Compare commits

...

25 Commits

Author SHA1 Message Date
amlrelsa-ms
ec97207bb1 update samples from Release-101 as a part of SDK release 2021-06-05 02:54:13 +00:00
Harneet Virk
a2d20b0f47 Merge pull request #1493 from Azure/release_update/Release-98
update samples from Release-98 as a part of  SDK release
2021-05-28 08:04:58 -07:00
amlrelsa-ms
8180cebd75 update samples from Release-98 as a part of SDK release 2021-05-28 03:44:25 +00:00
Harneet Virk
700ab2d782 Merge pull request #1489 from Azure/release_update/Release-97
update samples from Release-97 as a part of  SDK  1.29.0 release
2021-05-25 07:43:14 -07:00
amlrelsa-ms
ec9a5a061d update samples from Release-97 as a part of SDK release 2021-05-24 17:39:23 +00:00
Harneet Virk
467630f955 Merge pull request #1466 from Azure/release_update/Release-96
update samples from Release-96 as a part of  SDK release 1.28.0
2021-05-10 22:48:19 -07:00
amlrelsa-ms
eac6b69bae update samples from Release-96 as a part of SDK release 2021-05-10 18:38:34 +00:00
Harneet Virk
441a5b0141 Merge pull request #1440 from Azure/release_update/Release-95
update samples from Release-95 as a part of  SDK 1.27 release
2021-04-19 11:51:21 -07:00
amlrelsa-ms
70902df6da update samples from Release-95 as a part of SDK release 2021-04-19 18:42:58 +00:00
nikAI77
6f893ff0b4 update samples from Release-94 as a part of SDK release (#1418)
Co-authored-by: amlrelsa-ms <amlrelsa@microsoft.com>
2021-04-06 12:36:12 -04:00
Harneet Virk
bda592a236 Merge pull request #1406 from Azure/release_update/Release-93
update samples from Release-93 as a part of  SDK release
2021-03-24 11:25:00 -07:00
amlrelsa-ms
8b32e8d5ad update samples from Release-93 as a part of SDK release 2021-03-24 16:45:36 +00:00
Harneet Virk
54a065c698 Merge pull request #1386 from yunjie-hub/master
Add synapse sample notebooks
2021-03-09 18:05:10 -08:00
yunjie-hub
b9718678b3 Add files via upload 2021-03-09 18:02:27 -08:00
Harneet Virk
3fa40d2c6d Merge pull request #1385 from Azure/release_update/Release-92
update samples from Release-92 as a part of  SDK release
2021-03-09 17:51:27 -08:00
amlrelsa-ms
883e4a4c59 update samples from Release-92 as a part of SDK release 2021-03-10 01:48:54 +00:00
Harneet Virk
e90826b331 Merge pull request #1384 from yunjie-hub/master
Add synapse sample notebooks
2021-03-09 12:40:33 -08:00
yunjie-hub
ac04172f6d Add files via upload 2021-03-09 12:38:23 -08:00
Harneet Virk
8c0000beb4 Merge pull request #1382 from Azure/release_update/Release-91
update samples from Release-91 as a part of  SDK release
2021-03-08 21:43:10 -08:00
amlrelsa-ms
35287ab0d8 update samples from Release-91 as a part of SDK release 2021-03-09 05:36:08 +00:00
Harneet Virk
3fe4f8b038 Merge pull request #1375 from Azure/release_update/Release-90
update samples from Release-90 as a part of  SDK release
2021-03-01 09:15:14 -08:00
amlrelsa-ms
1722678469 update samples from Release-90 as a part of SDK release 2021-03-01 17:13:25 +00:00
Harneet Virk
17da7e8706 Merge pull request #1364 from Azure/release_update/Release-89
update samples from Release-89 as a part of  SDK release
2021-02-23 17:27:27 -08:00
amlrelsa-ms
d2e7213ff3 update samples from Release-89 as a part of SDK release 2021-02-24 01:26:17 +00:00
mx-iao
882cb76e8a Merge pull request #1361 from Azure/minxia/distr-pytorch
Update distributed pytorch example
2021-02-23 12:07:20 -08:00
242 changed files with 5813 additions and 12776 deletions

View File

@@ -103,7 +103,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -254,6 +254,8 @@
"\n", "\n",
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n", "Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n", "To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
"\n", "\n",
"The cluster parameters are:\n", "The cluster parameters are:\n",

View File

@@ -36,9 +36,9 @@
"\n", "\n",
"<a id=\"Introduction\"></a>\n", "<a id=\"Introduction\"></a>\n",
"## Introduction\n", "## Introduction\n",
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.github.io) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.github.io/).\n", "This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.org) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.org/).\n",
"\n", "\n",
"We will apply the [grid search algorithm](https://fairlearn.github.io/master/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n", "We will apply the [grid search algorithm](https://fairlearn.org/v0.4.6/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
"\n", "\n",
"### Setup\n", "### Setup\n",
"\n", "\n",
@@ -48,7 +48,7 @@
"* `azureml-contrib-fairness`\n", "* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6` (v0.5.0 will work with minor modifications)\n", "* `fairlearn==0.4.6` (v0.5.0 will work with minor modifications)\n",
"* `joblib`\n", "* `joblib`\n",
"* `shap`\n", "* `liac-arff`\n",
"\n", "\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:" "Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
] ]
@@ -88,7 +88,6 @@
"from fairlearn.widget import FairlearnDashboard\n", "from fairlearn.widget import FairlearnDashboard\n",
"\n", "\n",
"from sklearn.compose import ColumnTransformer\n", "from sklearn.compose import ColumnTransformer\n",
"from sklearn.datasets import fetch_openml\n",
"from sklearn.impute import SimpleImputer\n", "from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n", "from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n",
@@ -112,9 +111,9 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from fairness_nb_utils import fetch_openml_with_retries\n", "from fairness_nb_utils import fetch_census_dataset\n",
"\n", "\n",
"data = fetch_openml_with_retries(data_id=1590)\n", "data = fetch_census_dataset()\n",
" \n", " \n",
"# Extract the items we want\n", "# Extract the items we want\n",
"X_raw = data.data\n", "X_raw = data.data\n",
@@ -584,7 +583,7 @@
"<a id=\"Conclusion\"></a>\n", "<a id=\"Conclusion\"></a>\n",
"## Conclusion\n", "## Conclusion\n",
"\n", "\n",
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.github.io/) provides that discussion" "In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.org/) provides that discussion"
] ]
}, },
{ {

View File

@@ -5,3 +5,4 @@ dependencies:
- azureml-contrib-fairness - azureml-contrib-fairness
- fairlearn==0.4.6 - fairlearn==0.4.6
- joblib - joblib
- liac-arff

View File

@@ -4,7 +4,13 @@
"""Utilities for azureml-contrib-fairness notebooks.""" """Utilities for azureml-contrib-fairness notebooks."""
import arff
from collections import OrderedDict
from contextlib import closing
import gzip
import pandas as pd
from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml
from sklearn.utils import Bunch
import time import time
@@ -15,7 +21,7 @@ def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
print("Download attempt {0} of {1}".format(i + 1, max_retries)) print("Download attempt {0} of {1}".format(i + 1, max_retries))
data = fetch_openml(data_id=data_id, as_frame=True) data = fetch_openml(data_id=data_id, as_frame=True)
break break
except Exception as e: except Exception as e: # noqa: B902
print("Download attempt failed with exception:") print("Download attempt failed with exception:")
print(e) print(e)
if i + 1 != max_retries: if i + 1 != max_retries:
@@ -26,3 +32,80 @@ def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
raise RuntimeError("Unable to download dataset from OpenML") raise RuntimeError("Unable to download dataset from OpenML")
return data return data
_categorical_columns = [
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country'
]
def fetch_census_dataset():
"""Fetch the Adult Census Dataset.
This uses a particular URL for the Adult Census dataset. The code
is a simplified version of fetch_openml() in sklearn.
The data are copied from:
https://openml.org/data/v1/download/1595261.gz
(as of 2021-03-31)
"""
try:
from urllib import urlretrieve
except ImportError:
from urllib.request import urlretrieve
filename = "1595261.gz"
data_url = "https://rainotebookscdn.blob.core.windows.net/datasets/"
remaining_attempts = 5
sleep_duration = 10
while remaining_attempts > 0:
try:
urlretrieve(data_url + filename, filename)
http_stream = gzip.GzipFile(filename=filename, mode='rb')
with closing(http_stream):
def _stream_generator(response):
for line in response:
yield line.decode('utf-8')
stream = _stream_generator(http_stream)
data = arff.load(stream)
except Exception as exc: # noqa: B902
remaining_attempts -= 1
print("Error downloading dataset from {} ({} attempt(s) remaining)"
.format(data_url, remaining_attempts))
print(exc)
time.sleep(sleep_duration)
sleep_duration *= 2
continue
else:
# dataset successfully downloaded
break
else:
raise Exception("Could not retrieve dataset from {}.".format(data_url))
attributes = OrderedDict(data['attributes'])
arff_columns = list(attributes)
raw_df = pd.DataFrame(data=data['data'], columns=arff_columns)
target_column_name = 'class'
target = raw_df.pop(target_column_name)
for col_name in _categorical_columns:
dtype = pd.api.types.CategoricalDtype(attributes[col_name])
raw_df[col_name] = raw_df[col_name].astype(dtype, copy=False)
result = Bunch()
result.data = raw_df
result.target = target
return result

View File

@@ -50,7 +50,7 @@
"* `azureml-contrib-fairness`\n", "* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6` (should also work with v0.5.0)\n", "* `fairlearn==0.4.6` (should also work with v0.5.0)\n",
"* `joblib`\n", "* `joblib`\n",
"* `shap`\n", "* `liac-arff`\n",
"\n", "\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:" "Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
] ]
@@ -88,7 +88,6 @@
"source": [ "source": [
"from sklearn import svm\n", "from sklearn import svm\n",
"from sklearn.compose import ColumnTransformer\n", "from sklearn.compose import ColumnTransformer\n",
"from sklearn.datasets import fetch_openml\n",
"from sklearn.impute import SimpleImputer\n", "from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n", "from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n",
@@ -110,9 +109,9 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from fairness_nb_utils import fetch_openml_with_retries\n", "from fairness_nb_utils import fetch_census_dataset\n",
"\n", "\n",
"data = fetch_openml_with_retries(data_id=1590)\n", "data = fetch_census_dataset()\n",
" \n", " \n",
"# Extract the items we want\n", "# Extract the items we want\n",
"X_raw = data.data\n", "X_raw = data.data\n",

View File

@@ -5,3 +5,4 @@ dependencies:
- azureml-contrib-fairness - azureml-contrib-fairness
- fairlearn==0.4.6 - fairlearn==0.4.6
- joblib - joblib
- liac-arff

View File

@@ -21,9 +21,8 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.23.0 - azureml-widgets~=1.29.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_win32_requirements.txt [--no-deps] - -r https://automlresources-prod.azureedge.net/validated-requirements/1.29.0/validated_win32_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -21,10 +21,8 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.23.0 - azureml-widgets~=1.29.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_linux_requirements.txt [--no-deps] - -r https://automlresources-prod.azureedge.net/validated-requirements/1.29.0/validated_linux_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -22,9 +22,8 @@ dependencies:
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.23.0 - azureml-widgets~=1.29.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.1.8 - spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_darwin_requirements.txt [--no-deps] - -r https://automlresources-prod.azureedge.net/validated-requirements/1.29.0/validated_darwin_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -32,6 +32,7 @@ if [ $? -ne 0 ]; then
fi fi
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
brew install libomp
if source activate $CONDA_ENV_NAME 2> /dev/null if source activate $CONDA_ENV_NAME 2> /dev/null
then then

View File

@@ -105,7 +105,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -165,6 +165,9 @@
"source": [ "source": [
"## Create or Attach existing AmlCompute\n", "## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n", "You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n", "#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
@@ -374,15 +377,6 @@
"remote_run = experiment.submit(automl_config, show_output = False)" "remote_run = experiment.submit(automl_config, show_output = False)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk

View File

@@ -93,7 +93,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -127,6 +127,9 @@
"source": [ "source": [
"## Create or Attach existing AmlCompute\n", "## Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n", "A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n", "#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
@@ -255,15 +258,6 @@
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')" "#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -138,6 +138,8 @@
"## Set up a compute cluster\n", "## Set up a compute cluster\n",
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n", "This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers." "Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
] ]
}, },
@@ -281,7 +283,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"automl_settings = {\n", "automl_settings = {\n",
" \"experiment_timeout_minutes\": 20,\n", " \"experiment_timeout_minutes\": 30,\n",
" \"primary_metric\": 'accuracy',\n", " \"primary_metric\": 'accuracy',\n",
" \"max_concurrent_iterations\": num_nodes, \n", " \"max_concurrent_iterations\": num_nodes, \n",
" \"max_cores_per_iteration\": -1,\n", " \"max_cores_per_iteration\": -1,\n",
@@ -319,15 +321,6 @@
"automl_run = experiment.submit(automl_config, show_output=True)" "automl_run = experiment.submit(automl_config, show_output=True)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@@ -494,7 +487,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run,\n", "test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run,\n",
" train_dataset, test_dataset, target_column_name, model_name)" " test_dataset, target_column_name, model_name)"
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk

View File

@@ -5,7 +5,7 @@ from azureml.core.run import Run
def run_inference(test_experiment, compute_target, script_folder, train_run, def run_inference(test_experiment, compute_target, script_folder, train_run,
train_dataset, test_dataset, target_column_name, model_name): test_dataset, target_column_name, model_name):
inference_env = train_run.get_environment() inference_env = train_run.get_environment()
@@ -16,7 +16,6 @@ def run_inference(test_experiment, compute_target, script_folder, train_run,
'--model_name': model_name '--model_name': model_name
}, },
inputs=[ inputs=[
train_dataset.as_named_input('train_data'),
test_dataset.as_named_input('test_data') test_dataset.as_named_input('test_data')
], ],
compute_target=compute_target, compute_target=compute_target,

View File

@@ -1,5 +1,6 @@
import argparse import argparse
import pandas as pd
import numpy as np import numpy as np
from sklearn.externals import joblib from sklearn.externals import joblib
@@ -32,22 +33,21 @@ model = joblib.load(model_path)
run = Run.get_context() run = Run.get_context()
# get input dataset by name # get input dataset by name
test_dataset = run.input_datasets['test_data'] test_dataset = run.input_datasets['test_data']
train_dataset = run.input_datasets['train_data']
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \ X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
.to_pandas_dataframe() .to_pandas_dataframe()
y_test_df = test_dataset.with_timestamp_columns(None) \ y_test_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \ .keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe() .to_pandas_dataframe()
y_train_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
predicted = model.predict_proba(X_test_df) predicted = model.predict_proba(X_test_df)
if isinstance(predicted, pd.DataFrame):
predicted = predicted.values
# Use the AutoML scoring module # Use the AutoML scoring module
class_labels = np.unique(np.concatenate((y_train_df.values, y_test_df.values)))
train_labels = model.classes_ train_labels = model.classes_
class_labels = np.unique(np.concatenate((y_test_df.values, np.reshape(train_labels, (-1, 1)))))
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET) classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
scores = scoring.score_classification(y_test_df.values, predicted, scores = scoring.score_classification(y_test_df.values, predicted,
classification_metrics, classification_metrics,

View File

@@ -81,7 +81,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -141,6 +141,9 @@
"#### Create or Attach existing AmlCompute\n", "#### Create or Attach existing AmlCompute\n",
"\n", "\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n", "You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n", "#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."

View File

@@ -0,0 +1,4 @@
name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk

View File

@@ -54,17 +54,17 @@ try:
end_time_last_slice = ds.data_changed_time.replace(tzinfo=None) end_time_last_slice = ds.data_changed_time.replace(tzinfo=None)
print("Dataset {0} last updated on {1}".format(args.ds_name, print("Dataset {0} last updated on {1}".format(args.ds_name,
end_time_last_slice)) end_time_last_slice))
except Exception as e: except Exception:
print(traceback.format_exc()) print(traceback.format_exc())
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name)) print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
register_dataset = True register_dataset = True
end_time_last_slice = datetime.today() - relativedelta(weeks=2) end_time_last_slice = datetime.today() - relativedelta(weeks=4)
end_time = datetime.utcnow() end_time = datetime.utcnow()
train_df = get_noaa_data(end_time_last_slice, end_time) train_df = get_noaa_data(end_time_last_slice, end_time)
if train_df.size > 0: if train_df.size > 0:
print("Received {0} rows of new data after {0}.".format( print("Received {0} rows of new data after {1}.".format(
train_df.shape[0], end_time_last_slice)) train_df.shape[0], end_time_last_slice))
folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year, folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year,
end_time.month, end_time.day, end_time.month, end_time.day,

View File

@@ -5,7 +5,7 @@ set options=%3
set PIP_NO_WARN_SCRIPT_LOCATION=0 set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental" IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental"
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml" IF "%automl_env_file%"=="" SET automl_env_file="automl_thin_client_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing IF NOT EXIST %automl_env_file% GOTO YmlMissing

View File

@@ -12,7 +12,7 @@ fi
if [ "$AUTOML_ENV_FILE" == "" ] if [ "$AUTOML_ENV_FILE" == "" ]
then then
AUTOML_ENV_FILE="automl_env.yml" AUTOML_ENV_FILE="automl_thin_client_env.yml"
fi fi
if [ ! -f $AUTOML_ENV_FILE ]; then if [ ! -f $AUTOML_ENV_FILE ]; then

View File

@@ -12,7 +12,7 @@ fi
if [ "$AUTOML_ENV_FILE" == "" ] if [ "$AUTOML_ENV_FILE" == "" ]
then then
AUTOML_ENV_FILE="automl_env.yml" AUTOML_ENV_FILE="automl_thin_client_env_mac.yml"
fi fi
if [ ! -f $AUTOML_ENV_FILE ]; then if [ ! -f $AUTOML_ENV_FILE ]; then

View File

@@ -7,6 +7,8 @@ dependencies:
- nb_conda - nb_conda
- cython - cython
- urllib3<1.24 - urllib3<1.24
- PyJWT < 2.0.0
- numpy==1.18.5
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
@@ -14,4 +16,3 @@ dependencies:
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- pandas - pandas
- PyJWT < 2.0.0

View File

@@ -8,6 +8,8 @@ dependencies:
- nb_conda - nb_conda
- cython - cython
- urllib3<1.24 - urllib3<1.24
- PyJWT < 2.0.0
- numpy==1.18.5
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
@@ -15,4 +17,3 @@ dependencies:
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- pandas - pandas
- PyJWT < 2.0.0

View File

@@ -39,6 +39,7 @@
"source": [ "source": [
"## Introduction\n", "## Introduction\n",
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n", "In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
"This notebook will also leverage MLFlow for saving models, allowing for more portability of the resulting models. See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow for more details around MLFlow is AzureML.\n",
"\n", "\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n", "If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n", "\n",
@@ -90,7 +91,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -194,7 +195,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n", "|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n", "|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n", "|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**scenario**|We need to set this parameter to 'Latest' to enable some experimental features. This parameter should not be set outside of this experimental notebook.|\n",
"\n", "\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)" "**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
] ]
@@ -213,17 +213,17 @@
" \"n_cross_validations\": 3,\n", " \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n", " \"primary_metric\": 'r2_score',\n",
" \"enable_early_stopping\": True, \n", " \"enable_early_stopping\": True, \n",
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n", " \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
" \"max_concurrent_iterations\": 4,\n", " \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n", " \"max_cores_per_iteration\": -1,\n",
" \"verbosity\": logging.INFO,\n", " \"verbosity\": logging.INFO,\n",
" \"save_mlflow\": True,\n",
"}\n", "}\n",
"\n", "\n",
"automl_config = AutoMLConfig(task = 'regression',\n", "automl_config = AutoMLConfig(task = 'regression',\n",
" compute_target = compute_target,\n", " compute_target = compute_target,\n",
" training_data = train_data,\n", " training_data = train_data,\n",
" label_column_name = label,\n", " label_column_name = label,\n",
" scenario='Latest',\n",
" **automl_settings\n", " **automl_settings\n",
" )" " )"
] ]

View File

@@ -0,0 +1,4 @@
name: auto-ml-regression-model-proxy
dependencies:
- pip:
- azureml-sdk

View File

@@ -113,7 +113,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -162,7 +162,9 @@
}, },
"source": [ "source": [
"### Using AmlCompute\n", "### Using AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {
@@ -365,7 +367,9 @@
"source": [ "source": [
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n", "from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n", "forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n", " time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n",
" freq='MS' # Set the forecast frequency to be monthly (start of the month)\n",
")\n", ")\n",
"\n", "\n",
"automl_config = AutoMLConfig(task='forecasting', \n", "automl_config = AutoMLConfig(task='forecasting', \n",
@@ -401,8 +405,7 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"remote_run = experiment.submit(automl_config, show_output= False)\n", "remote_run = experiment.submit(automl_config, show_output= True)"
"remote_run"
] ]
}, },
{ {
@@ -419,15 +422,6 @@
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')" "# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- pip:
- azureml-sdk

View File

@@ -87,7 +87,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -129,6 +129,9 @@
"source": [ "source": [
"## Compute\n", "## Compute\n",
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n", "You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n", "#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
@@ -318,7 +321,8 @@
" time_column_name=time_column_name,\n", " time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n", " forecast_horizon=forecast_horizon,\n",
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n", " country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
" target_lags='auto' # use heuristic based lag setting \n", " target_lags='auto', # use heuristic based lag setting\n",
" freq='D' # Set the forecast frequency to be daily\n",
")\n", ")\n",
"\n", "\n",
"automl_config = AutoMLConfig(task='forecasting', \n", "automl_config = AutoMLConfig(task='forecasting', \n",
@@ -349,8 +353,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"remote_run = experiment.submit(automl_config, show_output=False)\n", "remote_run = experiment.submit(automl_config, show_output=False)"
"remote_run"
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-bike-share
dependencies:
- pip:
- azureml-sdk

View File

@@ -97,7 +97,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -342,7 +342,9 @@
"source": [ "source": [
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n", "from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n", "forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n", " time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n",
" freq='H' # Set the forecast frequency to be hourly\n",
")\n", ")\n",
"\n", "\n",
"automl_config = AutoMLConfig(task='forecasting', \n", "automl_config = AutoMLConfig(task='forecasting', \n",
@@ -375,15 +377,6 @@
"remote_run = experiment.submit(automl_config, show_output=False)" "remote_run = experiment.submit(automl_config, show_output=False)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk

View File

@@ -94,7 +94,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -263,7 +263,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {
@@ -319,7 +321,8 @@
" time_column_name=TIME_COLUMN_NAME,\n", " time_column_name=TIME_COLUMN_NAME,\n",
" forecast_horizon=forecast_horizon,\n", " forecast_horizon=forecast_horizon,\n",
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n", " time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
" target_lags=lags\n", " target_lags=lags,\n",
" freq='H' # Set the forecast frequency to be hourly\n",
")" ")"
] ]
}, },

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-function
dependencies:
- pip:
- azureml-sdk

View File

@@ -82,7 +82,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -124,6 +124,9 @@
"source": [ "source": [
"## Compute\n", "## Compute\n",
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n", "You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n", "#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
@@ -423,7 +426,8 @@
"forecasting_parameters = ForecastingParameters(\n", "forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name,\n", " time_column_name=time_column_name,\n",
" forecast_horizon=n_test_periods,\n", " forecast_horizon=n_test_periods,\n",
" time_series_id_column_names=time_series_id_column_names\n", " time_series_id_column_names=time_series_id_column_names,\n",
" freq='W-THU' # Set the forecast frequency to be weekly (start on each Thursday)\n",
")\n", ")\n",
"\n", "\n",
"automl_config = AutoMLConfig(task='forecasting',\n", "automl_config = AutoMLConfig(task='forecasting',\n",
@@ -455,8 +459,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"remote_run = experiment.submit(automl_config, show_output=False)\n", "remote_run = experiment.submit(automl_config, show_output=False)"
"remote_run"
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- pip:
- azureml-sdk

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -215,15 +215,6 @@
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')" "#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,4 @@
name: auto-ml-classification-credit-card-fraud-local
dependencies:
- pip:
- azureml-sdk

View File

@@ -96,7 +96,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -130,6 +130,8 @@
"### Create or Attach existing AmlCompute\n", "### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n", "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n", "**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n", "\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota." "As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
@@ -305,15 +307,6 @@
"remote_run = experiment.submit(automl_config, show_output = False)" "remote_run = experiment.submit(automl_config, show_output = False)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@@ -448,7 +441,7 @@
"\n", "\n",
"### Retrieve any AutoML Model for explanations\n", "### Retrieve any AutoML Model for explanations\n",
"\n", "\n",
"Below we select the some AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*." "Below we select an AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for any logged `metric` or for a particular `iteration`."
] ]
}, },
{ {
@@ -457,7 +450,8 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"automl_run, fitted_model = remote_run.get_output(metric='r2_score')" "#automl_run, fitted_model = remote_run.get_output(metric='r2_score')\n",
"automl_run, fitted_model = remote_run.get_output(iteration=2)"
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: auto-ml-regression-explanation-featurization
dependencies:
- pip:
- azureml-sdk

View File

@@ -27,7 +27,7 @@ automl_run = Run(experiment=experiment, run_id='<<run_id>>')
# Check if this AutoML model is explainable # Check if this AutoML model is explainable
if not automl_check_model_if_explainable(automl_run): if not automl_check_model_if_explainable(automl_run):
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get( raise Exception("Model explanations are currently not supported for " + automl_run.get_properties().get(
'run_algorithm')) 'run_algorithm'))
# Download the best model from the artifact store # Download the best model from the artifact store
@@ -38,16 +38,16 @@ fitted_model = joblib.load('model.pkl')
# Get the train dataset from the workspace # Get the train dataset from the workspace
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>') train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
# Drop the lablled column to get the training set. # Drop the labeled column to get the training set.
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>']) X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True) y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
# Get the train dataset from the workspace # Get the test dataset from the workspace
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>') test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
# Drop the lablled column to get the testing set. # Drop the labeled column to get the testing set.
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>']) X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
# Setup the class for explaining the AtuoML models # Setup the class for explaining the AutoML models
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>', automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
X=X_train, X_test=X_test, X=X_train, X_test=X_test,
y=y_train) y=y_train)

View File

@@ -92,7 +92,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.29.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -256,15 +256,6 @@
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')" "#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,4 @@
name: auto-ml-regression
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,84 @@
Azure Synapse Analyticsis a limitless analytics service that brings together data integration, enterprise data warehousing, and big data analytics. It gives you the freedom to query data on your terms, using either serverless or dedicated resources—at scale. Azure Synapse brings these worlds together with a unified experience to ingest, explore, prepare, manage, and serve data for immediate BI and machine learning needs.A coreoffering within Azure Synapse Analyticsare serverlessApache Spark poolsenhanced for big data workloads.
Synapse in Aml integration is for customerswho want to useApacheSparkin AzureSynapse Analyticsto prepare data at scale in Azure ML before training their ML model. This will allow customers to work on their end-to-end ML lifecycle including large-scale data preparation, model training and deployment within Azure ML workspace without having to use suboptimal tools for machine learning or switch between multipletools for data preparation and model training.The ability to perform all ML tasks within Azure ML willreducetimerequired for customersto iterate on a machine learning project which typically includesmultiple rounds ofdata preparation and training.
In the public preview, the capabilities are provided:
- Link Azure Synapse Analytics workspace to Azure Machine Learning workspace (via ARM, UI or SDK)
- Attach Apache Spark pools powered by Azure Synapse Analytics as Azure Machine Learning compute targets (via ARM, UI or SDK)
- Launch Apache Spark sessions in notebooks and perform interactive data exploration and preparation. This interactive experience leverages Apache Spark magic and customers will have session-level Conda support to install packages.
- Productionize ML pipelines by leveraging Apache Spark pools to pre-process big data
# Using Synapse in Azure machine learning
## Create synapse resources
Follow up the documents to create Synapse workspace and resource-setup.sh is available for you to create the resources.
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace)
- Create from [Cli](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace-cli)
Follow up the documents to create Synapse spark pool
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal)
- Create from [Cli](https://docs.microsoft.com/en-us/cli/azure/ext/synapse/synapse/spark/pool?view=azure-cli-latest)
## Link Synapse Workspace
Make sure you are the owner of synapse workspace so that you can link synapse workspace into AML.
You can run resource-setup.py to link the synapse workspace and attach compute
```python
from azureml.core import Workspace
ws = Workspace.from_config()
from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration
synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(
subscription_id="<subscription id>",
resource_group="<resource group",
name="<synapse workspace name>"
)
linked_service = LinkedService.register(
workspace=ws,
name='<link name>',
linked_service_config=synapse_link_config)
```
## Attach synapse spark pool as AzureML compute
```python
from azureml.core.compute import SynapseCompute, ComputeTarget
spark_pool_name = "<spark pool name>"
attached_synapse_name = "<attached compute name>"
attach_config = SynapseCompute.attach_configuration(
linked_service,
type="SynapseSpark",
pool_name=spark_pool_name)
synapse_compute=ComputeTarget.attach(
workspace=ws,
name=attached_synapse_name,
attach_configuration=attach_config)
synapse_compute.wait_for_completion()
```
## Set up permission
Grant Spark admin role to system assigned identity of the linked service so that the user can submit experiment run or pipeline run from AML workspace to synapse spark pool.
Grant Spark admin role to the specific user so that the user can start spark session to synapse spark pool.
You can get the system assigned identity information by running
```python
print(linked_service.system_assigned_identity_principal_id)
```
- Launch synapse studio of the synapse workspace and grant linked service MSI "Synapse Apache Spark administrator" role.
- In azure portal grant linked service MSI "Storage Blob Data Contributor" role of the primary adlsgen2 account of synapse workspace to use the library management feature.

View File

@@ -0,0 +1,892 @@
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
1 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
2 1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S
3 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 C85 C
4 3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 S
5 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1 C123 S
6 5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.05 S
7 6 0 3 Moran, Mr. James male 0 0 330877 8.4583 Q
8 7 0 1 McCarthy, Mr. Timothy J male 54 0 0 17463 51.8625 E46 S
9 8 0 3 Palsson, Master. Gosta Leonard male 2 3 1 349909 21.075 S
10 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 2 347742 11.1333 S
11 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 0 237736 30.0708 C
12 11 1 3 Sandstrom, Miss. Marguerite Rut female 4 1 1 PP 9549 16.7 G6 S
13 12 1 1 Bonnell, Miss. Elizabeth female 58 0 0 113783 26.55 C103 S
14 13 0 3 Saundercock, Mr. William Henry male 20 0 0 A/5. 2151 8.05 S
15 14 0 3 Andersson, Mr. Anders Johan male 39 1 5 347082 31.275 S
16 15 0 3 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 0 350406 7.8542 S
17 16 1 2 Hewlett, Mrs. (Mary D Kingcome) female 55 0 0 248706 16 S
18 17 0 3 Rice, Master. Eugene male 2 4 1 382652 29.125 Q
19 18 1 2 Williams, Mr. Charles Eugene male 0 0 244373 13 S
20 19 0 3 Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele) female 31 1 0 345763 18 S
21 20 1 3 Masselmani, Mrs. Fatima female 0 0 2649 7.225 C
22 21 0 2 Fynney, Mr. Joseph J male 35 0 0 239865 26 S
23 22 1 2 Beesley, Mr. Lawrence male 34 0 0 248698 13 D56 S
24 23 1 3 McGowan, Miss. Anna "Annie" female 15 0 0 330923 8.0292 Q
25 24 1 1 Sloper, Mr. William Thompson male 28 0 0 113788 35.5 A6 S
26 25 0 3 Palsson, Miss. Torborg Danira female 8 3 1 349909 21.075 S
27 26 1 3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson) female 38 1 5 347077 31.3875 S
28 27 0 3 Emir, Mr. Farred Chehab male 0 0 2631 7.225 C
29 28 0 1 Fortune, Mr. Charles Alexander male 19 3 2 19950 263 C23 C25 C27 S
30 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female 0 0 330959 7.8792 Q
31 30 0 3 Todoroff, Mr. Lalio male 0 0 349216 7.8958 S
32 31 0 1 Uruchurtu, Don. Manuel E male 40 0 0 PC 17601 27.7208 C
33 32 1 1 Spencer, Mrs. William Augustus (Marie Eugenie) female 1 0 PC 17569 146.5208 B78 C
34 33 1 3 Glynn, Miss. Mary Agatha female 0 0 335677 7.75 Q
35 34 0 2 Wheadon, Mr. Edward H male 66 0 0 C.A. 24579 10.5 S
36 35 0 1 Meyer, Mr. Edgar Joseph male 28 1 0 PC 17604 82.1708 C
37 36 0 1 Holverson, Mr. Alexander Oskar male 42 1 0 113789 52 S
38 37 1 3 Mamee, Mr. Hanna male 0 0 2677 7.2292 C
39 38 0 3 Cann, Mr. Ernest Charles male 21 0 0 A./5. 2152 8.05 S
40 39 0 3 Vander Planke, Miss. Augusta Maria female 18 2 0 345764 18 S
41 40 1 3 Nicola-Yarred, Miss. Jamila female 14 1 0 2651 11.2417 C
42 41 0 3 Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 40 1 0 7546 9.475 S
43 42 0 2 Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott) female 27 1 0 11668 21 S
44 43 0 3 Kraeff, Mr. Theodor male 0 0 349253 7.8958 C
45 44 1 2 Laroche, Miss. Simonne Marie Anne Andree female 3 1 2 SC/Paris 2123 41.5792 C
46 45 1 3 Devaney, Miss. Margaret Delia female 19 0 0 330958 7.8792 Q
47 46 0 3 Rogers, Mr. William John male 0 0 S.C./A.4. 23567 8.05 S
48 47 0 3 Lennon, Mr. Denis male 1 0 370371 15.5 Q
49 48 1 3 O'Driscoll, Miss. Bridget female 0 0 14311 7.75 Q
50 49 0 3 Samaan, Mr. Youssef male 2 0 2662 21.6792 C
51 50 0 3 Arnold-Franchi, Mrs. Josef (Josefine Franchi) female 18 1 0 349237 17.8 S
52 51 0 3 Panula, Master. Juha Niilo male 7 4 1 3101295 39.6875 S
53 52 0 3 Nosworthy, Mr. Richard Cater male 21 0 0 A/4. 39886 7.8 S
54 53 1 1 Harper, Mrs. Henry Sleeper (Myna Haxtun) female 49 1 0 PC 17572 76.7292 D33 C
55 54 1 2 Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson) female 29 1 0 2926 26 S
56 55 0 1 Ostby, Mr. Engelhart Cornelius male 65 0 1 113509 61.9792 B30 C
57 56 1 1 Woolner, Mr. Hugh male 0 0 19947 35.5 C52 S
58 57 1 2 Rugg, Miss. Emily female 21 0 0 C.A. 31026 10.5 S
59 58 0 3 Novel, Mr. Mansouer male 28.5 0 0 2697 7.2292 C
60 59 1 2 West, Miss. Constance Mirium female 5 1 2 C.A. 34651 27.75 S
61 60 0 3 Goodwin, Master. William Frederick male 11 5 2 CA 2144 46.9 S
62 61 0 3 Sirayanian, Mr. Orsen male 22 0 0 2669 7.2292 C
63 62 1 1 Icard, Miss. Amelie female 38 0 0 113572 80 B28
64 63 0 1 Harris, Mr. Henry Birkhardt male 45 1 0 36973 83.475 C83 S
65 64 0 3 Skoog, Master. Harald male 4 3 2 347088 27.9 S
66 65 0 1 Stewart, Mr. Albert A male 0 0 PC 17605 27.7208 C
67 66 1 3 Moubarek, Master. Gerios male 1 1 2661 15.2458 C
68 67 1 2 Nye, Mrs. (Elizabeth Ramell) female 29 0 0 C.A. 29395 10.5 F33 S
69 68 0 3 Crease, Mr. Ernest James male 19 0 0 S.P. 3464 8.1583 S
70 69 1 3 Andersson, Miss. Erna Alexandra female 17 4 2 3101281 7.925 S
71 70 0 3 Kink, Mr. Vincenz male 26 2 0 315151 8.6625 S
72 71 0 2 Jenkin, Mr. Stephen Curnow male 32 0 0 C.A. 33111 10.5 S
73 72 0 3 Goodwin, Miss. Lillian Amy female 16 5 2 CA 2144 46.9 S
74 73 0 2 Hood, Mr. Ambrose Jr male 21 0 0 S.O.C. 14879 73.5 S
75 74 0 3 Chronopoulos, Mr. Apostolos male 26 1 0 2680 14.4542 C
76 75 1 3 Bing, Mr. Lee male 32 0 0 1601 56.4958 S
77 76 0 3 Moen, Mr. Sigurd Hansen male 25 0 0 348123 7.65 F G73 S
78 77 0 3 Staneff, Mr. Ivan male 0 0 349208 7.8958 S
79 78 0 3 Moutal, Mr. Rahamin Haim male 0 0 374746 8.05 S
80 79 1 2 Caldwell, Master. Alden Gates male 0.83 0 2 248738 29 S
81 80 1 3 Dowdell, Miss. Elizabeth female 30 0 0 364516 12.475 S
82 81 0 3 Waelens, Mr. Achille male 22 0 0 345767 9 S
83 82 1 3 Sheerlinck, Mr. Jan Baptist male 29 0 0 345779 9.5 S
84 83 1 3 McDermott, Miss. Brigdet Delia female 0 0 330932 7.7875 Q
85 84 0 1 Carrau, Mr. Francisco M male 28 0 0 113059 47.1 S
86 85 1 2 Ilett, Miss. Bertha female 17 0 0 SO/C 14885 10.5 S
87 86 1 3 Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson) female 33 3 0 3101278 15.85 S
88 87 0 3 Ford, Mr. William Neal male 16 1 3 W./C. 6608 34.375 S
89 88 0 3 Slocovski, Mr. Selman Francis male 0 0 SOTON/OQ 392086 8.05 S
90 89 1 1 Fortune, Miss. Mabel Helen female 23 3 2 19950 263 C23 C25 C27 S
91 90 0 3 Celotti, Mr. Francesco male 24 0 0 343275 8.05 S
92 91 0 3 Christmann, Mr. Emil male 29 0 0 343276 8.05 S
93 92 0 3 Andreasson, Mr. Paul Edvin male 20 0 0 347466 7.8542 S
94 93 0 1 Chaffee, Mr. Herbert Fuller male 46 1 0 W.E.P. 5734 61.175 E31 S
95 94 0 3 Dean, Mr. Bertram Frank male 26 1 2 C.A. 2315 20.575 S
96 95 0 3 Coxon, Mr. Daniel male 59 0 0 364500 7.25 S
97 96 0 3 Shorney, Mr. Charles Joseph male 0 0 374910 8.05 S
98 97 0 1 Goldschmidt, Mr. George B male 71 0 0 PC 17754 34.6542 A5 C
99 98 1 1 Greenfield, Mr. William Bertram male 23 0 1 PC 17759 63.3583 D10 D12 C
100 99 1 2 Doling, Mrs. John T (Ada Julia Bone) female 34 0 1 231919 23 S
101 100 0 2 Kantor, Mr. Sinai male 34 1 0 244367 26 S
102 101 0 3 Petranec, Miss. Matilda female 28 0 0 349245 7.8958 S
103 102 0 3 Petroff, Mr. Pastcho ("Pentcho") male 0 0 349215 7.8958 S
104 103 0 1 White, Mr. Richard Frasar male 21 0 1 35281 77.2875 D26 S
105 104 0 3 Johansson, Mr. Gustaf Joel male 33 0 0 7540 8.6542 S
106 105 0 3 Gustafsson, Mr. Anders Vilhelm male 37 2 0 3101276 7.925 S
107 106 0 3 Mionoff, Mr. Stoytcho male 28 0 0 349207 7.8958 S
108 107 1 3 Salkjelsvik, Miss. Anna Kristine female 21 0 0 343120 7.65 S
109 108 1 3 Moss, Mr. Albert Johan male 0 0 312991 7.775 S
110 109 0 3 Rekic, Mr. Tido male 38 0 0 349249 7.8958 S
111 110 1 3 Moran, Miss. Bertha female 1 0 371110 24.15 Q
112 111 0 1 Porter, Mr. Walter Chamberlain male 47 0 0 110465 52 C110 S
113 112 0 3 Zabour, Miss. Hileni female 14.5 1 0 2665 14.4542 C
114 113 0 3 Barton, Mr. David John male 22 0 0 324669 8.05 S
115 114 0 3 Jussila, Miss. Katriina female 20 1 0 4136 9.825 S
116 115 0 3 Attalah, Miss. Malake female 17 0 0 2627 14.4583 C
117 116 0 3 Pekoniemi, Mr. Edvard male 21 0 0 STON/O 2. 3101294 7.925 S
118 117 0 3 Connors, Mr. Patrick male 70.5 0 0 370369 7.75 Q
119 118 0 2 Turpin, Mr. William John Robert male 29 1 0 11668 21 S
120 119 0 1 Baxter, Mr. Quigg Edmond male 24 0 1 PC 17558 247.5208 B58 B60 C
121 120 0 3 Andersson, Miss. Ellis Anna Maria female 2 4 2 347082 31.275 S
122 121 0 2 Hickman, Mr. Stanley George male 21 2 0 S.O.C. 14879 73.5 S
123 122 0 3 Moore, Mr. Leonard Charles male 0 0 A4. 54510 8.05 S
124 123 0 2 Nasser, Mr. Nicholas male 32.5 1 0 237736 30.0708 C
125 124 1 2 Webber, Miss. Susan female 32.5 0 0 27267 13 E101 S
126 125 0 1 White, Mr. Percival Wayland male 54 0 1 35281 77.2875 D26 S
127 126 1 3 Nicola-Yarred, Master. Elias male 12 1 0 2651 11.2417 C
128 127 0 3 McMahon, Mr. Martin male 0 0 370372 7.75 Q
129 128 1 3 Madsen, Mr. Fridtjof Arne male 24 0 0 C 17369 7.1417 S
130 129 1 3 Peter, Miss. Anna female 1 1 2668 22.3583 F E69 C
131 130 0 3 Ekstrom, Mr. Johan male 45 0 0 347061 6.975 S
132 131 0 3 Drazenoic, Mr. Jozef male 33 0 0 349241 7.8958 C
133 132 0 3 Coelho, Mr. Domingos Fernandeo male 20 0 0 SOTON/O.Q. 3101307 7.05 S
134 133 0 3 Robins, Mrs. Alexander A (Grace Charity Laury) female 47 1 0 A/5. 3337 14.5 S
135 134 1 2 Weisz, Mrs. Leopold (Mathilde Francoise Pede) female 29 1 0 228414 26 S
136 135 0 2 Sobey, Mr. Samuel James Hayden male 25 0 0 C.A. 29178 13 S
137 136 0 2 Richard, Mr. Emile male 23 0 0 SC/PARIS 2133 15.0458 C
138 137 1 1 Newsom, Miss. Helen Monypeny female 19 0 2 11752 26.2833 D47 S
139 138 0 1 Futrelle, Mr. Jacques Heath male 37 1 0 113803 53.1 C123 S
140 139 0 3 Osen, Mr. Olaf Elon male 16 0 0 7534 9.2167 S
141 140 0 1 Giglio, Mr. Victor male 24 0 0 PC 17593 79.2 B86 C
142 141 0 3 Boulos, Mrs. Joseph (Sultana) female 0 2 2678 15.2458 C
143 142 1 3 Nysten, Miss. Anna Sofia female 22 0 0 347081 7.75 S
144 143 1 3 Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck) female 24 1 0 STON/O2. 3101279 15.85 S
145 144 0 3 Burke, Mr. Jeremiah male 19 0 0 365222 6.75 Q
146 145 0 2 Andrew, Mr. Edgardo Samuel male 18 0 0 231945 11.5 S
147 146 0 2 Nicholls, Mr. Joseph Charles male 19 1 1 C.A. 33112 36.75 S
148 147 1 3 Andersson, Mr. August Edvard ("Wennerstrom") male 27 0 0 350043 7.7958 S
149 148 0 3 Ford, Miss. Robina Maggie "Ruby" female 9 2 2 W./C. 6608 34.375 S
150 149 0 2 Navratil, Mr. Michel ("Louis M Hoffman") male 36.5 0 2 230080 26 F2 S
151 150 0 2 Byles, Rev. Thomas Roussel Davids male 42 0 0 244310 13 S
152 151 0 2 Bateman, Rev. Robert James male 51 0 0 S.O.P. 1166 12.525 S
153 152 1 1 Pears, Mrs. Thomas (Edith Wearne) female 22 1 0 113776 66.6 C2 S
154 153 0 3 Meo, Mr. Alfonzo male 55.5 0 0 A.5. 11206 8.05 S
155 154 0 3 van Billiard, Mr. Austin Blyler male 40.5 0 2 A/5. 851 14.5 S
156 155 0 3 Olsen, Mr. Ole Martin male 0 0 Fa 265302 7.3125 S
157 156 0 1 Williams, Mr. Charles Duane male 51 0 1 PC 17597 61.3792 C
158 157 1 3 Gilnagh, Miss. Katherine "Katie" female 16 0 0 35851 7.7333 Q
159 158 0 3 Corn, Mr. Harry male 30 0 0 SOTON/OQ 392090 8.05 S
160 159 0 3 Smiljanic, Mr. Mile male 0 0 315037 8.6625 S
161 160 0 3 Sage, Master. Thomas Henry male 8 2 CA. 2343 69.55 S
162 161 0 3 Cribb, Mr. John Hatfield male 44 0 1 371362 16.1 S
163 162 1 2 Watt, Mrs. James (Elizabeth "Bessie" Inglis Milne) female 40 0 0 C.A. 33595 15.75 S
164 163 0 3 Bengtsson, Mr. John Viktor male 26 0 0 347068 7.775 S
165 164 0 3 Calic, Mr. Jovo male 17 0 0 315093 8.6625 S
166 165 0 3 Panula, Master. Eino Viljami male 1 4 1 3101295 39.6875 S
167 166 1 3 Goldsmith, Master. Frank John William "Frankie" male 9 0 2 363291 20.525 S
168 167 1 1 Chibnall, Mrs. (Edith Martha Bowerman) female 0 1 113505 55 E33 S
169 168 0 3 Skoog, Mrs. William (Anna Bernhardina Karlsson) female 45 1 4 347088 27.9 S
170 169 0 1 Baumann, Mr. John D male 0 0 PC 17318 25.925 S
171 170 0 3 Ling, Mr. Lee male 28 0 0 1601 56.4958 S
172 171 0 1 Van der hoef, Mr. Wyckoff male 61 0 0 111240 33.5 B19 S
173 172 0 3 Rice, Master. Arthur male 4 4 1 382652 29.125 Q
174 173 1 3 Johnson, Miss. Eleanor Ileen female 1 1 1 347742 11.1333 S
175 174 0 3 Sivola, Mr. Antti Wilhelm male 21 0 0 STON/O 2. 3101280 7.925 S
176 175 0 1 Smith, Mr. James Clinch male 56 0 0 17764 30.6958 A7 C
177 176 0 3 Klasen, Mr. Klas Albin male 18 1 1 350404 7.8542 S
178 177 0 3 Lefebre, Master. Henry Forbes male 3 1 4133 25.4667 S
179 178 0 1 Isham, Miss. Ann Elizabeth female 50 0 0 PC 17595 28.7125 C49 C
180 179 0 2 Hale, Mr. Reginald male 30 0 0 250653 13 S
181 180 0 3 Leonard, Mr. Lionel male 36 0 0 LINE 0 S
182 181 0 3 Sage, Miss. Constance Gladys female 8 2 CA. 2343 69.55 S
183 182 0 2 Pernot, Mr. Rene male 0 0 SC/PARIS 2131 15.05 C
184 183 0 3 Asplund, Master. Clarence Gustaf Hugo male 9 4 2 347077 31.3875 S
185 184 1 2 Becker, Master. Richard F male 1 2 1 230136 39 F4 S
186 185 1 3 Kink-Heilmann, Miss. Luise Gretchen female 4 0 2 315153 22.025 S
187 186 0 1 Rood, Mr. Hugh Roscoe male 0 0 113767 50 A32 S
188 187 1 3 O'Brien, Mrs. Thomas (Johanna "Hannah" Godfrey) female 1 0 370365 15.5 Q
189 188 1 1 Romaine, Mr. Charles Hallace ("Mr C Rolmane") male 45 0 0 111428 26.55 S
190 189 0 3 Bourke, Mr. John male 40 1 1 364849 15.5 Q
191 190 0 3 Turcin, Mr. Stjepan male 36 0 0 349247 7.8958 S
192 191 1 2 Pinsky, Mrs. (Rosa) female 32 0 0 234604 13 S
193 192 0 2 Carbines, Mr. William male 19 0 0 28424 13 S
194 193 1 3 Andersen-Jensen, Miss. Carla Christine Nielsine female 19 1 0 350046 7.8542 S
195 194 1 2 Navratil, Master. Michel M male 3 1 1 230080 26 F2 S
196 195 1 1 Brown, Mrs. James Joseph (Margaret Tobin) female 44 0 0 PC 17610 27.7208 B4 C
197 196 1 1 Lurette, Miss. Elise female 58 0 0 PC 17569 146.5208 B80 C
198 197 0 3 Mernagh, Mr. Robert male 0 0 368703 7.75 Q
199 198 0 3 Olsen, Mr. Karl Siegwart Andreas male 42 0 1 4579 8.4042 S
200 199 1 3 Madigan, Miss. Margaret "Maggie" female 0 0 370370 7.75 Q
201 200 0 2 Yrois, Miss. Henriette ("Mrs Harbeck") female 24 0 0 248747 13 S
202 201 0 3 Vande Walle, Mr. Nestor Cyriel male 28 0 0 345770 9.5 S
203 202 0 3 Sage, Mr. Frederick male 8 2 CA. 2343 69.55 S
204 203 0 3 Johanson, Mr. Jakob Alfred male 34 0 0 3101264 6.4958 S
205 204 0 3 Youseff, Mr. Gerious male 45.5 0 0 2628 7.225 C
206 205 1 3 Cohen, Mr. Gurshon "Gus" male 18 0 0 A/5 3540 8.05 S
207 206 0 3 Strom, Miss. Telma Matilda female 2 0 1 347054 10.4625 G6 S
208 207 0 3 Backstrom, Mr. Karl Alfred male 32 1 0 3101278 15.85 S
209 208 1 3 Albimona, Mr. Nassef Cassem male 26 0 0 2699 18.7875 C
210 209 1 3 Carr, Miss. Helen "Ellen" female 16 0 0 367231 7.75 Q
211 210 1 1 Blank, Mr. Henry male 40 0 0 112277 31 A31 C
212 211 0 3 Ali, Mr. Ahmed male 24 0 0 SOTON/O.Q. 3101311 7.05 S
213 212 1 2 Cameron, Miss. Clear Annie female 35 0 0 F.C.C. 13528 21 S
214 213 0 3 Perkin, Mr. John Henry male 22 0 0 A/5 21174 7.25 S
215 214 0 2 Givard, Mr. Hans Kristensen male 30 0 0 250646 13 S
216 215 0 3 Kiernan, Mr. Philip male 1 0 367229 7.75 Q
217 216 1 1 Newell, Miss. Madeleine female 31 1 0 35273 113.275 D36 C
218 217 1 3 Honkanen, Miss. Eliina female 27 0 0 STON/O2. 3101283 7.925 S
219 218 0 2 Jacobsohn, Mr. Sidney Samuel male 42 1 0 243847 27 S
220 219 1 1 Bazzani, Miss. Albina female 32 0 0 11813 76.2917 D15 C
221 220 0 2 Harris, Mr. Walter male 30 0 0 W/C 14208 10.5 S
222 221 1 3 Sunderland, Mr. Victor Francis male 16 0 0 SOTON/OQ 392089 8.05 S
223 222 0 2 Bracken, Mr. James H male 27 0 0 220367 13 S
224 223 0 3 Green, Mr. George Henry male 51 0 0 21440 8.05 S
225 224 0 3 Nenkoff, Mr. Christo male 0 0 349234 7.8958 S
226 225 1 1 Hoyt, Mr. Frederick Maxfield male 38 1 0 19943 90 C93 S
227 226 0 3 Berglund, Mr. Karl Ivar Sven male 22 0 0 PP 4348 9.35 S
228 227 1 2 Mellors, Mr. William John male 19 0 0 SW/PP 751 10.5 S
229 228 0 3 Lovell, Mr. John Hall ("Henry") male 20.5 0 0 A/5 21173 7.25 S
230 229 0 2 Fahlstrom, Mr. Arne Jonas male 18 0 0 236171 13 S
231 230 0 3 Lefebre, Miss. Mathilde female 3 1 4133 25.4667 S
232 231 1 1 Harris, Mrs. Henry Birkhardt (Irene Wallach) female 35 1 0 36973 83.475 C83 S
233 232 0 3 Larsson, Mr. Bengt Edvin male 29 0 0 347067 7.775 S
234 233 0 2 Sjostedt, Mr. Ernst Adolf male 59 0 0 237442 13.5 S
235 234 1 3 Asplund, Miss. Lillian Gertrud female 5 4 2 347077 31.3875 S
236 235 0 2 Leyson, Mr. Robert William Norman male 24 0 0 C.A. 29566 10.5 S
237 236 0 3 Harknett, Miss. Alice Phoebe female 0 0 W./C. 6609 7.55 S
238 237 0 2 Hold, Mr. Stephen male 44 1 0 26707 26 S
239 238 1 2 Collyer, Miss. Marjorie "Lottie" female 8 0 2 C.A. 31921 26.25 S
240 239 0 2 Pengelly, Mr. Frederick William male 19 0 0 28665 10.5 S
241 240 0 2 Hunt, Mr. George Henry male 33 0 0 SCO/W 1585 12.275 S
242 241 0 3 Zabour, Miss. Thamine female 1 0 2665 14.4542 C
243 242 1 3 Murphy, Miss. Katherine "Kate" female 1 0 367230 15.5 Q
244 243 0 2 Coleridge, Mr. Reginald Charles male 29 0 0 W./C. 14263 10.5 S
245 244 0 3 Maenpaa, Mr. Matti Alexanteri male 22 0 0 STON/O 2. 3101275 7.125 S
246 245 0 3 Attalah, Mr. Sleiman male 30 0 0 2694 7.225 C
247 246 0 1 Minahan, Dr. William Edward male 44 2 0 19928 90 C78 Q
248 247 0 3 Lindahl, Miss. Agda Thorilda Viktoria female 25 0 0 347071 7.775 S
249 248 1 2 Hamalainen, Mrs. William (Anna) female 24 0 2 250649 14.5 S
250 249 1 1 Beckwith, Mr. Richard Leonard male 37 1 1 11751 52.5542 D35 S
251 250 0 2 Carter, Rev. Ernest Courtenay male 54 1 0 244252 26 S
252 251 0 3 Reed, Mr. James George male 0 0 362316 7.25 S
253 252 0 3 Strom, Mrs. Wilhelm (Elna Matilda Persson) female 29 1 1 347054 10.4625 G6 S
254 253 0 1 Stead, Mr. William Thomas male 62 0 0 113514 26.55 C87 S
255 254 0 3 Lobb, Mr. William Arthur male 30 1 0 A/5. 3336 16.1 S
256 255 0 3 Rosblom, Mrs. Viktor (Helena Wilhelmina) female 41 0 2 370129 20.2125 S
257 256 1 3 Touma, Mrs. Darwis (Hanne Youssef Razi) female 29 0 2 2650 15.2458 C
258 257 1 1 Thorne, Mrs. Gertrude Maybelle female 0 0 PC 17585 79.2 C
259 258 1 1 Cherry, Miss. Gladys female 30 0 0 110152 86.5 B77 S
260 259 1 1 Ward, Miss. Anna female 35 0 0 PC 17755 512.3292 C
261 260 1 2 Parrish, Mrs. (Lutie Davis) female 50 0 1 230433 26 S
262 261 0 3 Smith, Mr. Thomas male 0 0 384461 7.75 Q
263 262 1 3 Asplund, Master. Edvin Rojj Felix male 3 4 2 347077 31.3875 S
264 263 0 1 Taussig, Mr. Emil male 52 1 1 110413 79.65 E67 S
265 264 0 1 Harrison, Mr. William male 40 0 0 112059 0 B94 S
266 265 0 3 Henry, Miss. Delia female 0 0 382649 7.75 Q
267 266 0 2 Reeves, Mr. David male 36 0 0 C.A. 17248 10.5 S
268 267 0 3 Panula, Mr. Ernesti Arvid male 16 4 1 3101295 39.6875 S
269 268 1 3 Persson, Mr. Ernst Ulrik male 25 1 0 347083 7.775 S
270 269 1 1 Graham, Mrs. William Thompson (Edith Junkins) female 58 0 1 PC 17582 153.4625 C125 S
271 270 1 1 Bissette, Miss. Amelia female 35 0 0 PC 17760 135.6333 C99 S
272 271 0 1 Cairns, Mr. Alexander male 0 0 113798 31 S
273 272 1 3 Tornquist, Mr. William Henry male 25 0 0 LINE 0 S
274 273 1 2 Mellinger, Mrs. (Elizabeth Anne Maidment) female 41 0 1 250644 19.5 S
275 274 0 1 Natsch, Mr. Charles H male 37 0 1 PC 17596 29.7 C118 C
276 275 1 3 Healy, Miss. Hanora "Nora" female 0 0 370375 7.75 Q
277 276 1 1 Andrews, Miss. Kornelia Theodosia female 63 1 0 13502 77.9583 D7 S
278 277 0 3 Lindblom, Miss. Augusta Charlotta female 45 0 0 347073 7.75 S
279 278 0 2 Parkes, Mr. Francis "Frank" male 0 0 239853 0 S
280 279 0 3 Rice, Master. Eric male 7 4 1 382652 29.125 Q
281 280 1 3 Abbott, Mrs. Stanton (Rosa Hunt) female 35 1 1 C.A. 2673 20.25 S
282 281 0 3 Duane, Mr. Frank male 65 0 0 336439 7.75 Q
283 282 0 3 Olsson, Mr. Nils Johan Goransson male 28 0 0 347464 7.8542 S
284 283 0 3 de Pelsmaeker, Mr. Alfons male 16 0 0 345778 9.5 S
285 284 1 3 Dorking, Mr. Edward Arthur male 19 0 0 A/5. 10482 8.05 S
286 285 0 1 Smith, Mr. Richard William male 0 0 113056 26 A19 S
287 286 0 3 Stankovic, Mr. Ivan male 33 0 0 349239 8.6625 C
288 287 1 3 de Mulder, Mr. Theodore male 30 0 0 345774 9.5 S
289 288 0 3 Naidenoff, Mr. Penko male 22 0 0 349206 7.8958 S
290 289 1 2 Hosono, Mr. Masabumi male 42 0 0 237798 13 S
291 290 1 3 Connolly, Miss. Kate female 22 0 0 370373 7.75 Q
292 291 1 1 Barber, Miss. Ellen "Nellie" female 26 0 0 19877 78.85 S
293 292 1 1 Bishop, Mrs. Dickinson H (Helen Walton) female 19 1 0 11967 91.0792 B49 C
294 293 0 2 Levy, Mr. Rene Jacques male 36 0 0 SC/Paris 2163 12.875 D C
295 294 0 3 Haas, Miss. Aloisia female 24 0 0 349236 8.85 S
296 295 0 3 Mineff, Mr. Ivan male 24 0 0 349233 7.8958 S
297 296 0 1 Lewy, Mr. Ervin G male 0 0 PC 17612 27.7208 C
298 297 0 3 Hanna, Mr. Mansour male 23.5 0 0 2693 7.2292 C
299 298 0 1 Allison, Miss. Helen Loraine female 2 1 2 113781 151.55 C22 C26 S
300 299 1 1 Saalfeld, Mr. Adolphe male 0 0 19988 30.5 C106 S
301 300 1 1 Baxter, Mrs. James (Helene DeLaudeniere Chaput) female 50 0 1 PC 17558 247.5208 B58 B60 C
302 301 1 3 Kelly, Miss. Anna Katherine "Annie Kate" female 0 0 9234 7.75 Q
303 302 1 3 McCoy, Mr. Bernard male 2 0 367226 23.25 Q
304 303 0 3 Johnson, Mr. William Cahoone Jr male 19 0 0 LINE 0 S
305 304 1 2 Keane, Miss. Nora A female 0 0 226593 12.35 E101 Q
306 305 0 3 Williams, Mr. Howard Hugh "Harry" male 0 0 A/5 2466 8.05 S
307 306 1 1 Allison, Master. Hudson Trevor male 0.92 1 2 113781 151.55 C22 C26 S
308 307 1 1 Fleming, Miss. Margaret female 0 0 17421 110.8833 C
309 308 1 1 Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) female 17 1 0 PC 17758 108.9 C65 C
310 309 0 2 Abelson, Mr. Samuel male 30 1 0 P/PP 3381 24 C
311 310 1 1 Francatelli, Miss. Laura Mabel female 30 0 0 PC 17485 56.9292 E36 C
312 311 1 1 Hays, Miss. Margaret Bechstein female 24 0 0 11767 83.1583 C54 C
313 312 1 1 Ryerson, Miss. Emily Borie female 18 2 2 PC 17608 262.375 B57 B59 B63 B66 C
314 313 0 2 Lahtinen, Mrs. William (Anna Sylfven) female 26 1 1 250651 26 S
315 314 0 3 Hendekovic, Mr. Ignjac male 28 0 0 349243 7.8958 S
316 315 0 2 Hart, Mr. Benjamin male 43 1 1 F.C.C. 13529 26.25 S
317 316 1 3 Nilsson, Miss. Helmina Josefina female 26 0 0 347470 7.8542 S
318 317 1 2 Kantor, Mrs. Sinai (Miriam Sternin) female 24 1 0 244367 26 S
319 318 0 2 Moraweck, Dr. Ernest male 54 0 0 29011 14 S
320 319 1 1 Wick, Miss. Mary Natalie female 31 0 2 36928 164.8667 C7 S
321 320 1 1 Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone) female 40 1 1 16966 134.5 E34 C
322 321 0 3 Dennis, Mr. Samuel male 22 0 0 A/5 21172 7.25 S
323 322 0 3 Danoff, Mr. Yoto male 27 0 0 349219 7.8958 S
324 323 1 2 Slayter, Miss. Hilda Mary female 30 0 0 234818 12.35 Q
325 324 1 2 Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh) female 22 1 1 248738 29 S
326 325 0 3 Sage, Mr. George John Jr male 8 2 CA. 2343 69.55 S
327 326 1 1 Young, Miss. Marie Grice female 36 0 0 PC 17760 135.6333 C32 C
328 327 0 3 Nysveen, Mr. Johan Hansen male 61 0 0 345364 6.2375 S
329 328 1 2 Ball, Mrs. (Ada E Hall) female 36 0 0 28551 13 D S
330 329 1 3 Goldsmith, Mrs. Frank John (Emily Alice Brown) female 31 1 1 363291 20.525 S
331 330 1 1 Hippach, Miss. Jean Gertrude female 16 0 1 111361 57.9792 B18 C
332 331 1 3 McCoy, Miss. Agnes female 2 0 367226 23.25 Q
333 332 0 1 Partner, Mr. Austen male 45.5 0 0 113043 28.5 C124 S
334 333 0 1 Graham, Mr. George Edward male 38 0 1 PC 17582 153.4625 C91 S
335 334 0 3 Vander Planke, Mr. Leo Edmondus male 16 2 0 345764 18 S
336 335 1 1 Frauenthal, Mrs. Henry William (Clara Heinsheimer) female 1 0 PC 17611 133.65 S
337 336 0 3 Denkoff, Mr. Mitto male 0 0 349225 7.8958 S
338 337 0 1 Pears, Mr. Thomas Clinton male 29 1 0 113776 66.6 C2 S
339 338 1 1 Burns, Miss. Elizabeth Margaret female 41 0 0 16966 134.5 E40 C
340 339 1 3 Dahl, Mr. Karl Edwart male 45 0 0 7598 8.05 S
341 340 0 1 Blackwell, Mr. Stephen Weart male 45 0 0 113784 35.5 T S
342 341 1 2 Navratil, Master. Edmond Roger male 2 1 1 230080 26 F2 S
343 342 1 1 Fortune, Miss. Alice Elizabeth female 24 3 2 19950 263 C23 C25 C27 S
344 343 0 2 Collander, Mr. Erik Gustaf male 28 0 0 248740 13 S
345 344 0 2 Sedgwick, Mr. Charles Frederick Waddington male 25 0 0 244361 13 S
346 345 0 2 Fox, Mr. Stanley Hubert male 36 0 0 229236 13 S
347 346 1 2 Brown, Miss. Amelia "Mildred" female 24 0 0 248733 13 F33 S
348 347 1 2 Smith, Miss. Marion Elsie female 40 0 0 31418 13 S
349 348 1 3 Davison, Mrs. Thomas Henry (Mary E Finck) female 1 0 386525 16.1 S
350 349 1 3 Coutts, Master. William Loch "William" male 3 1 1 C.A. 37671 15.9 S
351 350 0 3 Dimic, Mr. Jovan male 42 0 0 315088 8.6625 S
352 351 0 3 Odahl, Mr. Nils Martin male 23 0 0 7267 9.225 S
353 352 0 1 Williams-Lambert, Mr. Fletcher Fellows male 0 0 113510 35 C128 S
354 353 0 3 Elias, Mr. Tannous male 15 1 1 2695 7.2292 C
355 354 0 3 Arnold-Franchi, Mr. Josef male 25 1 0 349237 17.8 S
356 355 0 3 Yousif, Mr. Wazli male 0 0 2647 7.225 C
357 356 0 3 Vanden Steen, Mr. Leo Peter male 28 0 0 345783 9.5 S
358 357 1 1 Bowerman, Miss. Elsie Edith female 22 0 1 113505 55 E33 S
359 358 0 2 Funk, Miss. Annie Clemmer female 38 0 0 237671 13 S
360 359 1 3 McGovern, Miss. Mary female 0 0 330931 7.8792 Q
361 360 1 3 Mockler, Miss. Helen Mary "Ellie" female 0 0 330980 7.8792 Q
362 361 0 3 Skoog, Mr. Wilhelm male 40 1 4 347088 27.9 S
363 362 0 2 del Carlo, Mr. Sebastiano male 29 1 0 SC/PARIS 2167 27.7208 C
364 363 0 3 Barbara, Mrs. (Catherine David) female 45 0 1 2691 14.4542 C
365 364 0 3 Asim, Mr. Adola male 35 0 0 SOTON/O.Q. 3101310 7.05 S
366 365 0 3 O'Brien, Mr. Thomas male 1 0 370365 15.5 Q
367 366 0 3 Adahl, Mr. Mauritz Nils Martin male 30 0 0 C 7076 7.25 S
368 367 1 1 Warren, Mrs. Frank Manley (Anna Sophia Atkinson) female 60 1 0 110813 75.25 D37 C
369 368 1 3 Moussa, Mrs. (Mantoura Boulos) female 0 0 2626 7.2292 C
370 369 1 3 Jermyn, Miss. Annie female 0 0 14313 7.75 Q
371 370 1 1 Aubart, Mme. Leontine Pauline female 24 0 0 PC 17477 69.3 B35 C
372 371 1 1 Harder, Mr. George Achilles male 25 1 0 11765 55.4417 E50 C
373 372 0 3 Wiklund, Mr. Jakob Alfred male 18 1 0 3101267 6.4958 S
374 373 0 3 Beavan, Mr. William Thomas male 19 0 0 323951 8.05 S
375 374 0 1 Ringhini, Mr. Sante male 22 0 0 PC 17760 135.6333 C
376 375 0 3 Palsson, Miss. Stina Viola female 3 3 1 349909 21.075 S
377 376 1 1 Meyer, Mrs. Edgar Joseph (Leila Saks) female 1 0 PC 17604 82.1708 C
378 377 1 3 Landergren, Miss. Aurora Adelia female 22 0 0 C 7077 7.25 S
379 378 0 1 Widener, Mr. Harry Elkins male 27 0 2 113503 211.5 C82 C
380 379 0 3 Betros, Mr. Tannous male 20 0 0 2648 4.0125 C
381 380 0 3 Gustafsson, Mr. Karl Gideon male 19 0 0 347069 7.775 S
382 381 1 1 Bidois, Miss. Rosalie female 42 0 0 PC 17757 227.525 C
383 382 1 3 Nakid, Miss. Maria ("Mary") female 1 0 2 2653 15.7417 C
384 383 0 3 Tikkanen, Mr. Juho male 32 0 0 STON/O 2. 3101293 7.925 S
385 384 1 1 Holverson, Mrs. Alexander Oskar (Mary Aline Towner) female 35 1 0 113789 52 S
386 385 0 3 Plotcharsky, Mr. Vasil male 0 0 349227 7.8958 S
387 386 0 2 Davies, Mr. Charles Henry male 18 0 0 S.O.C. 14879 73.5 S
388 387 0 3 Goodwin, Master. Sidney Leonard male 1 5 2 CA 2144 46.9 S
389 388 1 2 Buss, Miss. Kate female 36 0 0 27849 13 S
390 389 0 3 Sadlier, Mr. Matthew male 0 0 367655 7.7292 Q
391 390 1 2 Lehmann, Miss. Bertha female 17 0 0 SC 1748 12 C
392 391 1 1 Carter, Mr. William Ernest male 36 1 2 113760 120 B96 B98 S
393 392 1 3 Jansson, Mr. Carl Olof male 21 0 0 350034 7.7958 S
394 393 0 3 Gustafsson, Mr. Johan Birger male 28 2 0 3101277 7.925 S
395 394 1 1 Newell, Miss. Marjorie female 23 1 0 35273 113.275 D36 C
396 395 1 3 Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson) female 24 0 2 PP 9549 16.7 G6 S
397 396 0 3 Johansson, Mr. Erik male 22 0 0 350052 7.7958 S
398 397 0 3 Olsson, Miss. Elina female 31 0 0 350407 7.8542 S
399 398 0 2 McKane, Mr. Peter David male 46 0 0 28403 26 S
400 399 0 2 Pain, Dr. Alfred male 23 0 0 244278 10.5 S
401 400 1 2 Trout, Mrs. William H (Jessie L) female 28 0 0 240929 12.65 S
402 401 1 3 Niskanen, Mr. Juha male 39 0 0 STON/O 2. 3101289 7.925 S
403 402 0 3 Adams, Mr. John male 26 0 0 341826 8.05 S
404 403 0 3 Jussila, Miss. Mari Aina female 21 1 0 4137 9.825 S
405 404 0 3 Hakkarainen, Mr. Pekka Pietari male 28 1 0 STON/O2. 3101279 15.85 S
406 405 0 3 Oreskovic, Miss. Marija female 20 0 0 315096 8.6625 S
407 406 0 2 Gale, Mr. Shadrach male 34 1 0 28664 21 S
408 407 0 3 Widegren, Mr. Carl/Charles Peter male 51 0 0 347064 7.75 S
409 408 1 2 Richards, Master. William Rowe male 3 1 1 29106 18.75 S
410 409 0 3 Birkeland, Mr. Hans Martin Monsen male 21 0 0 312992 7.775 S
411 410 0 3 Lefebre, Miss. Ida female 3 1 4133 25.4667 S
412 411 0 3 Sdycoff, Mr. Todor male 0 0 349222 7.8958 S
413 412 0 3 Hart, Mr. Henry male 0 0 394140 6.8583 Q
414 413 1 1 Minahan, Miss. Daisy E female 33 1 0 19928 90 C78 Q
415 414 0 2 Cunningham, Mr. Alfred Fleming male 0 0 239853 0 S
416 415 1 3 Sundman, Mr. Johan Julian male 44 0 0 STON/O 2. 3101269 7.925 S
417 416 0 3 Meek, Mrs. Thomas (Annie Louise Rowley) female 0 0 343095 8.05 S
418 417 1 2 Drew, Mrs. James Vivian (Lulu Thorne Christian) female 34 1 1 28220 32.5 S
419 418 1 2 Silven, Miss. Lyyli Karoliina female 18 0 2 250652 13 S
420 419 0 2 Matthews, Mr. William John male 30 0 0 28228 13 S
421 420 0 3 Van Impe, Miss. Catharina female 10 0 2 345773 24.15 S
422 421 0 3 Gheorgheff, Mr. Stanio male 0 0 349254 7.8958 C
423 422 0 3 Charters, Mr. David male 21 0 0 A/5. 13032 7.7333 Q
424 423 0 3 Zimmerman, Mr. Leo male 29 0 0 315082 7.875 S
425 424 0 3 Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) female 28 1 1 347080 14.4 S
426 425 0 3 Rosblom, Mr. Viktor Richard male 18 1 1 370129 20.2125 S
427 426 0 3 Wiseman, Mr. Phillippe male 0 0 A/4. 34244 7.25 S
428 427 1 2 Clarke, Mrs. Charles V (Ada Maria Winfield) female 28 1 0 2003 26 S
429 428 1 2 Phillips, Miss. Kate Florence ("Mrs Kate Louise Phillips Marshall") female 19 0 0 250655 26 S
430 429 0 3 Flynn, Mr. James male 0 0 364851 7.75 Q
431 430 1 3 Pickard, Mr. Berk (Berk Trembisky) male 32 0 0 SOTON/O.Q. 392078 8.05 E10 S
432 431 1 1 Bjornstrom-Steffansson, Mr. Mauritz Hakan male 28 0 0 110564 26.55 C52 S
433 432 1 3 Thorneycroft, Mrs. Percival (Florence Kate White) female 1 0 376564 16.1 S
434 433 1 2 Louch, Mrs. Charles Alexander (Alice Adelaide Slow) female 42 1 0 SC/AH 3085 26 S
435 434 0 3 Kallio, Mr. Nikolai Erland male 17 0 0 STON/O 2. 3101274 7.125 S
436 435 0 1 Silvey, Mr. William Baird male 50 1 0 13507 55.9 E44 S
437 436 1 1 Carter, Miss. Lucile Polk female 14 1 2 113760 120 B96 B98 S
438 437 0 3 Ford, Miss. Doolina Margaret "Daisy" female 21 2 2 W./C. 6608 34.375 S
439 438 1 2 Richards, Mrs. Sidney (Emily Hocking) female 24 2 3 29106 18.75 S
440 439 0 1 Fortune, Mr. Mark male 64 1 4 19950 263 C23 C25 C27 S
441 440 0 2 Kvillner, Mr. Johan Henrik Johannesson male 31 0 0 C.A. 18723 10.5 S
442 441 1 2 Hart, Mrs. Benjamin (Esther Ada Bloomfield) female 45 1 1 F.C.C. 13529 26.25 S
443 442 0 3 Hampe, Mr. Leon male 20 0 0 345769 9.5 S
444 443 0 3 Petterson, Mr. Johan Emil male 25 1 0 347076 7.775 S
445 444 1 2 Reynaldo, Ms. Encarnacion female 28 0 0 230434 13 S
446 445 1 3 Johannesen-Bratthammer, Mr. Bernt male 0 0 65306 8.1125 S
447 446 1 1 Dodge, Master. Washington male 4 0 2 33638 81.8583 A34 S
448 447 1 2 Mellinger, Miss. Madeleine Violet female 13 0 1 250644 19.5 S
449 448 1 1 Seward, Mr. Frederic Kimber male 34 0 0 113794 26.55 S
450 449 1 3 Baclini, Miss. Marie Catherine female 5 2 1 2666 19.2583 C
451 450 1 1 Peuchen, Major. Arthur Godfrey male 52 0 0 113786 30.5 C104 S
452 451 0 2 West, Mr. Edwy Arthur male 36 1 2 C.A. 34651 27.75 S
453 452 0 3 Hagland, Mr. Ingvald Olai Olsen male 1 0 65303 19.9667 S
454 453 0 1 Foreman, Mr. Benjamin Laventall male 30 0 0 113051 27.75 C111 C
455 454 1 1 Goldenberg, Mr. Samuel L male 49 1 0 17453 89.1042 C92 C
456 455 0 3 Peduzzi, Mr. Joseph male 0 0 A/5 2817 8.05 S
457 456 1 3 Jalsevac, Mr. Ivan male 29 0 0 349240 7.8958 C
458 457 0 1 Millet, Mr. Francis Davis male 65 0 0 13509 26.55 E38 S
459 458 1 1 Kenyon, Mrs. Frederick R (Marion) female 1 0 17464 51.8625 D21 S
460 459 1 2 Toomey, Miss. Ellen female 50 0 0 F.C.C. 13531 10.5 S
461 460 0 3 O'Connor, Mr. Maurice male 0 0 371060 7.75 Q
462 461 1 1 Anderson, Mr. Harry male 48 0 0 19952 26.55 E12 S
463 462 0 3 Morley, Mr. William male 34 0 0 364506 8.05 S
464 463 0 1 Gee, Mr. Arthur H male 47 0 0 111320 38.5 E63 S
465 464 0 2 Milling, Mr. Jacob Christian male 48 0 0 234360 13 S
466 465 0 3 Maisner, Mr. Simon male 0 0 A/S 2816 8.05 S
467 466 0 3 Goncalves, Mr. Manuel Estanslas male 38 0 0 SOTON/O.Q. 3101306 7.05 S
468 467 0 2 Campbell, Mr. William male 0 0 239853 0 S
469 468 0 1 Smart, Mr. John Montgomery male 56 0 0 113792 26.55 S
470 469 0 3 Scanlan, Mr. James male 0 0 36209 7.725 Q
471 470 1 3 Baclini, Miss. Helene Barbara female 0.75 2 1 2666 19.2583 C
472 471 0 3 Keefe, Mr. Arthur male 0 0 323592 7.25 S
473 472 0 3 Cacic, Mr. Luka male 38 0 0 315089 8.6625 S
474 473 1 2 West, Mrs. Edwy Arthur (Ada Mary Worth) female 33 1 2 C.A. 34651 27.75 S
475 474 1 2 Jerwan, Mrs. Amin S (Marie Marthe Thuillard) female 23 0 0 SC/AH Basle 541 13.7917 D C
476 475 0 3 Strandberg, Miss. Ida Sofia female 22 0 0 7553 9.8375 S
477 476 0 1 Clifford, Mr. George Quincy male 0 0 110465 52 A14 S
478 477 0 2 Renouf, Mr. Peter Henry male 34 1 0 31027 21 S
479 478 0 3 Braund, Mr. Lewis Richard male 29 1 0 3460 7.0458 S
480 479 0 3 Karlsson, Mr. Nils August male 22 0 0 350060 7.5208 S
481 480 1 3 Hirvonen, Miss. Hildur E female 2 0 1 3101298 12.2875 S
482 481 0 3 Goodwin, Master. Harold Victor male 9 5 2 CA 2144 46.9 S
483 482 0 2 Frost, Mr. Anthony Wood "Archie" male 0 0 239854 0 S
484 483 0 3 Rouse, Mr. Richard Henry male 50 0 0 A/5 3594 8.05 S
485 484 1 3 Turkula, Mrs. (Hedwig) female 63 0 0 4134 9.5875 S
486 485 1 1 Bishop, Mr. Dickinson H male 25 1 0 11967 91.0792 B49 C
487 486 0 3 Lefebre, Miss. Jeannie female 3 1 4133 25.4667 S
488 487 1 1 Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) female 35 1 0 19943 90 C93 S
489 488 0 1 Kent, Mr. Edward Austin male 58 0 0 11771 29.7 B37 C
490 489 0 3 Somerton, Mr. Francis William male 30 0 0 A.5. 18509 8.05 S
491 490 1 3 Coutts, Master. Eden Leslie "Neville" male 9 1 1 C.A. 37671 15.9 S
492 491 0 3 Hagland, Mr. Konrad Mathias Reiersen male 1 0 65304 19.9667 S
493 492 0 3 Windelov, Mr. Einar male 21 0 0 SOTON/OQ 3101317 7.25 S
494 493 0 1 Molson, Mr. Harry Markland male 55 0 0 113787 30.5 C30 S
495 494 0 1 Artagaveytia, Mr. Ramon male 71 0 0 PC 17609 49.5042 C
496 495 0 3 Stanley, Mr. Edward Roland male 21 0 0 A/4 45380 8.05 S
497 496 0 3 Yousseff, Mr. Gerious male 0 0 2627 14.4583 C
498 497 1 1 Eustis, Miss. Elizabeth Mussey female 54 1 0 36947 78.2667 D20 C
499 498 0 3 Shellard, Mr. Frederick William male 0 0 C.A. 6212 15.1 S
500 499 0 1 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female 25 1 2 113781 151.55 C22 C26 S
501 500 0 3 Svensson, Mr. Olof male 24 0 0 350035 7.7958 S
502 501 0 3 Calic, Mr. Petar male 17 0 0 315086 8.6625 S
503 502 0 3 Canavan, Miss. Mary female 21 0 0 364846 7.75 Q
504 503 0 3 O'Sullivan, Miss. Bridget Mary female 0 0 330909 7.6292 Q
505 504 0 3 Laitinen, Miss. Kristina Sofia female 37 0 0 4135 9.5875 S
506 505 1 1 Maioni, Miss. Roberta female 16 0 0 110152 86.5 B79 S
507 506 0 1 Penasco y Castellana, Mr. Victor de Satode male 18 1 0 PC 17758 108.9 C65 C
508 507 1 2 Quick, Mrs. Frederick Charles (Jane Richards) female 33 0 2 26360 26 S
509 508 1 1 Bradley, Mr. George ("George Arthur Brayton") male 0 0 111427 26.55 S
510 509 0 3 Olsen, Mr. Henry Margido male 28 0 0 C 4001 22.525 S
511 510 1 3 Lang, Mr. Fang male 26 0 0 1601 56.4958 S
512 511 1 3 Daly, Mr. Eugene Patrick male 29 0 0 382651 7.75 Q
513 512 0 3 Webber, Mr. James male 0 0 SOTON/OQ 3101316 8.05 S
514 513 1 1 McGough, Mr. James Robert male 36 0 0 PC 17473 26.2875 E25 S
515 514 1 1 Rothschild, Mrs. Martin (Elizabeth L. Barrett) female 54 1 0 PC 17603 59.4 C
516 515 0 3 Coleff, Mr. Satio male 24 0 0 349209 7.4958 S
517 516 0 1 Walker, Mr. William Anderson male 47 0 0 36967 34.0208 D46 S
518 517 1 2 Lemore, Mrs. (Amelia Milley) female 34 0 0 C.A. 34260 10.5 F33 S
519 518 0 3 Ryan, Mr. Patrick male 0 0 371110 24.15 Q
520 519 1 2 Angle, Mrs. William A (Florence "Mary" Agnes Hughes) female 36 1 0 226875 26 S
521 520 0 3 Pavlovic, Mr. Stefo male 32 0 0 349242 7.8958 S
522 521 1 1 Perreault, Miss. Anne female 30 0 0 12749 93.5 B73 S
523 522 0 3 Vovk, Mr. Janko male 22 0 0 349252 7.8958 S
524 523 0 3 Lahoud, Mr. Sarkis male 0 0 2624 7.225 C
525 524 1 1 Hippach, Mrs. Louis Albert (Ida Sophia Fischer) female 44 0 1 111361 57.9792 B18 C
526 525 0 3 Kassem, Mr. Fared male 0 0 2700 7.2292 C
527 526 0 3 Farrell, Mr. James male 40.5 0 0 367232 7.75 Q
528 527 1 2 Ridsdale, Miss. Lucy female 50 0 0 W./C. 14258 10.5 S
529 528 0 1 Farthing, Mr. John male 0 0 PC 17483 221.7792 C95 S
530 529 0 3 Salonen, Mr. Johan Werner male 39 0 0 3101296 7.925 S
531 530 0 2 Hocking, Mr. Richard George male 23 2 1 29104 11.5 S
532 531 1 2 Quick, Miss. Phyllis May female 2 1 1 26360 26 S
533 532 0 3 Toufik, Mr. Nakli male 0 0 2641 7.2292 C
534 533 0 3 Elias, Mr. Joseph Jr male 17 1 1 2690 7.2292 C
535 534 1 3 Peter, Mrs. Catherine (Catherine Rizk) female 0 2 2668 22.3583 C
536 535 0 3 Cacic, Miss. Marija female 30 0 0 315084 8.6625 S
537 536 1 2 Hart, Miss. Eva Miriam female 7 0 2 F.C.C. 13529 26.25 S
538 537 0 1 Butt, Major. Archibald Willingham male 45 0 0 113050 26.55 B38 S
539 538 1 1 LeRoy, Miss. Bertha female 30 0 0 PC 17761 106.425 C
540 539 0 3 Risien, Mr. Samuel Beard male 0 0 364498 14.5 S
541 540 1 1 Frolicher, Miss. Hedwig Margaritha female 22 0 2 13568 49.5 B39 C
542 541 1 1 Crosby, Miss. Harriet R female 36 0 2 WE/P 5735 71 B22 S
543 542 0 3 Andersson, Miss. Ingeborg Constanzia female 9 4 2 347082 31.275 S
544 543 0 3 Andersson, Miss. Sigrid Elisabeth female 11 4 2 347082 31.275 S
545 544 1 2 Beane, Mr. Edward male 32 1 0 2908 26 S
546 545 0 1 Douglas, Mr. Walter Donald male 50 1 0 PC 17761 106.425 C86 C
547 546 0 1 Nicholson, Mr. Arthur Ernest male 64 0 0 693 26 S
548 547 1 2 Beane, Mrs. Edward (Ethel Clarke) female 19 1 0 2908 26 S
549 548 1 2 Padro y Manent, Mr. Julian male 0 0 SC/PARIS 2146 13.8625 C
550 549 0 3 Goldsmith, Mr. Frank John male 33 1 1 363291 20.525 S
551 550 1 2 Davies, Master. John Morgan Jr male 8 1 1 C.A. 33112 36.75 S
552 551 1 1 Thayer, Mr. John Borland Jr male 17 0 2 17421 110.8833 C70 C
553 552 0 2 Sharp, Mr. Percival James R male 27 0 0 244358 26 S
554 553 0 3 O'Brien, Mr. Timothy male 0 0 330979 7.8292 Q
555 554 1 3 Leeni, Mr. Fahim ("Philip Zenni") male 22 0 0 2620 7.225 C
556 555 1 3 Ohman, Miss. Velin female 22 0 0 347085 7.775 S
557 556 0 1 Wright, Mr. George male 62 0 0 113807 26.55 S
558 557 1 1 Duff Gordon, Lady. (Lucille Christiana Sutherland) ("Mrs Morgan") female 48 1 0 11755 39.6 A16 C
559 558 0 1 Robbins, Mr. Victor male 0 0 PC 17757 227.525 C
560 559 1 1 Taussig, Mrs. Emil (Tillie Mandelbaum) female 39 1 1 110413 79.65 E67 S
561 560 1 3 de Messemaeker, Mrs. Guillaume Joseph (Emma) female 36 1 0 345572 17.4 S
562 561 0 3 Morrow, Mr. Thomas Rowan male 0 0 372622 7.75 Q
563 562 0 3 Sivic, Mr. Husein male 40 0 0 349251 7.8958 S
564 563 0 2 Norman, Mr. Robert Douglas male 28 0 0 218629 13.5 S
565 564 0 3 Simmons, Mr. John male 0 0 SOTON/OQ 392082 8.05 S
566 565 0 3 Meanwell, Miss. (Marion Ogden) female 0 0 SOTON/O.Q. 392087 8.05 S
567 566 0 3 Davies, Mr. Alfred J male 24 2 0 A/4 48871 24.15 S
568 567 0 3 Stoytcheff, Mr. Ilia male 19 0 0 349205 7.8958 S
569 568 0 3 Palsson, Mrs. Nils (Alma Cornelia Berglund) female 29 0 4 349909 21.075 S
570 569 0 3 Doharr, Mr. Tannous male 0 0 2686 7.2292 C
571 570 1 3 Jonsson, Mr. Carl male 32 0 0 350417 7.8542 S
572 571 1 2 Harris, Mr. George male 62 0 0 S.W./PP 752 10.5 S
573 572 1 1 Appleton, Mrs. Edward Dale (Charlotte Lamson) female 53 2 0 11769 51.4792 C101 S
574 573 1 1 Flynn, Mr. John Irwin ("Irving") male 36 0 0 PC 17474 26.3875 E25 S
575 574 1 3 Kelly, Miss. Mary female 0 0 14312 7.75 Q
576 575 0 3 Rush, Mr. Alfred George John male 16 0 0 A/4. 20589 8.05 S
577 576 0 3 Patchett, Mr. George male 19 0 0 358585 14.5 S
578 577 1 2 Garside, Miss. Ethel female 34 0 0 243880 13 S
579 578 1 1 Silvey, Mrs. William Baird (Alice Munger) female 39 1 0 13507 55.9 E44 S
580 579 0 3 Caram, Mrs. Joseph (Maria Elias) female 1 0 2689 14.4583 C
581 580 1 3 Jussila, Mr. Eiriik male 32 0 0 STON/O 2. 3101286 7.925 S
582 581 1 2 Christy, Miss. Julie Rachel female 25 1 1 237789 30 S
583 582 1 1 Thayer, Mrs. John Borland (Marian Longstreth Morris) female 39 1 1 17421 110.8833 C68 C
584 583 0 2 Downton, Mr. William James male 54 0 0 28403 26 S
585 584 0 1 Ross, Mr. John Hugo male 36 0 0 13049 40.125 A10 C
586 585 0 3 Paulner, Mr. Uscher male 0 0 3411 8.7125 C
587 586 1 1 Taussig, Miss. Ruth female 18 0 2 110413 79.65 E68 S
588 587 0 2 Jarvis, Mr. John Denzil male 47 0 0 237565 15 S
589 588 1 1 Frolicher-Stehli, Mr. Maxmillian male 60 1 1 13567 79.2 B41 C
590 589 0 3 Gilinski, Mr. Eliezer male 22 0 0 14973 8.05 S
591 590 0 3 Murdlin, Mr. Joseph male 0 0 A./5. 3235 8.05 S
592 591 0 3 Rintamaki, Mr. Matti male 35 0 0 STON/O 2. 3101273 7.125 S
593 592 1 1 Stephenson, Mrs. Walter Bertram (Martha Eustis) female 52 1 0 36947 78.2667 D20 C
594 593 0 3 Elsbury, Mr. William James male 47 0 0 A/5 3902 7.25 S
595 594 0 3 Bourke, Miss. Mary female 0 2 364848 7.75 Q
596 595 0 2 Chapman, Mr. John Henry male 37 1 0 SC/AH 29037 26 S
597 596 0 3 Van Impe, Mr. Jean Baptiste male 36 1 1 345773 24.15 S
598 597 1 2 Leitch, Miss. Jessie Wills female 0 0 248727 33 S
599 598 0 3 Johnson, Mr. Alfred male 49 0 0 LINE 0 S
600 599 0 3 Boulos, Mr. Hanna male 0 0 2664 7.225 C
601 600 1 1 Duff Gordon, Sir. Cosmo Edmund ("Mr Morgan") male 49 1 0 PC 17485 56.9292 A20 C
602 601 1 2 Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy) female 24 2 1 243847 27 S
603 602 0 3 Slabenoff, Mr. Petco male 0 0 349214 7.8958 S
604 603 0 1 Harrington, Mr. Charles H male 0 0 113796 42.4 S
605 604 0 3 Torber, Mr. Ernst William male 44 0 0 364511 8.05 S
606 605 1 1 Homer, Mr. Harry ("Mr E Haven") male 35 0 0 111426 26.55 C
607 606 0 3 Lindell, Mr. Edvard Bengtsson male 36 1 0 349910 15.55 S
608 607 0 3 Karaic, Mr. Milan male 30 0 0 349246 7.8958 S
609 608 1 1 Daniel, Mr. Robert Williams male 27 0 0 113804 30.5 S
610 609 1 2 Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue) female 22 1 2 SC/Paris 2123 41.5792 C
611 610 1 1 Shutes, Miss. Elizabeth W female 40 0 0 PC 17582 153.4625 C125 S
612 611 0 3 Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren) female 39 1 5 347082 31.275 S
613 612 0 3 Jardin, Mr. Jose Neto male 0 0 SOTON/O.Q. 3101305 7.05 S
614 613 1 3 Murphy, Miss. Margaret Jane female 1 0 367230 15.5 Q
615 614 0 3 Horgan, Mr. John male 0 0 370377 7.75 Q
616 615 0 3 Brocklebank, Mr. William Alfred male 35 0 0 364512 8.05 S
617 616 1 2 Herman, Miss. Alice female 24 1 2 220845 65 S
618 617 0 3 Danbom, Mr. Ernst Gilbert male 34 1 1 347080 14.4 S
619 618 0 3 Lobb, Mrs. William Arthur (Cordelia K Stanlick) female 26 1 0 A/5. 3336 16.1 S
620 619 1 2 Becker, Miss. Marion Louise female 4 2 1 230136 39 F4 S
621 620 0 2 Gavey, Mr. Lawrence male 26 0 0 31028 10.5 S
622 621 0 3 Yasbeck, Mr. Antoni male 27 1 0 2659 14.4542 C
623 622 1 1 Kimball, Mr. Edwin Nelson Jr male 42 1 0 11753 52.5542 D19 S
624 623 1 3 Nakid, Mr. Sahid male 20 1 1 2653 15.7417 C
625 624 0 3 Hansen, Mr. Henry Damsgaard male 21 0 0 350029 7.8542 S
626 625 0 3 Bowen, Mr. David John "Dai" male 21 0 0 54636 16.1 S
627 626 0 1 Sutton, Mr. Frederick male 61 0 0 36963 32.3208 D50 S
628 627 0 2 Kirkland, Rev. Charles Leonard male 57 0 0 219533 12.35 Q
629 628 1 1 Longley, Miss. Gretchen Fiske female 21 0 0 13502 77.9583 D9 S
630 629 0 3 Bostandyeff, Mr. Guentcho male 26 0 0 349224 7.8958 S
631 630 0 3 O'Connell, Mr. Patrick D male 0 0 334912 7.7333 Q
632 631 1 1 Barkworth, Mr. Algernon Henry Wilson male 80 0 0 27042 30 A23 S
633 632 0 3 Lundahl, Mr. Johan Svensson male 51 0 0 347743 7.0542 S
634 633 1 1 Stahelin-Maeglin, Dr. Max male 32 0 0 13214 30.5 B50 C
635 634 0 1 Parr, Mr. William Henry Marsh male 0 0 112052 0 S
636 635 0 3 Skoog, Miss. Mabel female 9 3 2 347088 27.9 S
637 636 1 2 Davis, Miss. Mary female 28 0 0 237668 13 S
638 637 0 3 Leinonen, Mr. Antti Gustaf male 32 0 0 STON/O 2. 3101292 7.925 S
639 638 0 2 Collyer, Mr. Harvey male 31 1 1 C.A. 31921 26.25 S
640 639 0 3 Panula, Mrs. Juha (Maria Emilia Ojala) female 41 0 5 3101295 39.6875 S
641 640 0 3 Thorneycroft, Mr. Percival male 1 0 376564 16.1 S
642 641 0 3 Jensen, Mr. Hans Peder male 20 0 0 350050 7.8542 S
643 642 1 1 Sagesser, Mlle. Emma female 24 0 0 PC 17477 69.3 B35 C
644 643 0 3 Skoog, Miss. Margit Elizabeth female 2 3 2 347088 27.9 S
645 644 1 3 Foo, Mr. Choong male 0 0 1601 56.4958 S
646 645 1 3 Baclini, Miss. Eugenie female 0.75 2 1 2666 19.2583 C
647 646 1 1 Harper, Mr. Henry Sleeper male 48 1 0 PC 17572 76.7292 D33 C
648 647 0 3 Cor, Mr. Liudevit male 19 0 0 349231 7.8958 S
649 648 1 1 Simonius-Blumer, Col. Oberst Alfons male 56 0 0 13213 35.5 A26 C
650 649 0 3 Willey, Mr. Edward male 0 0 S.O./P.P. 751 7.55 S
651 650 1 3 Stanley, Miss. Amy Zillah Elsie female 23 0 0 CA. 2314 7.55 S
652 651 0 3 Mitkoff, Mr. Mito male 0 0 349221 7.8958 S
653 652 1 2 Doling, Miss. Elsie female 18 0 1 231919 23 S
654 653 0 3 Kalvik, Mr. Johannes Halvorsen male 21 0 0 8475 8.4333 S
655 654 1 3 O'Leary, Miss. Hanora "Norah" female 0 0 330919 7.8292 Q
656 655 0 3 Hegarty, Miss. Hanora "Nora" female 18 0 0 365226 6.75 Q
657 656 0 2 Hickman, Mr. Leonard Mark male 24 2 0 S.O.C. 14879 73.5 S
658 657 0 3 Radeff, Mr. Alexander male 0 0 349223 7.8958 S
659 658 0 3 Bourke, Mrs. John (Catherine) female 32 1 1 364849 15.5 Q
660 659 0 2 Eitemiller, Mr. George Floyd male 23 0 0 29751 13 S
661 660 0 1 Newell, Mr. Arthur Webster male 58 0 2 35273 113.275 D48 C
662 661 1 1 Frauenthal, Dr. Henry William male 50 2 0 PC 17611 133.65 S
663 662 0 3 Badt, Mr. Mohamed male 40 0 0 2623 7.225 C
664 663 0 1 Colley, Mr. Edward Pomeroy male 47 0 0 5727 25.5875 E58 S
665 664 0 3 Coleff, Mr. Peju male 36 0 0 349210 7.4958 S
666 665 1 3 Lindqvist, Mr. Eino William male 20 1 0 STON/O 2. 3101285 7.925 S
667 666 0 2 Hickman, Mr. Lewis male 32 2 0 S.O.C. 14879 73.5 S
668 667 0 2 Butler, Mr. Reginald Fenton male 25 0 0 234686 13 S
669 668 0 3 Rommetvedt, Mr. Knud Paust male 0 0 312993 7.775 S
670 669 0 3 Cook, Mr. Jacob male 43 0 0 A/5 3536 8.05 S
671 670 1 1 Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright) female 1 0 19996 52 C126 S
672 671 1 2 Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford) female 40 1 1 29750 39 S
673 672 0 1 Davidson, Mr. Thornton male 31 1 0 F.C. 12750 52 B71 S
674 673 0 2 Mitchell, Mr. Henry Michael male 70 0 0 C.A. 24580 10.5 S
675 674 1 2 Wilhelms, Mr. Charles male 31 0 0 244270 13 S
676 675 0 2 Watson, Mr. Ennis Hastings male 0 0 239856 0 S
677 676 0 3 Edvardsson, Mr. Gustaf Hjalmar male 18 0 0 349912 7.775 S
678 677 0 3 Sawyer, Mr. Frederick Charles male 24.5 0 0 342826 8.05 S
679 678 1 3 Turja, Miss. Anna Sofia female 18 0 0 4138 9.8417 S
680 679 0 3 Goodwin, Mrs. Frederick (Augusta Tyler) female 43 1 6 CA 2144 46.9 S
681 680 1 1 Cardeza, Mr. Thomas Drake Martinez male 36 0 1 PC 17755 512.3292 B51 B53 B55 C
682 681 0 3 Peters, Miss. Katie female 0 0 330935 8.1375 Q
683 682 1 1 Hassab, Mr. Hammad male 27 0 0 PC 17572 76.7292 D49 C
684 683 0 3 Olsvigen, Mr. Thor Anderson male 20 0 0 6563 9.225 S
685 684 0 3 Goodwin, Mr. Charles Edward male 14 5 2 CA 2144 46.9 S
686 685 0 2 Brown, Mr. Thomas William Solomon male 60 1 1 29750 39 S
687 686 0 2 Laroche, Mr. Joseph Philippe Lemercier male 25 1 2 SC/Paris 2123 41.5792 C
688 687 0 3 Panula, Mr. Jaako Arnold male 14 4 1 3101295 39.6875 S
689 688 0 3 Dakic, Mr. Branko male 19 0 0 349228 10.1708 S
690 689 0 3 Fischer, Mr. Eberhard Thelander male 18 0 0 350036 7.7958 S
691 690 1 1 Madill, Miss. Georgette Alexandra female 15 0 1 24160 211.3375 B5 S
692 691 1 1 Dick, Mr. Albert Adrian male 31 1 0 17474 57 B20 S
693 692 1 3 Karun, Miss. Manca female 4 0 1 349256 13.4167 C
694 693 1 3 Lam, Mr. Ali male 0 0 1601 56.4958 S
695 694 0 3 Saad, Mr. Khalil male 25 0 0 2672 7.225 C
696 695 0 1 Weir, Col. John male 60 0 0 113800 26.55 S
697 696 0 2 Chapman, Mr. Charles Henry male 52 0 0 248731 13.5 S
698 697 0 3 Kelly, Mr. James male 44 0 0 363592 8.05 S
699 698 1 3 Mullens, Miss. Katherine "Katie" female 0 0 35852 7.7333 Q
700 699 0 1 Thayer, Mr. John Borland male 49 1 1 17421 110.8833 C68 C
701 700 0 3 Humblen, Mr. Adolf Mathias Nicolai Olsen male 42 0 0 348121 7.65 F G63 S
702 701 1 1 Astor, Mrs. John Jacob (Madeleine Talmadge Force) female 18 1 0 PC 17757 227.525 C62 C64 C
703 702 1 1 Silverthorne, Mr. Spencer Victor male 35 0 0 PC 17475 26.2875 E24 S
704 703 0 3 Barbara, Miss. Saiide female 18 0 1 2691 14.4542 C
705 704 0 3 Gallagher, Mr. Martin male 25 0 0 36864 7.7417 Q
706 705 0 3 Hansen, Mr. Henrik Juul male 26 1 0 350025 7.8542 S
707 706 0 2 Morley, Mr. Henry Samuel ("Mr Henry Marshall") male 39 0 0 250655 26 S
708 707 1 2 Kelly, Mrs. Florence "Fannie" female 45 0 0 223596 13.5 S
709 708 1 1 Calderhead, Mr. Edward Pennington male 42 0 0 PC 17476 26.2875 E24 S
710 709 1 1 Cleaver, Miss. Alice female 22 0 0 113781 151.55 S
711 710 1 3 Moubarek, Master. Halim Gonios ("William George") male 1 1 2661 15.2458 C
712 711 1 1 Mayne, Mlle. Berthe Antonine ("Mrs de Villiers") female 24 0 0 PC 17482 49.5042 C90 C
713 712 0 1 Klaber, Mr. Herman male 0 0 113028 26.55 C124 S
714 713 1 1 Taylor, Mr. Elmer Zebley male 48 1 0 19996 52 C126 S
715 714 0 3 Larsson, Mr. August Viktor male 29 0 0 7545 9.4833 S
716 715 0 2 Greenberg, Mr. Samuel male 52 0 0 250647 13 S
717 716 0 3 Soholt, Mr. Peter Andreas Lauritz Andersen male 19 0 0 348124 7.65 F G73 S
718 717 1 1 Endres, Miss. Caroline Louise female 38 0 0 PC 17757 227.525 C45 C
719 718 1 2 Troutt, Miss. Edwina Celia "Winnie" female 27 0 0 34218 10.5 E101 S
720 719 0 3 McEvoy, Mr. Michael male 0 0 36568 15.5 Q
721 720 0 3 Johnson, Mr. Malkolm Joackim male 33 0 0 347062 7.775 S
722 721 1 2 Harper, Miss. Annie Jessie "Nina" female 6 0 1 248727 33 S
723 722 0 3 Jensen, Mr. Svend Lauritz male 17 1 0 350048 7.0542 S
724 723 0 2 Gillespie, Mr. William Henry male 34 0 0 12233 13 S
725 724 0 2 Hodges, Mr. Henry Price male 50 0 0 250643 13 S
726 725 1 1 Chambers, Mr. Norman Campbell male 27 1 0 113806 53.1 E8 S
727 726 0 3 Oreskovic, Mr. Luka male 20 0 0 315094 8.6625 S
728 727 1 2 Renouf, Mrs. Peter Henry (Lillian Jefferys) female 30 3 0 31027 21 S
729 728 1 3 Mannion, Miss. Margareth female 0 0 36866 7.7375 Q
730 729 0 2 Bryhl, Mr. Kurt Arnold Gottfrid male 25 1 0 236853 26 S
731 730 0 3 Ilmakangas, Miss. Pieta Sofia female 25 1 0 STON/O2. 3101271 7.925 S
732 731 1 1 Allen, Miss. Elisabeth Walton female 29 0 0 24160 211.3375 B5 S
733 732 0 3 Hassan, Mr. Houssein G N male 11 0 0 2699 18.7875 C
734 733 0 2 Knight, Mr. Robert J male 0 0 239855 0 S
735 734 0 2 Berriman, Mr. William John male 23 0 0 28425 13 S
736 735 0 2 Troupiansky, Mr. Moses Aaron male 23 0 0 233639 13 S
737 736 0 3 Williams, Mr. Leslie male 28.5 0 0 54636 16.1 S
738 737 0 3 Ford, Mrs. Edward (Margaret Ann Watson) female 48 1 3 W./C. 6608 34.375 S
739 738 1 1 Lesurer, Mr. Gustave J male 35 0 0 PC 17755 512.3292 B101 C
740 739 0 3 Ivanoff, Mr. Kanio male 0 0 349201 7.8958 S
741 740 0 3 Nankoff, Mr. Minko male 0 0 349218 7.8958 S
742 741 1 1 Hawksford, Mr. Walter James male 0 0 16988 30 D45 S
743 742 0 1 Cavendish, Mr. Tyrell William male 36 1 0 19877 78.85 C46 S
744 743 1 1 Ryerson, Miss. Susan Parker "Suzette" female 21 2 2 PC 17608 262.375 B57 B59 B63 B66 C
745 744 0 3 McNamee, Mr. Neal male 24 1 0 376566 16.1 S
746 745 1 3 Stranden, Mr. Juho male 31 0 0 STON/O 2. 3101288 7.925 S
747 746 0 1 Crosby, Capt. Edward Gifford male 70 1 1 WE/P 5735 71 B22 S
748 747 0 3 Abbott, Mr. Rossmore Edward male 16 1 1 C.A. 2673 20.25 S
749 748 1 2 Sinkkonen, Miss. Anna female 30 0 0 250648 13 S
750 749 0 1 Marvin, Mr. Daniel Warner male 19 1 0 113773 53.1 D30 S
751 750 0 3 Connaghton, Mr. Michael male 31 0 0 335097 7.75 Q
752 751 1 2 Wells, Miss. Joan female 4 1 1 29103 23 S
753 752 1 3 Moor, Master. Meier male 6 0 1 392096 12.475 E121 S
754 753 0 3 Vande Velde, Mr. Johannes Joseph male 33 0 0 345780 9.5 S
755 754 0 3 Jonkoff, Mr. Lalio male 23 0 0 349204 7.8958 S
756 755 1 2 Herman, Mrs. Samuel (Jane Laver) female 48 1 2 220845 65 S
757 756 1 2 Hamalainen, Master. Viljo male 0.67 1 1 250649 14.5 S
758 757 0 3 Carlsson, Mr. August Sigfrid male 28 0 0 350042 7.7958 S
759 758 0 2 Bailey, Mr. Percy Andrew male 18 0 0 29108 11.5 S
760 759 0 3 Theobald, Mr. Thomas Leonard male 34 0 0 363294 8.05 S
761 760 1 1 Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) female 33 0 0 110152 86.5 B77 S
762 761 0 3 Garfirth, Mr. John male 0 0 358585 14.5 S
763 762 0 3 Nirva, Mr. Iisakki Antino Aijo male 41 0 0 SOTON/O2 3101272 7.125 S
764 763 1 3 Barah, Mr. Hanna Assi male 20 0 0 2663 7.2292 C
765 764 1 1 Carter, Mrs. William Ernest (Lucile Polk) female 36 1 2 113760 120 B96 B98 S
766 765 0 3 Eklund, Mr. Hans Linus male 16 0 0 347074 7.775 S
767 766 1 1 Hogeboom, Mrs. John C (Anna Andrews) female 51 1 0 13502 77.9583 D11 S
768 767 0 1 Brewe, Dr. Arthur Jackson male 0 0 112379 39.6 C
769 768 0 3 Mangan, Miss. Mary female 30.5 0 0 364850 7.75 Q
770 769 0 3 Moran, Mr. Daniel J male 1 0 371110 24.15 Q
771 770 0 3 Gronnestad, Mr. Daniel Danielsen male 32 0 0 8471 8.3625 S
772 771 0 3 Lievens, Mr. Rene Aime male 24 0 0 345781 9.5 S
773 772 0 3 Jensen, Mr. Niels Peder male 48 0 0 350047 7.8542 S
774 773 0 2 Mack, Mrs. (Mary) female 57 0 0 S.O./P.P. 3 10.5 E77 S
775 774 0 3 Elias, Mr. Dibo male 0 0 2674 7.225 C
776 775 1 2 Hocking, Mrs. Elizabeth (Eliza Needs) female 54 1 3 29105 23 S
777 776 0 3 Myhrman, Mr. Pehr Fabian Oliver Malkolm male 18 0 0 347078 7.75 S
778 777 0 3 Tobin, Mr. Roger male 0 0 383121 7.75 F38 Q
779 778 1 3 Emanuel, Miss. Virginia Ethel female 5 0 0 364516 12.475 S
780 779 0 3 Kilgannon, Mr. Thomas J male 0 0 36865 7.7375 Q
781 780 1 1 Robert, Mrs. Edward Scott (Elisabeth Walton McMillan) female 43 0 1 24160 211.3375 B3 S
782 781 1 3 Ayoub, Miss. Banoura female 13 0 0 2687 7.2292 C
783 782 1 1 Dick, Mrs. Albert Adrian (Vera Gillespie) female 17 1 0 17474 57 B20 S
784 783 0 1 Long, Mr. Milton Clyde male 29 0 0 113501 30 D6 S
785 784 0 3 Johnston, Mr. Andrew G male 1 2 W./C. 6607 23.45 S
786 785 0 3 Ali, Mr. William male 25 0 0 SOTON/O.Q. 3101312 7.05 S
787 786 0 3 Harmer, Mr. Abraham (David Lishin) male 25 0 0 374887 7.25 S
788 787 1 3 Sjoblom, Miss. Anna Sofia female 18 0 0 3101265 7.4958 S
789 788 0 3 Rice, Master. George Hugh male 8 4 1 382652 29.125 Q
790 789 1 3 Dean, Master. Bertram Vere male 1 1 2 C.A. 2315 20.575 S
791 790 0 1 Guggenheim, Mr. Benjamin male 46 0 0 PC 17593 79.2 B82 B84 C
792 791 0 3 Keane, Mr. Andrew "Andy" male 0 0 12460 7.75 Q
793 792 0 2 Gaskell, Mr. Alfred male 16 0 0 239865 26 S
794 793 0 3 Sage, Miss. Stella Anna female 8 2 CA. 2343 69.55 S
795 794 0 1 Hoyt, Mr. William Fisher male 0 0 PC 17600 30.6958 C
796 795 0 3 Dantcheff, Mr. Ristiu male 25 0 0 349203 7.8958 S
797 796 0 2 Otter, Mr. Richard male 39 0 0 28213 13 S
798 797 1 1 Leader, Dr. Alice (Farnham) female 49 0 0 17465 25.9292 D17 S
799 798 1 3 Osman, Mrs. Mara female 31 0 0 349244 8.6833 S
800 799 0 3 Ibrahim Shawah, Mr. Yousseff male 30 0 0 2685 7.2292 C
801 800 0 3 Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert) female 30 1 1 345773 24.15 S
802 801 0 2 Ponesell, Mr. Martin male 34 0 0 250647 13 S
803 802 1 2 Collyer, Mrs. Harvey (Charlotte Annie Tate) female 31 1 1 C.A. 31921 26.25 S
804 803 1 1 Carter, Master. William Thornton II male 11 1 2 113760 120 B96 B98 S
805 804 1 3 Thomas, Master. Assad Alexander male 0.42 0 1 2625 8.5167 C
806 805 1 3 Hedman, Mr. Oskar Arvid male 27 0 0 347089 6.975 S
807 806 0 3 Johansson, Mr. Karl Johan male 31 0 0 347063 7.775 S
808 807 0 1 Andrews, Mr. Thomas Jr male 39 0 0 112050 0 A36 S
809 808 0 3 Pettersson, Miss. Ellen Natalia female 18 0 0 347087 7.775 S
810 809 0 2 Meyer, Mr. August male 39 0 0 248723 13 S
811 810 1 1 Chambers, Mrs. Norman Campbell (Bertha Griggs) female 33 1 0 113806 53.1 E8 S
812 811 0 3 Alexander, Mr. William male 26 0 0 3474 7.8875 S
813 812 0 3 Lester, Mr. James male 39 0 0 A/4 48871 24.15 S
814 813 0 2 Slemen, Mr. Richard James male 35 0 0 28206 10.5 S
815 814 0 3 Andersson, Miss. Ebba Iris Alfrida female 6 4 2 347082 31.275 S
816 815 0 3 Tomlin, Mr. Ernest Portage male 30.5 0 0 364499 8.05 S
817 816 0 1 Fry, Mr. Richard male 0 0 112058 0 B102 S
818 817 0 3 Heininen, Miss. Wendla Maria female 23 0 0 STON/O2. 3101290 7.925 S
819 818 0 2 Mallet, Mr. Albert male 31 1 1 S.C./PARIS 2079 37.0042 C
820 819 0 3 Holm, Mr. John Fredrik Alexander male 43 0 0 C 7075 6.45 S
821 820 0 3 Skoog, Master. Karl Thorsten male 10 3 2 347088 27.9 S
822 821 1 1 Hays, Mrs. Charles Melville (Clara Jennings Gregg) female 52 1 1 12749 93.5 B69 S
823 822 1 3 Lulic, Mr. Nikola male 27 0 0 315098 8.6625 S
824 823 0 1 Reuchlin, Jonkheer. John George male 38 0 0 19972 0 S
825 824 1 3 Moor, Mrs. (Beila) female 27 0 1 392096 12.475 E121 S
826 825 0 3 Panula, Master. Urho Abraham male 2 4 1 3101295 39.6875 S
827 826 0 3 Flynn, Mr. John male 0 0 368323 6.95 Q
828 827 0 3 Lam, Mr. Len male 0 0 1601 56.4958 S
829 828 1 2 Mallet, Master. Andre male 1 0 2 S.C./PARIS 2079 37.0042 C
830 829 1 3 McCormack, Mr. Thomas Joseph male 0 0 367228 7.75 Q
831 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62 0 0 113572 80 B28
832 831 1 3 Yasbeck, Mrs. Antoni (Selini Alexander) female 15 1 0 2659 14.4542 C
833 832 1 2 Richards, Master. George Sibley male 0.83 1 1 29106 18.75 S
834 833 0 3 Saad, Mr. Amin male 0 0 2671 7.2292 C
835 834 0 3 Augustsson, Mr. Albert male 23 0 0 347468 7.8542 S
836 835 0 3 Allum, Mr. Owen George male 18 0 0 2223 8.3 S
837 836 1 1 Compton, Miss. Sara Rebecca female 39 1 1 PC 17756 83.1583 E49 C
838 837 0 3 Pasic, Mr. Jakob male 21 0 0 315097 8.6625 S
839 838 0 3 Sirota, Mr. Maurice male 0 0 392092 8.05 S
840 839 1 3 Chip, Mr. Chang male 32 0 0 1601 56.4958 S
841 840 1 1 Marechal, Mr. Pierre male 0 0 11774 29.7 C47 C
842 841 0 3 Alhomaki, Mr. Ilmari Rudolf male 20 0 0 SOTON/O2 3101287 7.925 S
843 842 0 2 Mudd, Mr. Thomas Charles male 16 0 0 S.O./P.P. 3 10.5 S
844 843 1 1 Serepeca, Miss. Augusta female 30 0 0 113798 31 C
845 844 0 3 Lemberopolous, Mr. Peter L male 34.5 0 0 2683 6.4375 C
846 845 0 3 Culumovic, Mr. Jeso male 17 0 0 315090 8.6625 S
847 846 0 3 Abbing, Mr. Anthony male 42 0 0 C.A. 5547 7.55 S
848 847 0 3 Sage, Mr. Douglas Bullen male 8 2 CA. 2343 69.55 S
849 848 0 3 Markoff, Mr. Marin male 35 0 0 349213 7.8958 C
850 849 0 2 Harper, Rev. John male 28 0 1 248727 33 S
851 850 1 1 Goldenberg, Mrs. Samuel L (Edwiga Grabowska) female 1 0 17453 89.1042 C92 C
852 851 0 3 Andersson, Master. Sigvard Harald Elias male 4 4 2 347082 31.275 S
853 852 0 3 Svensson, Mr. Johan male 74 0 0 347060 7.775 S
854 853 0 3 Boulos, Miss. Nourelain female 9 1 1 2678 15.2458 C
855 854 1 1 Lines, Miss. Mary Conover female 16 0 1 PC 17592 39.4 D28 S
856 855 0 2 Carter, Mrs. Ernest Courtenay (Lilian Hughes) female 44 1 0 244252 26 S
857 856 1 3 Aks, Mrs. Sam (Leah Rosen) female 18 0 1 392091 9.35 S
858 857 1 1 Wick, Mrs. George Dennick (Mary Hitchcock) female 45 1 1 36928 164.8667 S
859 858 1 1 Daly, Mr. Peter Denis male 51 0 0 113055 26.55 E17 S
860 859 1 3 Baclini, Mrs. Solomon (Latifa Qurban) female 24 0 3 2666 19.2583 C
861 860 0 3 Razi, Mr. Raihed male 0 0 2629 7.2292 C
862 861 0 3 Hansen, Mr. Claus Peter male 41 2 0 350026 14.1083 S
863 862 0 2 Giles, Mr. Frederick Edward male 21 1 0 28134 11.5 S
864 863 1 1 Swift, Mrs. Frederick Joel (Margaret Welles Barron) female 48 0 0 17466 25.9292 D17 S
865 864 0 3 Sage, Miss. Dorothy Edith "Dolly" female 8 2 CA. 2343 69.55 S
866 865 0 2 Gill, Mr. John William male 24 0 0 233866 13 S
867 866 1 2 Bystrom, Mrs. (Karolina) female 42 0 0 236852 13 S
868 867 1 2 Duran y More, Miss. Asuncion female 27 1 0 SC/PARIS 2149 13.8583 C
869 868 0 1 Roebling, Mr. Washington Augustus II male 31 0 0 PC 17590 50.4958 A24 S
870 869 0 3 van Melkebeke, Mr. Philemon male 0 0 345777 9.5 S
871 870 1 3 Johnson, Master. Harold Theodor male 4 1 1 347742 11.1333 S
872 871 0 3 Balkic, Mr. Cerin male 26 0 0 349248 7.8958 S
873 872 1 1 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 1 11751 52.5542 D35 S
874 873 0 1 Carlsson, Mr. Frans Olof male 33 0 0 695 5 B51 B53 B55 S
875 874 0 3 Vander Cruyssen, Mr. Victor male 47 0 0 345765 9 S
876 875 1 2 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 0 P/PP 3381 24 C
877 876 1 3 Najib, Miss. Adele Kiamie "Jane" female 15 0 0 2667 7.225 C
878 877 0 3 Gustafsson, Mr. Alfred Ossian male 20 0 0 7534 9.8458 S
879 878 0 3 Petroff, Mr. Nedelio male 19 0 0 349212 7.8958 S
880 879 0 3 Laleff, Mr. Kristo male 0 0 349217 7.8958 S
881 880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 1 11767 83.1583 C50 C
882 881 1 2 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 1 230433 26 S
883 882 0 3 Markun, Mr. Johann male 33 0 0 349257 7.8958 S
884 883 0 3 Dahlberg, Miss. Gerda Ulrika female 22 0 0 7552 10.5167 S
885 884 0 2 Banfield, Mr. Frederick James male 28 0 0 C.A./SOTON 34068 10.5 S
886 885 0 3 Sutehall, Mr. Henry Jr male 25 0 0 SOTON/OQ 392076 7.05 S
887 886 0 3 Rice, Mrs. William (Margaret Norton) female 39 0 5 382652 29.125 Q
888 887 0 2 Montvila, Rev. Juozas male 27 0 0 211536 13 S
889 888 1 1 Graham, Miss. Margaret Edith female 19 0 0 112053 30 B42 S
890 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female 1 2 W./C. 6607 23.45 S
891 890 1 1 Behr, Mr. Karl Howell male 26 0 0 111369 30 C148 C
892 891 0 3 Dooley, Mr. Patrick male 32 0 0 370376 7.75 Q

View File

@@ -0,0 +1,507 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-arcadia/spark_job_on_synapse_spark_pool.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Synapse Spark Pool as a Compute Target from Azure Machine Learning Remote Run\n",
"1. To use Synapse Spark Pool as a compute target from Experiment Run, [ScriptRunConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) is used, the same as other Experiment Runs. This notebook demonstrates how to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster.\n",
"2. To use Synapse Spark Pool as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [SynapseSparkStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.synapse_spark_step.synapsesparkstep?view=azure-ml-py) is used. This notebook demonstrates how to leverage SynapseSparkStep in Azure Machine Learning Pipeline.\n",
"\n",
"## Before you begin:\n",
"1. **Create an Azure Synapse workspace**, check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace) for more information.\n",
"2. **Create Spark Pool in Synapse workspace**: check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal) for more information."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration\n",
"from azureml.core.compute import ComputeTarget, AmlCompute, SynapseCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.data import HDFSOutputDatasetConfig\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.pipeline.core import Pipeline\n",
"from azureml.pipeline.steps import PythonScriptStep, SynapseSparkStep\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Link Synapse workspace to AML \n",
"You have to be an \"Owner\" of Synapse workspace resource to perform linking. You can check your role in the Azure resource management portal, if you don't have an \"Owner\" role, you can contact an \"Owner\" to link the workspaces for you."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# Replace with your resource info before running.\n",
"\n",
"synapse_subscription_id=os.getenv(\"SYNAPSE_SUBSCRIPTION_ID\", \"<my-synapse-subscription-id>\")\n",
"synapse_resource_group=os.getenv(\"SYNAPSE_RESOURCE_GROUP\", \"<my-synapse-resource-group>\")\n",
"synapse_workspace_name=os.getenv(\"SYNAPSE_WORKSPACE_NAME\", \"<my-synapse-workspace-name>\")\n",
"synapse_linked_service_name=os.getenv(\"SYNAPSE_LINKED_SERVICE_NAME\", \"<my-synapse-linked-service-name>\")\n",
"\n",
"synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(\n",
" subscription_id=synapse_subscription_id,\n",
" resource_group=synapse_resource_group,\n",
" name=synapse_workspace_name\n",
")\n",
"\n",
"linked_service = LinkedService.register(\n",
" workspace=ws,\n",
" name=synapse_linked_service_name,\n",
" linked_service_config=synapse_link_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linked service property\n",
"\n",
"A MSI (system_assigned_identity_principal_id) will be generated for each linked service, for example:\n",
"\n",
"name=synapselink,</p>\n",
"type=Synapse, </p>\n",
"linked_service_resource_id=/subscriptions/4faaaf21-663f-4391-96fd-47197c630979/resourceGroups/static_resources_synapse_test/providers/Microsoft.Synapse/workspaces/synapsetest2, </p>\n",
"system_assigned_identity_principal_id=eb355d52-3806-4c5a-aec9-91447e8cfc2e </p>\n",
"\n",
"#### Make sure you grant \"Synapse Apache Spark Administrator\" role of the synapse workspace to the generated workspace linking MSI in Synapse studio portal before you submit job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"linked_service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"LinkedService.list(ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Attach Synapse spark pool as AML compute target"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"synapse_spark_pool_name=os.getenv(\"SYNAPSE_SPARK_POOL_NAME\", \"<my-synapse-spark-pool-name>\")\n",
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")\n",
"\n",
"attach_config = SynapseCompute.attach_configuration(\n",
" linked_service,\n",
" type=\"SynapseSpark\",\n",
" pool_name=synapse_spark_pool_name)\n",
"\n",
"synapse_compute=ComputeTarget.attach(\n",
" workspace=ws,\n",
" name=synapse_compute_name,\n",
" attach_configuration=attach_config)\n",
"\n",
"synapse_compute.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Start an experiment run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default blob storage\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
"\n",
"# We are uploading a sample file in the local directory to be used as a datasource\n",
"file_name = \"Titanic.csv\"\n",
"def_blob_store.upload_files(files=[\"./{}\".format(file_name)], overwrite=False)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tabular dataset as input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
"input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## File dataset as input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
"input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Output config: the output will be registered as a File dataset\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.data import HDFSOutputDatasetConfig\n",
"output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dataprep script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs(\"code\", exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile code/dataprep.py\n",
"import os\n",
"import sys\n",
"import azureml.core\n",
"from pyspark.sql import SparkSession\n",
"from azureml.core import Run, Dataset\n",
"\n",
"print(azureml.core.VERSION)\n",
"print(os.environ)\n",
"\n",
"import argparse\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument(\"--tabular_input\")\n",
"parser.add_argument(\"--file_input\")\n",
"parser.add_argument(\"--output_dir\")\n",
"args = parser.parse_args()\n",
"\n",
"# use dataset sdk to read tabular dataset\n",
"run_context = Run.get_context()\n",
"dataset = Dataset.get_by_id(run_context.experiment.workspace,id=args.tabular_input)\n",
"sdf = dataset.to_spark_dataframe()\n",
"sdf.show()\n",
"\n",
"# use hdfs path to read file dataset\n",
"spark= SparkSession.builder.getOrCreate()\n",
"sdf = spark.read.option(\"header\", \"true\").csv(args.file_input)\n",
"sdf.show()\n",
"\n",
"sdf.coalesce(1).write\\\n",
".option(\"header\", \"true\")\\\n",
".mode(\"append\")\\\n",
".csv(args.output_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up Conda dependency for the following Script Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.environment import CondaDependencies\n",
"conda_dep = CondaDependencies()\n",
"conda_dep.add_pip_package(\"azureml-core==1.20.0\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import RunConfiguration\n",
"from azureml.core import ScriptRunConfig \n",
"from azureml.core import Experiment\n",
"\n",
"run_config = RunConfiguration(framework=\"pyspark\")\n",
"run_config.target = synapse_compute_name\n",
"\n",
"run_config.spark.configuration[\"spark.driver.memory\"] = \"1g\" \n",
"run_config.spark.configuration[\"spark.driver.cores\"] = 2 \n",
"run_config.spark.configuration[\"spark.executor.memory\"] = \"1g\" \n",
"run_config.spark.configuration[\"spark.executor.cores\"] = 1 \n",
"run_config.spark.configuration[\"spark.executor.instances\"] = 1 \n",
"\n",
"run_config.environment.python.conda_dependencies = conda_dep\n",
"\n",
"script_run_config = ScriptRunConfig(source_directory = './code',\n",
" script= 'dataprep.py',\n",
" arguments = [\"--tabular_input\", input1, \n",
" \"--file_input\", input2,\n",
" \"--output_dir\", output],\n",
" run_config = run_config) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment \n",
"exp = Experiment(workspace=ws, name=\"synapse-spark\") \n",
"run = exp.submit(config=script_run_config) \n",
"run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to leverage SynapseSparkStep in an AML pipeline to orchestrate data prep step on Synapse Spark and training step on AzureML compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=1)\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile code/train.py\n",
"import glob\n",
"import os\n",
"import sys\n",
"from os import listdir\n",
"from os.path import isfile, join\n",
"\n",
"mypath = os.environ[\"step2_input\"]\n",
"files = [f for f in listdir(mypath) if isfile(join(mypath, f))]\n",
"for file in files:\n",
" with open(join(mypath,file)) as f:\n",
" print(f.read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
"\n",
"step1_input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")\n",
"step1_input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()\n",
"step1_output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")\n",
"\n",
"step2_input = step1_output.as_input(\"step2_input\").as_download()\n",
"\n",
"\n",
"from azureml.core.environment import Environment\n",
"env = Environment(name=\"myenv\")\n",
"env.python.conda_dependencies.add_pip_package(\"azureml-core==1.20.0\")\n",
"\n",
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
" file = 'dataprep.py',\n",
" source_directory=\"./code\", \n",
" inputs=[step1_input1, step1_input2],\n",
" outputs=[step1_output],\n",
" arguments = [\"--tabular_input\", step1_input1, \n",
" \"--file_input\", step1_input2,\n",
" \"--output_dir\", step1_output],\n",
" compute_target = synapse_compute_name,\n",
" driver_memory = \"7g\",\n",
" driver_cores = 4,\n",
" executor_memory = \"7g\",\n",
" executor_cores = 2,\n",
" num_executors = 1,\n",
" environment = env)\n",
"\n",
"step_2 = PythonScriptStep(script_name=\"train.py\",\n",
" arguments=[step2_input],\n",
" inputs=[step2_input],\n",
" compute_target=cpu_cluster_name,\n",
" source_directory=\"./code\",\n",
" allow_reuse=False)\n",
"\n",
"pipeline = Pipeline(workspace=ws, steps=[step_1, step_2])\n",
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "yunzhan"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"nteract": {
"version": "0.28.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,327 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-arcadia/spark_session_on_synapse_spark_pool.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Interactive Spark Session on Synapse Spark Pool"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -U \"azureml-synapse\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For JupyterLab, please additionally run:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!jupyter lab build --minimize=False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLEASE restart kernel and then refresh web page before starting spark session."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 0. How to leverage Spark Magic for interactive Spark experience"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
}
},
"outputs": [],
"source": [
"# show help\n",
"%synapse ?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Start Synapse Session"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use Synapse compute linked to the Compute Instance's workspace with an aml envrionment.\n",
"# conda dependencies specified in the environment will be installed before the spark session started.\n",
"\n",
"%synapse start -c $synapse_compute_name -e AzureML-Minimal"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use Synapse compute from anther workspace via its config file\n",
"\n",
"# %synapse start -c <compute-name> -f config.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use Synapse compute from anther workspace via subscription_id, resource_group and workspace_name\n",
"\n",
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start a spark session with an AML environment, \n",
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name> -e AzureML-Minimal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data prepration\n",
"\n",
"Three types of datastore are supported in synapse spark, and you have two ways to load the data.\n",
"\n",
"\n",
"| Datastore Type | Data Acess |\n",
"|--------------------|-------------------------------|\n",
"| Blob | Credential |\n",
"| Adlsgen1 | Credential & Credential-less |\n",
"| Adlsgen2 | Credential & Credential-less |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 1: Data loading by HDFS path"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Read data from Blob**\n",
"\n",
"```python\n",
"# setup access key or sas token\n",
"\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.key.<storage account name>.blob.core.windows.net\", \"<acess key>\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.sas.<container name>.<storage account name>.blob.core.windows.net\", \"sas token\")\n",
"\n",
"df = spark.read.parquet(\"wasbs://<container name>@<storage account name>.blob.core.windows.net/<path>\")\n",
"```\n",
"\n",
"**Read data from Adlsgen1**\n",
"\n",
"```python\n",
"# setup service pricinpal which has access of the data\n",
"# If no data Credential is setup, the user identity will be used to do access control\n",
"\n",
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.access.token.provider.type\",\"ClientCredential\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.client.id\", \"<client id>\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.credential\", \"<client secret>\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.refresh.url\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
"\n",
"df = spark.read.csv(\"adl://<storage account name>.azuredatalakestore.net/<path>\")\n",
"```\n",
"\n",
"**Read data from Adlsgen2**\n",
"\n",
"```python\n",
"# setup service pricinpal which has access of the data\n",
"# If no data Credential is setup, the user identity will be used to do access control\n",
"\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.auth.type.<storage account name>.dfs.core.windows.net\",\"OAuth\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth.provider.type.<storage account name>.dfs.core.windows.net\", \"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.id.<storage account name>.dfs.core.windows.net\", \"<client id>\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.secret.<storage account name>.dfs.core.windows.net\", \"<client secret>\")\n",
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.endpoint.<storage account name>.dfs.core.windows.net\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
"\n",
"df = spark.read.csv(\"abfss://<container name>@<storage account>.dfs.core.windows.net/<path>\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2020-06-04T08:11:18.812276Z",
"iopub.status.busy": "2020-06-04T08:11:18.812276Z",
"iopub.status.idle": "2020-06-04T08:11:23.854526Z",
"shell.execute_reply": "2020-06-04T08:11:23.853525Z",
"shell.execute_reply.started": "2020-06-04T08:11:18.812276Z"
}
},
"outputs": [],
"source": [
"%%synapse\n",
"\n",
"from pyspark.sql.functions import col, desc\n",
"\n",
"df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
"df.filter(col('Survived') == 1).groupBy('Age').count().orderBy(desc('count')).show(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 2: Data loading by AML Dataset\n",
"\n",
"You can create tabular data by following the [guidance](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-register-datasets) and use to_spark_dataframe() to load the data.\n",
"\n",
"```text\n",
"%%synapse\n",
"\n",
"import azureml.core\n",
"print(azureml.core.VERSION)\n",
"\n",
"from azureml.core import Workspace, Dataset\n",
"ws = Workspace.get(name='<workspace name>', subscription_id='<subscription id>', resource_group='<resource group>')\n",
"ds = Dataset.get_by_name(ws, \"<tabular dataset name>\")\n",
"df = ds.to_spark_dataframe()\n",
"\n",
"# You can do more data transformation on spark dataframe\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Session Metadata\n",
"After session started, you can check the session's metadata, find the links to Synapse portal."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%synapse meta"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Stop Session\n",
"When current session reach the status timeout, dead or any failure, you must explicitly stop it before start new one. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%synapse stop"
]
}
],
"metadata": {
"authors": [
{
"name": "yunzhan"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"nteract": {
"version": "0.28.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,6 @@
name: multi-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -0,0 +1,6 @@
name: model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -157,7 +157,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Provision the AKS Cluster\n", "## Provision the AKS Cluster\n",
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster." "If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: deploy-aks-with-controlled-rollout
dependencies:
- pip:
- azureml-sdk

View File

@@ -267,7 +267,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Create AKS compute if you haven't done so." "### Create AKS compute if you haven't done so.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: enable-app-insights-in-production-service
dependencies:
- pip:
- azureml-sdk

View File

@@ -94,6 +94,17 @@ def main():
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# Use Azure Open Datasets for MNIST dataset
datasets.MNIST.resources = [
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
"d53e105ee54ea40749a09fcbcd1e9432"),
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
"9fb629c4189551a2d022fa330f9573f3"),
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
"ec29112dd5afa0611ce80d1b7f02629c")
]
train_loader = torch.utils.data.DataLoader( train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor(), transform=transforms.Compose([transforms.ToTensor(),

View File

@@ -0,0 +1,8 @@
name: onnx-convert-aml-deploy-tinyyolo
dependencies:
- pip:
- azureml-sdk
- numpy
- git+https://github.com/apple/coremltools@v2.1
- onnx<1.7.0
- onnxmltools

View File

@@ -0,0 +1,9 @@
name: onnx-inference-facial-expression-recognition-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx<1.7.0
- opencv-python-headless

View File

@@ -0,0 +1,9 @@
name: onnx-inference-mnist-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx<1.7.0
- opencv-python-headless

View File

@@ -0,0 +1,4 @@
name: onnx-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,4 @@
name: onnx-modelzoo-aml-deploy-resnet50
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,7 +1,5 @@
name: day1-part4-data name: onnx-train-pytorch-aml-deploy-mnist
dependencies: dependencies:
- pip: - pip:
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- pytorch
- torchvision

View File

@@ -0,0 +1,5 @@
name: production-deploy-to-aks-gpu
dependencies:
- pip:
- azureml-sdk
- tensorflow

View File

@@ -211,6 +211,8 @@
"# Provision the AKS Cluster with SSL\n", "# Provision the AKS Cluster with SSL\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n", "This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details" "See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
] ]
}, },

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks-ssl
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -325,7 +325,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Provision the AKS Cluster\n", "# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it." "This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -0,0 +1,4 @@
name: model-register-and-deploy-spark
dependencies:
- pip:
- azureml-sdk

View File

@@ -203,6 +203,8 @@
"source": [ "source": [
"### Provision a compute target\n", "### Provision a compute target\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n", "You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"\n", "\n",
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n", "* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
@@ -255,9 +257,6 @@
"# Set compute target to AmlCompute target created in previous step\n", "# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n", "run_config.target = cpu_cluster.name\n",
"\n", "\n",
"# Enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"azureml_pip_packages = [\n", "azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n", " 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n", "]\n",

View File

@@ -0,0 +1,13 @@
name: explain-model-on-amlcompute
dependencies:
- pip:
- azureml-sdk
- azureml-interpret
- flask
- flask-cors
- gevent>=1.3.6
- jinja2
- ipython
- matplotlib
- azureml-dataset-runtime
- ipywidgets

View File

@@ -226,36 +226,6 @@
" ('classifier', SVC(C=1.0, probability=True))])" " ('classifier', SVC(C=1.0, probability=True))])"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"# Uncomment below if sklearn-pandas is not installed\n",
"#!pip install sklearn-pandas\n",
"from sklearn_pandas import DataFrameMapper\n",
"\n",
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
"\n",
"\n",
"numeric_transformations = [([f], Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])) for f in numerical]\n",
"\n",
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
"\n",
"transformations = numeric_transformations + categorical_transformations\n",
"\n",
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', SVC(C=1.0, probability=True))]) \n",
"\n",
"\n",
"\n",
"'''"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},

View File

@@ -0,0 +1,12 @@
name: save-retrieve-explanations-run-history
dependencies:
- pip:
- azureml-sdk
- azureml-interpret
- flask
- flask-cors
- gevent>=1.3.6
- jinja2
- ipython
- matplotlib
- ipywidgets

View File

@@ -166,12 +166,12 @@
"source": [ "source": [
"from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n",
"import joblib\n", "import joblib\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.impute import SimpleImputer\n", "from sklearn.impute import SimpleImputer\n",
"from sklearn.pipeline import Pipeline\n", "from sklearn.pipeline import Pipeline\n",
"from sklearn.linear_model import LogisticRegression\n", "from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn_pandas import DataFrameMapper\n",
"\n", "\n",
"from interpret.ext.blackbox import TabularExplainer\n", "from interpret.ext.blackbox import TabularExplainer\n",
"\n", "\n",
@@ -201,17 +201,23 @@
"# Store the numerical columns in a list numerical\n", "# Store the numerical columns in a list numerical\n",
"numerical = attritionXData.columns.difference(categorical)\n", "numerical = attritionXData.columns.difference(categorical)\n",
"\n", "\n",
"numeric_transformations = [([f], Pipeline(steps=[\n", "# We create the preprocessing pipelines for both numeric and categorical data.\n",
"numeric_transformer = Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='median')),\n", " ('imputer', SimpleImputer(strategy='median')),\n",
" ('scaler', StandardScaler())])) for f in numerical]\n", " ('scaler', StandardScaler())])\n",
"\n", "\n",
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n", "categorical_transformer = Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),\n",
" ('onehot', OneHotEncoder(handle_unknown='ignore'))])\n",
"\n", "\n",
"transformations = numeric_transformations + categorical_transformations\n", "transformations = ColumnTransformer(\n",
" transformers=[\n",
" ('num', numeric_transformer, numerical),\n",
" ('cat', categorical_transformer, categorical)])\n",
"\n", "\n",
"# Append classifier to preprocessing pipeline.\n", "# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n", "# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n", "clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', RandomForestClassifier())])\n", " ('classifier', RandomForestClassifier())])\n",
"\n", "\n",
"# Split data into train and test\n", "# Split data into train and test\n",
@@ -350,7 +356,7 @@
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n", "# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n", "# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n", "# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"myenv = CondaDependencies.create(pip_packages=['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n", "myenv = CondaDependencies.create(pip_packages=['pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
" pin_sdk_version=False)\n", " pin_sdk_version=False)\n",
"\n", "\n",
"with open(\"myenv.yml\",\"w\") as f:\n", "with open(\"myenv.yml\",\"w\") as f:\n",
@@ -382,6 +388,7 @@
"from azureml.core.webservice import AciWebservice\n", "from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n", "from azureml.core.environment import Environment\n",
"from azureml.exceptions import WebserviceException\n",
"\n", "\n",
"\n", "\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n", "aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
@@ -395,7 +402,12 @@
"\n", "\n",
"# Use configs and models generated above\n", "# Use configs and models generated above\n",
"service = Model.deploy(ws, 'model-scoring-deploy-local', [scoring_explainer_model, original_model], inference_config, aciconfig)\n", "service = Model.deploy(ws, 'model-scoring-deploy-local', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
"service.wait_for_deployment(show_output=True)" "try:\n",
" service.wait_for_deployment(show_output=True)\n",
"except WebserviceException as e:\n",
" print(e.message)\n",
" print(service.get_logs())\n",
" raise"
] ]
}, },
{ {

View File

@@ -0,0 +1,12 @@
name: train-explain-model-locally-and-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-interpret
- flask
- flask-cors
- gevent>=1.3.6
- jinja2
- ipython
- matplotlib
- ipywidgets

View File

@@ -204,6 +204,8 @@
"source": [ "source": [
"### Provision a compute target\n", "### Provision a compute target\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n", "You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"\n", "\n",
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n", "* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
@@ -257,9 +259,6 @@
"# Set compute target to AmlCompute target created in previous step\n", "# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n", "run_config.target = cpu_cluster.name\n",
"\n", "\n",
"# Enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"# Set Docker base image to the default CPU-based image\n", "# Set Docker base image to the default CPU-based image\n",
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n", "run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
"\n", "\n",
@@ -294,7 +293,7 @@
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n", "# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n", "# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n", "# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n", "azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n", "run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
"# Now submit a run on AmlCompute\n", "# Now submit a run on AmlCompute\n",
"from azureml.core.script_run_config import ScriptRunConfig\n", "from azureml.core.script_run_config import ScriptRunConfig\n",
@@ -458,7 +457,7 @@
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n", "# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n", "# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n", "# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n", "azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
"myenv = CondaDependencies.create(pip_packages=azureml_pip_packages)\n", "myenv = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
"\n", "\n",
"with open(\"myenv.yml\",\"w\") as f:\n", "with open(\"myenv.yml\",\"w\") as f:\n",
@@ -489,6 +488,7 @@
"from azureml.core.webservice import AciWebservice\n", "from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import Model\n", "from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n", "from azureml.core.environment import Environment\n",
"from azureml.exceptions import WebserviceException\n",
"\n", "\n",
"\n", "\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n", "aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
@@ -502,7 +502,12 @@
"\n", "\n",
"# Use configs and models generated above\n", "# Use configs and models generated above\n",
"service = Model.deploy(ws, 'model-scoring-service', [scoring_explainer_model, original_model], inference_config, aciconfig)\n", "service = Model.deploy(ws, 'model-scoring-service', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
"service.wait_for_deployment(show_output=True)" "try:\n",
" service.wait_for_deployment(show_output=True)\n",
"except WebserviceException as e:\n",
" print(e.message)\n",
" print(service.get_logs())\n",
" raise"
] ]
}, },
{ {

View File

@@ -0,0 +1,14 @@
name: train-explain-model-on-amlcompute-and-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-interpret
- flask
- flask-cors
- gevent>=1.3.6
- jinja2
- ipython
- matplotlib
- azureml-dataset-runtime
- azureml-core
- ipywidgets

View File

@@ -5,13 +5,13 @@
import os import os
import pandas as pd import pandas as pd
import zipfile import zipfile
from sklearn.model_selection import train_test_split
import joblib import joblib
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
from sklearn_pandas import DataFrameMapper
from azureml.core.run import Run from azureml.core.run import Run
from interpret.ext.blackbox import TabularExplainer from interpret.ext.blackbox import TabularExplainer
@@ -57,16 +57,22 @@ for col, value in attritionXData.iteritems():
# store the numerical columns # store the numerical columns
numerical = attritionXData.columns.difference(categorical) numerical = attritionXData.columns.difference(categorical)
numeric_transformations = [([f], Pipeline(steps=[ # We create the preprocessing pipelines for both numeric and categorical data.
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='median')), ('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())])) for f in numerical] ('scaler', StandardScaler())])
categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical] categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
transformations = numeric_transformations + categorical_transformations transformations = ColumnTransformer(
transformers=[
('num', numeric_transformer, numerical),
('cat', categorical_transformer, categorical)])
# append classifier to preprocessing pipeline # append classifier to preprocessing pipeline
clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)), clf = Pipeline(steps=[('preprocessor', transformations),
('classifier', LogisticRegression(solver='lbfgs'))]) ('classifier', LogisticRegression(solver='lbfgs'))])
# get the run this was submitted from to interact with run history # get the run this was submitted from to interact with run history

View File

@@ -1,7 +1,5 @@
name: day1-part3-train-model name: aml-pipelines-data-transfer
dependencies: dependencies:
- pip: - pip:
- azureml-sdk - azureml-sdk
- azureml-widgets - azureml-widgets
- pytorch
- torchvision

View File

@@ -209,6 +209,8 @@
"#### Retrieve or create a Azure Machine Learning compute\n", "#### Retrieve or create a Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n", "Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. We will create an Azure Machine Learning Compute containing **STANDARD_D2_V2 CPU VMs**. This process is broken down into the following steps:\n", "If we could not find the compute with the given name in the previous cell, then we will create a new compute here. We will create an Azure Machine Learning Compute containing **STANDARD_D2_V2 CPU VMs**. This process is broken down into the following steps:\n",
"\n", "\n",
"1. Create the configuration\n", "1. Create the configuration\n",

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-getting-started
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-how-to-use-modulestep
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -55,7 +55,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Compute Target\n", "### Compute Target\n",
"Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline." "Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-how-to-use-pipeline-drafts
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -42,15 +42,13 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"from azureml.core import Workspace, Experiment, Datastore, Dataset\n", "from azureml.core import Workspace, Environment, Experiment, Datastore, Dataset, ScriptRunConfig\n",
"from azureml.core.compute import ComputeTarget, AmlCompute\n", "from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.conda_dependencies import CondaDependencies\n", "from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.runconfig import RunConfiguration\n", "from azureml.core.runconfig import RunConfiguration\n",
"from azureml.exceptions import ComputeTargetException\n", "from azureml.exceptions import ComputeTargetException\n",
"from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun, PythonScriptStep\n", "from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun, PythonScriptStep\n",
"from azureml.pipeline.core import Pipeline, PipelineData, TrainingOutput\n", "from azureml.pipeline.core import Pipeline, PipelineData, TrainingOutput\n",
"from azureml.train.dnn import TensorFlow\n",
"# from azureml.train.hyperdrive import *\n",
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal\n", "from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal\n",
"from azureml.train.hyperdrive import choice, loguniform\n", "from azureml.train.hyperdrive import choice, loguniform\n",
"\n", "\n",
@@ -121,12 +119,17 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"os.makedirs('./data/mnist', exist_ok=True)\n", "data_folder = os.path.join(os.getcwd(), 'data/mnist')\n",
"os.makedirs(data_folder, exist_ok=True)\n",
"\n", "\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename = './data/mnist/train-images.gz')\n", "urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')\n", " filename=os.path.join(data_folder, 'train-images.gz'))\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n", "urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz',\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')" " filename=os.path.join(data_folder, 'train-labels.gz'))\n",
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
" filename=os.path.join(data_folder, 'test-images.gz'))\n",
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
" filename=os.path.join(data_folder, 'test-labels.gz'))"
] ]
}, },
{ {
@@ -146,11 +149,11 @@
"from utils import load_data\n", "from utils import load_data\n",
"\n", "\n",
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n", "# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
"X_train = load_data('./data/mnist/train-images.gz', False) / 255.0\n", "X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / np.float32(255.0)\n",
"y_train = load_data('./data/mnist/train-labels.gz', True).reshape(-1)\n", "X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / np.float32(255.0)\n",
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
"\n", "\n",
"X_test = load_data('./data/mnist/test-images.gz', False) / 255.0\n",
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
"\n", "\n",
"count = 0\n", "count = 0\n",
"sample_size = 30\n", "sample_size = 30\n",
@@ -207,6 +210,8 @@
"## Retrieve or create a Azure Machine Learning compute\n", "## Retrieve or create a Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n", "Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n", "If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n",
"\n", "\n",
"1. Create the configuration\n", "1. Create the configuration\n",
@@ -277,13 +282,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create TensorFlow estimator\n", "## Retrieve an Environment\n",
"Next, we construct an [TensorFlow](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py) estimator object.\n", "In this tutorial, we will use one of Azure ML's curated TensorFlow environments for training. Curated environments are available in your workspace by default. Specifically, we will use the TensorFlow 2.0 GPU curated environment."
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker.\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release.\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
] ]
}, },
{ {
@@ -292,12 +292,45 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"est = TensorFlow(source_directory=script_folder, \n", "tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup an input for the ScriptRunConfig step\n",
"You can mount dataset to remote compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder = dataset.as_mount()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure the training job\n",
"Create a ScriptRunConfig object to specify the configuration details of your training job, including your training script, environment to use, and the compute target to run on"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"src = ScriptRunConfig(source_directory=script_folder,\n",
" script='tf_mnist.py',\n",
" arguments=['--data-folder', data_folder],\n",
" compute_target=compute_target,\n", " compute_target=compute_target,\n",
" entry_script='tf_mnist.py', \n", " environment=tf_env)"
" use_gpu=True,\n",
" framework_version='2.0',\n",
" pip_packages=['azureml-dataset-runtime[pandas,fuse]'])"
] ]
}, },
{ {
@@ -361,7 +394,7 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"hd_config = HyperDriveConfig(estimator=est, \n", "hd_config = HyperDriveConfig(run_config=src, \n",
" hyperparameter_sampling=ps,\n", " hyperparameter_sampling=ps,\n",
" policy=early_termination_policy,\n", " policy=early_termination_policy,\n",
" primary_metric_name='validation_acc', \n", " primary_metric_name='validation_acc', \n",
@@ -370,25 +403,6 @@
" max_concurrent_runs=4)" " max_concurrent_runs=4)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add HyperDrive as a step of pipeline\n",
"\n",
"### Setup an input for the hypderdrive step\n",
"You can mount dataset to remote compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder = dataset.as_mount()"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@@ -397,7 +411,6 @@
"HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n", "HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n",
"- **name:** Name of the step\n", "- **name:** Name of the step\n",
"- **hyperdrive_config:** A HyperDriveConfig that defines the configuration for this HyperDrive run\n", "- **hyperdrive_config:** A HyperDriveConfig that defines the configuration for this HyperDrive run\n",
"- **estimator_entry_script_arguments:** List of command-line arguments for estimator entry script\n",
"- **inputs:** List of input port bindings\n", "- **inputs:** List of input port bindings\n",
"- **outputs:** List of output port bindings\n", "- **outputs:** List of output port bindings\n",
"- **metrics_output:** Optional value specifying the location to store HyperDrive run metrics as a JSON file\n", "- **metrics_output:** Optional value specifying the location to store HyperDrive run metrics as a JSON file\n",
@@ -432,7 +445,6 @@
"hd_step = HyperDriveStep(\n", "hd_step = HyperDriveStep(\n",
" name=hd_step_name,\n", " name=hd_step_name,\n",
" hyperdrive_config=hd_config,\n", " hyperdrive_config=hd_config,\n",
" estimator_entry_script_arguments=['--data-folder', data_folder],\n",
" inputs=[data_folder],\n", " inputs=[data_folder],\n",
" outputs=[metrics_data, saved_model])" " outputs=[metrics_data, saved_model])"
] ]

View File

@@ -0,0 +1,9 @@
name: aml-pipelines-parameter-tuning-with-hyperdrive
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- pandas_ml
- azureml-dataset-runtime[pandas,fuse]

View File

@@ -68,7 +68,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Compute Targets\n", "### Compute Targets\n",
"#### Retrieve an already attached Azure Machine Learning Compute" "#### Retrieve an already attached Azure Machine Learning Compute\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,6 @@
name: aml-pipelines-publish-and-run-using-rest-endpoint
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- requests

View File

@@ -54,7 +54,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Compute Targets\n", "### Compute Targets\n",
"#### Retrieve an already attached Azure Machine Learning Compute" "#### Retrieve an already attached Azure Machine Learning Compute\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-setup-schedule-for-a-published-pipeline
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -78,7 +78,9 @@
"source": [ "source": [
"#### Initialization, Steps to create a Pipeline\n", "#### Initialization, Steps to create a Pipeline\n",
"\n", "\n",
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step." "The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,6 @@
name: aml-pipelines-setup-versioned-pipeline-endpoints
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- requests

View File

@@ -109,7 +109,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create or Attach an AmlCompute cluster\n", "## Create or Attach an AmlCompute cluster\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-showcasing-datapath-and-pipelineparameter
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -111,7 +111,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create or Attach an AmlCompute cluster\n", "## Create or Attach an AmlCompute cluster\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-showcasing-dataset-and-pipelineparameter
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -699,12 +699,162 @@
] ]
}, },
{ {
"source": [
"### 5. Running demo notebook already added to the Databricks workspace using existing cluster\n",
"First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"\n",
"Find existing_cluster_id by opeing Azure Databricks UI with Clusters page and in url you will find a string connected with '-' right after \"clusters/\"."
],
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [],
"source": [
"try:\n",
" dbfs_ds = Datastore.get(workspace=ws, datastore_name='dbfs_datastore')\n",
" print('DBFS Datastore already exists')\n",
"except Exception as ex:\n",
" dbfs_ds = Datastore.register_dbfs(ws, datastore_name='dbfs_datastore')\n",
"\n",
"step_1_input = DataReference(datastore=dbfs_ds, path_on_datastore=\"FileStore\", data_reference_name=\"input\")\n",
"step_1_output = PipelineData(\"output\", datastore=dbfs_ds)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dbNbWithExistingClusterStep = DatabricksStep(\n",
" name=\"DBFSReferenceWithExisting\",\n",
" inputs=[step_1_input],\n",
" outputs=[step_1_output],\n",
" notebook_path=notebook_path,\n",
" notebook_params={'myparam': 'testparam', \n",
" 'myparam2': pipeline_param},\n",
" run_name='DBFS_Reference_With_Existing',\n",
" compute_target=databricks_compute,\n",
" existing_cluster_id=\"your existing cluster id\",\n",
" allow_reuse=True\n",
")"
]
},
{
"source": [
"#### Build and submit the Experiment"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbNbWithExistingClusterStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DBFS_Reference_With_Existing').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"source": [
"#### View Run Details"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"source": [
"### 6. Running a Python script in Databricks that currenlty is in local computer with existing cluster\n",
"When you access azure blob or data lake storage from an existing (interactive) cluster, you need to ensure the Spark configuration is set up correctly to access this storage and this set up may require the cluster to be restarted.\n",
"\n",
"If you set permit_cluster_restart to True, AML will check if the spark configuration needs to be updated and restart the cluster for you if required. This will ensure that the storage can be correctly accessed from the Databricks cluster."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
" data_reference_name=\"input\")\n",
"\n",
"dbPythonInLocalWithExistingStep = DatabricksStep(\n",
" name=\"DBPythonInLocalMachineWithExisting\",\n",
" inputs=[step_1_input],\n",
" python_script_name=python_script_name,\n",
" source_directory=source_directory,\n",
" run_name='DB_Python_Local_existing_demo',\n",
" compute_target=databricks_compute,\n",
" existing_cluster_id=\"your existing cluster id\",\n",
" allow_reuse=False,\n",
" permit_cluster_restart=True\n",
")"
]
},
{
"source": [
"#### Build and submit the Experiment"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbPythonInLocalWithExistingStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Python_Local_existing_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"source": [
"#### View Run Details"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"source": [ "source": [
"# Next: ADLA as a Compute Target\n", "# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](https://aka.ms/pl-adla) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline." "To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](https://aka.ms/pl-adla) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
] ],
"cell_type": "markdown",
"metadata": {}
} }
], ],
"metadata": { "metadata": {

View File

@@ -125,7 +125,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Create or Attach an AmlCompute cluster\n", "### Create or Attach an AmlCompute cluster\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,4 @@
name: aml-pipelines-with-automated-machine-learning-step
dependencies:
- pip:
- azureml-sdk

View File

@@ -79,7 +79,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Create or Attach existing AmlCompute\n", "## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource." "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
] ]
}, },
{ {

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-with-commandstep-r
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

Some files were not shown because too many files have changed in this diff Show More