this UI by going to the 'Child runs' tab in the UI of the main `automl_image_run` from above, which is the HyperDrive parent run. Then you can go into the 'Child runs' tab of this HyperDrive parent run. Alternatively, here below you can see directly the HyperDrive parent run and navigate to its 'Child runs' tab:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Run\n",
"\n",
"hyperdrive_run = Run(experiment=experiment, run_id=automl_image_run.id + \"_HD\")\n",
"hyperdrive_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register the optimal vision model from the AutoML run\n",
"Once the run completes, we can register the model that was created from the best run (configuration that resulted in the best primary metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Register the model from the best run\n",
"\n",
"best_child_run = automl_image_run.get_best_child()\n",
"model_name = best_child_run.properties[\"model_name\"]\n",
"model = best_child_run.register_model(\n",
" model_name=model_name, model_path=\"outputs/model.pt\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model as a web service\n",
"Once you have your trained model, you can deploy the model on Azure. You can deploy your trained model as a web service on Azure Container Instances ([ACI](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-container-instance)) or Azure Kubernetes Service ([AKS](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service)). Please note that ACI only supports small models under 1 GB in size. For testing larger models or for the high-scale production stage, we recommend using AKS.\n",
"In this tutorial, we will deploy the model as a web service in AKS."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will need to first create an AKS compute cluster or use an existing AKS cluster. You can use either GPU or CPU VM SKUs for your deployment cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"\n",
"# Choose a name for your cluster\n",
"aks_name = \"aks-cpu-mc\"\n",
"# Check to see if the cluster already exists\n",
"try:\n",
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
" print(\"Found existing compute target\")\n",
"except ComputeTargetException:\n",
" print(\"Creating a new compute target...\")\n",
" # Provision AKS cluster with a CPU machine\n",
" prov_config = AksCompute.provisioning_configuration(vm_size=\"STANDARD_D3_V2\")\n",
" # Create the cluster\n",
" aks_target = ComputeTarget.create(\n",
" workspace=ws, name=aks_name, provisioning_configuration=prov_config\n",
" )\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, you will need to define the [inference configuration](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models#update-inference-configuration), that describes how to set up the web-service containing your model. You can use the scoring script and the environment from the training run in your inference config.\n",
"\n",
"<b>Note:</b> To change the model's settings, open the downloaded scoring script and modify the model_settings variable <i>before</i> deploying the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"best_child_run.download_file(\n",
" \"outputs/scoring_file_v_1_0_0.py\", output_file_path=\"score.py\"\n",
")\n",
"environment = best_child_run.get_environment()\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=environment)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can then deploy the model as an AKS web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Deploy the model from the best run as an AKS web service\n",
"from azureml.core.webservice import AksWebservice\n",
"from azureml.core.model import Model\n",
"\n",
"aks_config = AksWebservice.deploy_configuration(\n",
" autoscale_enabled=True, cpu_cores=1, memory_gb=5, enable_app_insights=True\n",
")\n",
"\n",
"aks_service = Model.deploy(\n",
" ws,\n",
" models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target,\n",
" name=\"automl-image-test-cpu-mc\",\n",
" overwrite=True,\n",
")\n",
"aks_service.wait_for_deployment(show_output=True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the web service\n",
"Finally, let's test our deployed web service to predict new images. You can pass in any image. In this case, we'll use a random image from the dataset and pass it to the scoring URI."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"# URL for the web service\n",
"scoring_uri = aks_service.scoring_uri\n",
"\n",
"# If the service is authenticated, set the key or token\n",
"key, _ = aks_service.get_keys()\n",
"\n",
"sample_image = \"./test_image.jpg\"\n",
"\n",
"# Load image data\n",
"data = open(sample_image, \"rb\").read()\n",
"\n",
"# Set the content type\n",
"headers = {\"Content-Type\": \"application/octet-stream\"}\n",
"\n",
"# If authentication is enabled, set the authorization header\n",
"headers[\"Authorization\"] = f\"Bearer {key}\"\n",
"\n",
"# Make the request and display the response\n",
"resp = requests.post(scoring_uri, data, headers=headers)\n",
"print(resp.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize predictions\n",
"Now that we have scored a test image, we can visualize the prediction for this image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.image as mpimg\n",
"from PIL import Image\n",
"import numpy as np\n",
"import json\n",
"\n",
"IMAGE_SIZE = (18, 12)\n",
"plt.figure(figsize=IMAGE_SIZE)\n",
"img_np = mpimg.imread(sample_image)\n",
"img = Image.fromarray(img_np.astype(\"uint8\"), \"RGB\")\n",
"x, y = img.size\n",
"\n",
"fig, ax = plt.subplots(1, figsize=(15, 15))\n",
"# Display the image\n",
"ax.imshow(img_np)\n",
"\n",
"prediction = json.loads(resp.text)\n",
"label_index = np.argmax(prediction[\"probs\"])\n",
"label = prediction[\"labels\"][label_index]\n",
"conf_score = prediction[\"probs\"][label_index]\n",
"\n",
"display_text = \"{} ({})\".format(label, round(conf_score, 3))\n",
"print(display_text)\n",
"\n",
"color = \"red\"\n",
"plt.text(30, 30, display_text, color=color, fontsize=30)\n",
"\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.6 - AzureML",
"language": "python",
"name": "python3-azureml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"nteract": {
"version": "nteract-front-end@1.0.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 272 KiB

View File

@@ -0,0 +1,15 @@
---
page_type: sample
languages:
- python
products:
- azure-machine-learning
description: Notebook showing how to use AutoML for training an Image Classification Multi-Label model. We will use a small dataset to train the model, demonstrate how you can tune hyperparameters of the model to optimize model performance and deploy the model to use in inference scenarios.
---
# Image Classification Multi-Label using AutoML for Images
- Dataset: Toy dataset with images of products found in a fridge
- **[Jupyter Notebook](auto-ml-image-classification-multilabel.ipynb)**
- train an Image Classification Multi-Label model using AutoML
- tune hyperparameters of the model to optimize model performance
- deploy the model to use in inference scenarios

Some files were not shown because too many files have changed in this diff Show More