mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 09:37:04 -05:00
Compare commits
14 Commits
minxia/dis
...
release_up
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8b32e8d5ad | ||
|
|
54a065c698 | ||
|
|
b9718678b3 | ||
|
|
3fa40d2c6d | ||
|
|
883e4a4c59 | ||
|
|
e90826b331 | ||
|
|
ac04172f6d | ||
|
|
8c0000beb4 | ||
|
|
35287ab0d8 | ||
|
|
3fe4f8b038 | ||
|
|
1722678469 | ||
|
|
17da7e8706 | ||
|
|
d2e7213ff3 | ||
|
|
882cb76e8a |
@@ -103,7 +103,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"import azureml.core\n",
|
"import azureml.core\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|||||||
@@ -21,9 +21,8 @@ dependencies:
|
|||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
- azureml-widgets~=1.23.0
|
- azureml-widgets~=1.25.0
|
||||||
- pytorch-transformers==1.0.0
|
- pytorch-transformers==1.0.0
|
||||||
- spacy==2.1.8
|
- spacy==2.1.8
|
||||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_win32_requirements.txt [--no-deps]
|
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.25.0/validated_win32_requirements.txt [--no-deps]
|
||||||
- PyJWT < 2.0.0
|
|
||||||
|
|||||||
@@ -21,10 +21,8 @@ dependencies:
|
|||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
- azureml-widgets~=1.23.0
|
- azureml-widgets~=1.25.0
|
||||||
- pytorch-transformers==1.0.0
|
- pytorch-transformers==1.0.0
|
||||||
- spacy==2.1.8
|
- spacy==2.1.8
|
||||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_linux_requirements.txt [--no-deps]
|
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.25.0/validated_linux_requirements.txt [--no-deps]
|
||||||
- PyJWT < 2.0.0
|
|
||||||
|
|
||||||
|
|||||||
@@ -22,9 +22,8 @@ dependencies:
|
|||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
- azureml-widgets~=1.23.0
|
- azureml-widgets~=1.25.0
|
||||||
- pytorch-transformers==1.0.0
|
- pytorch-transformers==1.0.0
|
||||||
- spacy==2.1.8
|
- spacy==2.1.8
|
||||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_darwin_requirements.txt [--no-deps]
|
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.25.0/validated_darwin_requirements.txt [--no-deps]
|
||||||
- PyJWT < 2.0.0
|
|
||||||
|
|||||||
@@ -32,6 +32,7 @@ if [ $? -ne 0 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
|
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
|
||||||
|
brew install libomp
|
||||||
|
|
||||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||||
then
|
then
|
||||||
|
|||||||
@@ -105,7 +105,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -374,15 +374,6 @@
|
|||||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-classification-bank-marketing-all-features
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -93,7 +93,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -255,15 +255,6 @@
|
|||||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-classification-credit-card-fraud
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -96,7 +96,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -319,15 +319,6 @@
|
|||||||
"automl_run = experiment.submit(automl_config, show_output=True)"
|
"automl_run = experiment.submit(automl_config, show_output=True)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"automl_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-classification-text-dnn
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -81,7 +81,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-continuous-retraining
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -5,7 +5,7 @@ set options=%3
|
|||||||
set PIP_NO_WARN_SCRIPT_LOCATION=0
|
set PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||||
|
|
||||||
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental"
|
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental"
|
||||||
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
|
IF "%automl_env_file%"=="" SET automl_env_file="automl_thin_client_env.yml"
|
||||||
|
|
||||||
IF NOT EXIST %automl_env_file% GOTO YmlMissing
|
IF NOT EXIST %automl_env_file% GOTO YmlMissing
|
||||||
|
|
||||||
|
|||||||
@@ -12,7 +12,7 @@ fi
|
|||||||
|
|
||||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||||
then
|
then
|
||||||
AUTOML_ENV_FILE="automl_env.yml"
|
AUTOML_ENV_FILE="automl_thin_client_env.yml"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||||
|
|||||||
@@ -12,7 +12,7 @@ fi
|
|||||||
|
|
||||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||||
then
|
then
|
||||||
AUTOML_ENV_FILE="automl_env.yml"
|
AUTOML_ENV_FILE="automl_thin_client_env_mac.yml"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||||
|
|||||||
@@ -7,6 +7,8 @@ dependencies:
|
|||||||
- nb_conda
|
- nb_conda
|
||||||
- cython
|
- cython
|
||||||
- urllib3<1.24
|
- urllib3<1.24
|
||||||
|
- PyJWT < 2.0.0
|
||||||
|
- numpy==1.18.5
|
||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
@@ -14,4 +16,3 @@ dependencies:
|
|||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- pandas
|
- pandas
|
||||||
- PyJWT < 2.0.0
|
|
||||||
|
|||||||
@@ -8,6 +8,8 @@ dependencies:
|
|||||||
- nb_conda
|
- nb_conda
|
||||||
- cython
|
- cython
|
||||||
- urllib3<1.24
|
- urllib3<1.24
|
||||||
|
- PyJWT < 2.0.0
|
||||||
|
- numpy==1.18.5
|
||||||
|
|
||||||
- pip:
|
- pip:
|
||||||
# Required packages for AzureML execution, history, and data preparation.
|
# Required packages for AzureML execution, history, and data preparation.
|
||||||
@@ -15,4 +17,3 @@ dependencies:
|
|||||||
- azureml-sdk
|
- azureml-sdk
|
||||||
- azureml-widgets
|
- azureml-widgets
|
||||||
- pandas
|
- pandas
|
||||||
- PyJWT < 2.0.0
|
|
||||||
|
|||||||
@@ -39,6 +39,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## Introduction\n",
|
"## Introduction\n",
|
||||||
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
|
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
|
||||||
|
"This notebook will also leverage MLFlow for saving models, allowing for more portability of the resulting models. See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow for more details around MLFlow is AzureML.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -90,7 +91,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -194,7 +195,6 @@
|
|||||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||||
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||||
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||||
"|**scenario**|We need to set this parameter to 'Latest' to enable some experimental features. This parameter should not be set outside of this experimental notebook.|\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||||
]
|
]
|
||||||
@@ -213,17 +213,17 @@
|
|||||||
" \"n_cross_validations\": 3,\n",
|
" \"n_cross_validations\": 3,\n",
|
||||||
" \"primary_metric\": 'r2_score',\n",
|
" \"primary_metric\": 'r2_score',\n",
|
||||||
" \"enable_early_stopping\": True, \n",
|
" \"enable_early_stopping\": True, \n",
|
||||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
|
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
||||||
" \"max_concurrent_iterations\": 4,\n",
|
" \"max_concurrent_iterations\": 4,\n",
|
||||||
" \"max_cores_per_iteration\": -1,\n",
|
" \"max_cores_per_iteration\": -1,\n",
|
||||||
" \"verbosity\": logging.INFO,\n",
|
" \"verbosity\": logging.INFO,\n",
|
||||||
|
" \"save_mlflow\": True,\n",
|
||||||
"}\n",
|
"}\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||||
" compute_target = compute_target,\n",
|
" compute_target = compute_target,\n",
|
||||||
" training_data = train_data,\n",
|
" training_data = train_data,\n",
|
||||||
" label_column_name = label,\n",
|
" label_column_name = label,\n",
|
||||||
" scenario='Latest',\n",
|
|
||||||
" **automl_settings\n",
|
" **automl_settings\n",
|
||||||
" )"
|
" )"
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-regression-model-proxy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -113,7 +113,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -365,7 +365,9 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||||
"forecasting_parameters = ForecastingParameters(\n",
|
"forecasting_parameters = ForecastingParameters(\n",
|
||||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
" time_column_name=time_column_name,\n",
|
||||||
|
" forecast_horizon=forecast_horizon,\n",
|
||||||
|
" freq='MS' # Set the forecast frequency to be monthly (start of the month)\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
@@ -401,8 +403,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"remote_run = experiment.submit(automl_config, show_output= False)\n",
|
"remote_run = experiment.submit(automl_config, show_output= True)"
|
||||||
"remote_run"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -419,15 +420,6 @@
|
|||||||
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run.wait_for_completion()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-forecasting-beer-remote
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -87,7 +87,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -318,7 +318,8 @@
|
|||||||
" time_column_name=time_column_name,\n",
|
" time_column_name=time_column_name,\n",
|
||||||
" forecast_horizon=forecast_horizon,\n",
|
" forecast_horizon=forecast_horizon,\n",
|
||||||
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
|
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
|
||||||
" target_lags='auto' # use heuristic based lag setting \n",
|
" target_lags='auto', # use heuristic based lag setting\n",
|
||||||
|
" freq='D' # Set the forecast frequency to be daily\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
@@ -349,8 +350,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||||
"remote_run"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-forecasting-bike-share
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -97,7 +97,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -342,7 +342,9 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||||
"forecasting_parameters = ForecastingParameters(\n",
|
"forecasting_parameters = ForecastingParameters(\n",
|
||||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
" time_column_name=time_column_name,\n",
|
||||||
|
" forecast_horizon=forecast_horizon,\n",
|
||||||
|
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||||
@@ -375,15 +377,6 @@
|
|||||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-forecasting-energy-demand
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -94,7 +94,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -319,7 +319,8 @@
|
|||||||
" time_column_name=TIME_COLUMN_NAME,\n",
|
" time_column_name=TIME_COLUMN_NAME,\n",
|
||||||
" forecast_horizon=forecast_horizon,\n",
|
" forecast_horizon=forecast_horizon,\n",
|
||||||
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
|
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
|
||||||
" target_lags=lags\n",
|
" target_lags=lags,\n",
|
||||||
|
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||||
")"
|
")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-forecasting-function
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -82,7 +82,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -423,7 +423,8 @@
|
|||||||
"forecasting_parameters = ForecastingParameters(\n",
|
"forecasting_parameters = ForecastingParameters(\n",
|
||||||
" time_column_name=time_column_name,\n",
|
" time_column_name=time_column_name,\n",
|
||||||
" forecast_horizon=n_test_periods,\n",
|
" forecast_horizon=n_test_periods,\n",
|
||||||
" time_series_id_column_names=time_series_id_column_names\n",
|
" time_series_id_column_names=time_series_id_column_names,\n",
|
||||||
|
" freq='W-THU' # Set the forecast frequency to be weekly (start on each Thursday)\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||||
@@ -455,8 +456,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||||
"remote_run"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-forecasting-orange-juice-sales
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -96,7 +96,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -215,15 +215,6 @@
|
|||||||
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"local_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-classification-credit-card-fraud-local
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -96,7 +96,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -305,15 +305,6 @@
|
|||||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-regression-explanation-featurization
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -27,7 +27,7 @@ automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
|||||||
|
|
||||||
# Check if this AutoML model is explainable
|
# Check if this AutoML model is explainable
|
||||||
if not automl_check_model_if_explainable(automl_run):
|
if not automl_check_model_if_explainable(automl_run):
|
||||||
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get(
|
raise Exception("Model explanations are currently not supported for " + automl_run.get_properties().get(
|
||||||
'run_algorithm'))
|
'run_algorithm'))
|
||||||
|
|
||||||
# Download the best model from the artifact store
|
# Download the best model from the artifact store
|
||||||
@@ -38,16 +38,16 @@ fitted_model = joblib.load('model.pkl')
|
|||||||
|
|
||||||
# Get the train dataset from the workspace
|
# Get the train dataset from the workspace
|
||||||
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
|
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
|
||||||
# Drop the lablled column to get the training set.
|
# Drop the labeled column to get the training set.
|
||||||
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
|
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||||
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
|
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
|
||||||
|
|
||||||
# Get the train dataset from the workspace
|
# Get the test dataset from the workspace
|
||||||
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
|
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
|
||||||
# Drop the lablled column to get the testing set.
|
# Drop the labeled column to get the testing set.
|
||||||
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
|
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||||
|
|
||||||
# Setup the class for explaining the AtuoML models
|
# Setup the class for explaining the AutoML models
|
||||||
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
|
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
|
||||||
X=X_train, X_test=X_test,
|
X=X_train, X_test=X_test,
|
||||||
y=y_train)
|
y=y_train)
|
||||||
|
|||||||
@@ -92,7 +92,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
|
"print(\"This notebook was created using version 1.25.0 of the Azure ML SDK\")\n",
|
||||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -256,15 +256,6 @@
|
|||||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"remote_run"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: auto-ml-regression
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
84
how-to-use-azureml/azure-synapse/README.md
Normal file
84
how-to-use-azureml/azure-synapse/README.md
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
Azure Synapse Analytics is a limitless analytics service that brings together data integration, enterprise data warehousing, and big data analytics. It gives you the freedom to query data on your terms, using either serverless or dedicated resources—at scale. Azure Synapse brings these worlds together with a unified experience to ingest, explore, prepare, manage, and serve data for immediate BI and machine learning needs. A core offering within Azure Synapse Analytics are serverless Apache Spark pools enhanced for big data workloads.
|
||||||
|
|
||||||
|
Synapse in Aml integration is for customers who want to use Apache Spark in Azure Synapse Analytics to prepare data at scale in Azure ML before training their ML model. This will allow customers to work on their end-to-end ML lifecycle including large-scale data preparation, model training and deployment within Azure ML workspace without having to use suboptimal tools for machine learning or switch between multiple tools for data preparation and model training. The ability to perform all ML tasks within Azure ML will reduce time required for customers to iterate on a machine learning project which typically includes multiple rounds of data preparation and training.
|
||||||
|
|
||||||
|
In the public preview, the capabilities are provided:
|
||||||
|
|
||||||
|
- Link Azure Synapse Analytics workspace to Azure Machine Learning workspace (via ARM, UI or SDK)
|
||||||
|
- Attach Apache Spark pools powered by Azure Synapse Analytics as Azure Machine Learning compute targets (via ARM, UI or SDK)
|
||||||
|
- Launch Apache Spark sessions in notebooks and perform interactive data exploration and preparation. This interactive experience leverages Apache Spark magic and customers will have session-level Conda support to install packages.
|
||||||
|
- Productionize ML pipelines by leveraging Apache Spark pools to pre-process big data
|
||||||
|
|
||||||
|
# Using Synapse in Azure machine learning
|
||||||
|
|
||||||
|
## Create synapse resources
|
||||||
|
|
||||||
|
Follow up the documents to create Synapse workspace and resource-setup.sh is available for you to create the resources.
|
||||||
|
|
||||||
|
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace)
|
||||||
|
- Create from [Cli](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace-cli)
|
||||||
|
|
||||||
|
Follow up the documents to create Synapse spark pool
|
||||||
|
|
||||||
|
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal)
|
||||||
|
- Create from [Cli](https://docs.microsoft.com/en-us/cli/azure/ext/synapse/synapse/spark/pool?view=azure-cli-latest)
|
||||||
|
|
||||||
|
## Link Synapse Workspace
|
||||||
|
|
||||||
|
Make sure you are the owner of synapse workspace so that you can link synapse workspace into AML.
|
||||||
|
You can run resource-setup.py to link the synapse workspace and attach compute
|
||||||
|
|
||||||
|
```python
|
||||||
|
from azureml.core import Workspace
|
||||||
|
ws = Workspace.from_config()
|
||||||
|
|
||||||
|
from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration
|
||||||
|
synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(
|
||||||
|
subscription_id="<subscription id>",
|
||||||
|
resource_group="<resource group",
|
||||||
|
name="<synapse workspace name>"
|
||||||
|
)
|
||||||
|
|
||||||
|
linked_service = LinkedService.register(
|
||||||
|
workspace=ws,
|
||||||
|
name='<link name>',
|
||||||
|
linked_service_config=synapse_link_config)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
## Attach synapse spark pool as AzureML compute
|
||||||
|
|
||||||
|
```python
|
||||||
|
|
||||||
|
from azureml.core.compute import SynapseCompute, ComputeTarget
|
||||||
|
spark_pool_name = "<spark pool name>"
|
||||||
|
attached_synapse_name = "<attached compute name>"
|
||||||
|
|
||||||
|
attach_config = SynapseCompute.attach_configuration(
|
||||||
|
linked_service,
|
||||||
|
type="SynapseSpark",
|
||||||
|
pool_name=spark_pool_name)
|
||||||
|
|
||||||
|
synapse_compute=ComputeTarget.attach(
|
||||||
|
workspace=ws,
|
||||||
|
name=attached_synapse_name,
|
||||||
|
attach_configuration=attach_config)
|
||||||
|
|
||||||
|
synapse_compute.wait_for_completion()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Set up permission
|
||||||
|
|
||||||
|
Grant Spark admin role to system assigned identity of the linked service so that the user can submit experiment run or pipeline run from AML workspace to synapse spark pool.
|
||||||
|
|
||||||
|
Grant Spark admin role to the specific user so that the user can start spark session to synapse spark pool.
|
||||||
|
|
||||||
|
You can get the system assigned identity information by running
|
||||||
|
|
||||||
|
```python
|
||||||
|
print(linked_service.system_assigned_identity_principal_id)
|
||||||
|
```
|
||||||
|
|
||||||
|
- Launch synapse studio of the synapse workspace and grant linked service MSI "Synapse Apache Spark administrator" role.
|
||||||
|
|
||||||
|
- In azure portal grant linked service MSI "Storage Blob Data Contributor" role of the primary adlsgen2 account of synapse workspace to use the library management feature.
|
||||||
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
@@ -0,0 +1,892 @@
|
|||||||
|
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
|
||||||
|
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
|
||||||
|
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
|
||||||
|
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
|
||||||
|
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
|
||||||
|
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
|
||||||
|
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
|
||||||
|
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
|
||||||
|
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
|
||||||
|
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
|
||||||
|
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
|
||||||
|
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
|
||||||
|
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
|
||||||
|
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
|
||||||
|
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
|
||||||
|
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
|
||||||
|
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
|
||||||
|
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
|
||||||
|
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
|
||||||
|
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
|
||||||
|
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
|
||||||
|
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
|
||||||
|
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
|
||||||
|
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
|
||||||
|
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
|
||||||
|
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
|
||||||
|
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
|
||||||
|
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
|
||||||
|
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
|
||||||
|
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
|
||||||
|
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
|
||||||
|
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
|
||||||
|
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
|
||||||
|
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
|
||||||
|
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
|
||||||
|
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
|
||||||
|
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
|
||||||
|
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
|
||||||
|
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
|
||||||
|
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
|
||||||
|
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
|
||||||
|
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
|
||||||
|
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
|
||||||
|
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
|
||||||
|
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
|
||||||
|
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
|
||||||
|
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
|
||||||
|
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
|
||||||
|
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
|
||||||
|
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
|
||||||
|
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
|
||||||
|
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
|
||||||
|
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
|
||||||
|
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
|
||||||
|
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
|
||||||
|
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
|
||||||
|
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
|
||||||
|
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
|
||||||
|
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
|
||||||
|
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
|
||||||
|
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
|
||||||
|
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
|
||||||
|
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
|
||||||
|
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
|
||||||
|
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
|
||||||
|
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
|
||||||
|
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
|
||||||
|
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
|
||||||
|
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
|
||||||
|
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
|
||||||
|
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
|
||||||
|
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
|
||||||
|
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
|
||||||
|
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
|
||||||
|
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
|
||||||
|
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
|
||||||
|
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
|
||||||
|
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
|
||||||
|
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
|
||||||
|
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
|
||||||
|
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
|
||||||
|
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
|
||||||
|
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
|
||||||
|
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
|
||||||
|
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
|
||||||
|
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
|
||||||
|
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
|
||||||
|
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
|
||||||
|
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
|
||||||
|
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
|
||||||
|
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
|
||||||
|
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
|
||||||
|
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
|
||||||
|
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
|
||||||
|
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
|
||||||
|
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
|
||||||
|
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
|
||||||
|
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
|
||||||
|
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
|
||||||
|
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
|
||||||
|
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
|
||||||
|
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
|
||||||
|
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
|
||||||
|
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
|
||||||
|
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
|
||||||
|
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
|
||||||
|
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
|
||||||
|
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
|
||||||
|
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
|
||||||
|
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
|
||||||
|
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
|
||||||
|
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
|
||||||
|
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
|
||||||
|
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
|
||||||
|
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
|
||||||
|
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
|
||||||
|
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
|
||||||
|
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
|
||||||
|
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
|
||||||
|
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
|
||||||
|
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
|
||||||
|
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
|
||||||
|
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
|
||||||
|
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
|
||||||
|
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
|
||||||
|
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
|
||||||
|
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
|
||||||
|
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
|
||||||
|
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
|
||||||
|
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
|
||||||
|
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
|
||||||
|
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
|
||||||
|
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
|
||||||
|
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
|
||||||
|
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
|
||||||
|
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
|
||||||
|
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
|
||||||
|
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
|
||||||
|
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
|
||||||
|
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
|
||||||
|
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
|
||||||
|
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
|
||||||
|
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
|
||||||
|
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
|
||||||
|
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
|
||||||
|
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
|
||||||
|
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
|
||||||
|
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
|
||||||
|
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
|
||||||
|
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
|
||||||
|
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
|
||||||
|
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
|
||||||
|
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
|
||||||
|
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
|
||||||
|
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
|
||||||
|
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
|
||||||
|
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
|
||||||
|
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
|
||||||
|
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
|
||||||
|
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
|
||||||
|
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
|
||||||
|
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
|
||||||
|
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
|
||||||
|
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
|
||||||
|
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
|
||||||
|
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
|
||||||
|
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
|
||||||
|
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
|
||||||
|
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
|
||||||
|
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
|
||||||
|
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
|
||||||
|
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
|
||||||
|
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
|
||||||
|
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
|
||||||
|
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
|
||||||
|
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
|
||||||
|
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
|
||||||
|
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
|
||||||
|
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
|
||||||
|
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
|
||||||
|
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
|
||||||
|
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
|
||||||
|
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
|
||||||
|
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
|
||||||
|
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
|
||||||
|
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
|
||||||
|
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
|
||||||
|
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
|
||||||
|
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
|
||||||
|
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
|
||||||
|
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
|
||||||
|
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
|
||||||
|
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
|
||||||
|
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
|
||||||
|
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
|
||||||
|
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
|
||||||
|
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
|
||||||
|
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
|
||||||
|
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
|
||||||
|
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
|
||||||
|
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
|
||||||
|
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
|
||||||
|
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
|
||||||
|
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
|
||||||
|
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
|
||||||
|
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
|
||||||
|
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
|
||||||
|
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
|
||||||
|
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
|
||||||
|
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
|
||||||
|
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
|
||||||
|
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
|
||||||
|
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
|
||||||
|
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
|
||||||
|
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
|
||||||
|
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
|
||||||
|
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
|
||||||
|
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
|
||||||
|
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
|
||||||
|
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
|
||||||
|
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
|
||||||
|
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
|
||||||
|
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
|
||||||
|
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
|
||||||
|
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
|
||||||
|
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
|
||||||
|
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
|
||||||
|
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
|
||||||
|
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
|
||||||
|
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
|
||||||
|
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
|
||||||
|
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
|
||||||
|
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
|
||||||
|
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
|
||||||
|
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
|
||||||
|
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
|
||||||
|
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
|
||||||
|
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
|
||||||
|
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
|
||||||
|
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
|
||||||
|
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
|
||||||
|
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
|
||||||
|
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
|
||||||
|
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
|
||||||
|
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
|
||||||
|
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
|
||||||
|
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
|
||||||
|
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
|
||||||
|
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
|
||||||
|
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
|
||||||
|
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
|
||||||
|
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
|
||||||
|
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
|
||||||
|
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
|
||||||
|
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
|
||||||
|
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
|
||||||
|
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
|
||||||
|
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
|
||||||
|
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
|
||||||
|
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
|
||||||
|
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
|
||||||
|
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
|
||||||
|
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
|
||||||
|
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
|
||||||
|
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
|
||||||
|
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
|
||||||
|
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
|
||||||
|
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
|
||||||
|
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
|
||||||
|
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
|
||||||
|
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
|
||||||
|
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
|
||||||
|
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
|
||||||
|
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
|
||||||
|
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
|
||||||
|
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
|
||||||
|
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
|
||||||
|
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
|
||||||
|
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
|
||||||
|
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
|
||||||
|
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
|
||||||
|
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
|
||||||
|
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
|
||||||
|
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
|
||||||
|
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
|
||||||
|
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
|
||||||
|
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
|
||||||
|
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
|
||||||
|
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
|
||||||
|
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
|
||||||
|
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
|
||||||
|
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
|
||||||
|
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
|
||||||
|
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
|
||||||
|
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
|
||||||
|
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
|
||||||
|
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
|
||||||
|
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
|
||||||
|
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
|
||||||
|
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
|
||||||
|
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
|
||||||
|
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
|
||||||
|
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
|
||||||
|
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
|
||||||
|
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
|
||||||
|
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
|
||||||
|
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
|
||||||
|
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
|
||||||
|
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
|
||||||
|
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
|
||||||
|
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
|
||||||
|
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
|
||||||
|
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||||
|
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
|
||||||
|
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
|
||||||
|
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
|
||||||
|
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
|
||||||
|
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
|
||||||
|
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
|
||||||
|
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
|
||||||
|
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
|
||||||
|
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
|
||||||
|
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
|
||||||
|
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
|
||||||
|
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
|
||||||
|
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
|
||||||
|
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
|
||||||
|
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
|
||||||
|
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
|
||||||
|
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
|
||||||
|
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
|
||||||
|
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
|
||||||
|
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
|
||||||
|
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
|
||||||
|
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
|
||||||
|
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
|
||||||
|
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
|
||||||
|
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
|
||||||
|
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
|
||||||
|
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
|
||||||
|
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
|
||||||
|
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
|
||||||
|
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
|
||||||
|
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
|
||||||
|
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
|
||||||
|
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
|
||||||
|
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
|
||||||
|
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
|
||||||
|
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
|
||||||
|
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
|
||||||
|
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
|
||||||
|
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
|
||||||
|
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
|
||||||
|
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
|
||||||
|
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
|
||||||
|
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
|
||||||
|
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
|
||||||
|
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
|
||||||
|
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
|
||||||
|
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
|
||||||
|
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
|
||||||
|
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
|
||||||
|
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
|
||||||
|
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
|
||||||
|
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
|
||||||
|
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
|
||||||
|
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
|
||||||
|
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
|
||||||
|
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
|
||||||
|
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
|
||||||
|
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
|
||||||
|
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
|
||||||
|
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
|
||||||
|
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
|
||||||
|
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
|
||||||
|
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
|
||||||
|
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
|
||||||
|
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
|
||||||
|
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
|
||||||
|
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
|
||||||
|
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
|
||||||
|
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
|
||||||
|
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
|
||||||
|
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
|
||||||
|
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
|
||||||
|
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
|
||||||
|
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
|
||||||
|
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
|
||||||
|
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
|
||||||
|
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
|
||||||
|
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
|
||||||
|
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
|
||||||
|
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
|
||||||
|
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
|
||||||
|
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
|
||||||
|
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
|
||||||
|
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
|
||||||
|
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
|
||||||
|
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
|
||||||
|
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
|
||||||
|
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
|
||||||
|
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
|
||||||
|
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
|
||||||
|
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
|
||||||
|
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
|
||||||
|
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
|
||||||
|
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
|
||||||
|
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
|
||||||
|
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
|
||||||
|
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
|
||||||
|
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
|
||||||
|
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
|
||||||
|
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
|
||||||
|
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
|
||||||
|
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
|
||||||
|
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
|
||||||
|
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
|
||||||
|
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
|
||||||
|
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
|
||||||
|
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
|
||||||
|
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
|
||||||
|
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
|
||||||
|
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
|
||||||
|
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
|
||||||
|
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
|
||||||
|
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
|
||||||
|
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
|
||||||
|
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
|
||||||
|
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
|
||||||
|
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
|
||||||
|
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
|
||||||
|
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
|
||||||
|
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
|
||||||
|
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
|
||||||
|
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
|
||||||
|
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
|
||||||
|
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
|
||||||
|
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
|
||||||
|
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
|
||||||
|
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
|
||||||
|
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
|
||||||
|
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
|
||||||
|
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
|
||||||
|
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
|
||||||
|
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
|
||||||
|
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
|
||||||
|
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
|
||||||
|
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
|
||||||
|
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
|
||||||
|
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
|
||||||
|
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
|
||||||
|
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
|
||||||
|
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
|
||||||
|
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
|
||||||
|
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
|
||||||
|
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
|
||||||
|
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
|
||||||
|
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
|
||||||
|
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
|
||||||
|
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
|
||||||
|
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
|
||||||
|
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
|
||||||
|
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
|
||||||
|
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
|
||||||
|
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
|
||||||
|
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
|
||||||
|
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
|
||||||
|
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
|
||||||
|
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
|
||||||
|
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
|
||||||
|
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
|
||||||
|
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
|
||||||
|
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
|
||||||
|
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
|
||||||
|
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
|
||||||
|
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
|
||||||
|
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
|
||||||
|
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
|
||||||
|
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
|
||||||
|
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
|
||||||
|
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
|
||||||
|
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
|
||||||
|
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
|
||||||
|
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
|
||||||
|
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
|
||||||
|
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
|
||||||
|
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
|
||||||
|
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
|
||||||
|
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
|
||||||
|
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
|
||||||
|
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
|
||||||
|
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
|
||||||
|
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
|
||||||
|
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
|
||||||
|
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
|
||||||
|
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
|
||||||
|
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
|
||||||
|
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
|
||||||
|
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
|
||||||
|
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
|
||||||
|
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
|
||||||
|
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
|
||||||
|
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
|
||||||
|
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
|
||||||
|
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
|
||||||
|
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
|
||||||
|
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
|
||||||
|
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
|
||||||
|
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
|
||||||
|
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
|
||||||
|
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
|
||||||
|
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
|
||||||
|
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
|
||||||
|
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
|
||||||
|
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
|
||||||
|
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
|
||||||
|
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
|
||||||
|
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
|
||||||
|
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
|
||||||
|
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
|
||||||
|
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
|
||||||
|
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
|
||||||
|
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
|
||||||
|
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
|
||||||
|
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
|
||||||
|
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
|
||||||
|
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
|
||||||
|
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
|
||||||
|
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
|
||||||
|
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
|
||||||
|
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
|
||||||
|
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
|
||||||
|
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
|
||||||
|
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
|
||||||
|
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
|
||||||
|
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
|
||||||
|
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
|
||||||
|
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
|
||||||
|
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
|
||||||
|
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
|
||||||
|
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
|
||||||
|
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
|
||||||
|
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
|
||||||
|
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
|
||||||
|
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
|
||||||
|
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
|
||||||
|
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
|
||||||
|
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
|
||||||
|
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
|
||||||
|
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
|
||||||
|
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
|
||||||
|
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
|
||||||
|
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
|
||||||
|
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
|
||||||
|
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
|
||||||
|
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
|
||||||
|
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
|
||||||
|
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
|
||||||
|
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
|
||||||
|
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
|
||||||
|
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
|
||||||
|
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
|
||||||
|
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
|
||||||
|
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
|
||||||
|
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
|
||||||
|
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
|
||||||
|
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
|
||||||
|
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
|
||||||
|
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
|
||||||
|
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
|
||||||
|
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
|
||||||
|
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
|
||||||
|
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
|
||||||
|
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
|
||||||
|
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
|
||||||
|
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
|
||||||
|
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
|
||||||
|
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
|
||||||
|
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
|
||||||
|
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
|
||||||
|
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
|
||||||
|
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
|
||||||
|
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
|
||||||
|
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
|
||||||
|
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
|
||||||
|
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
|
||||||
|
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
|
||||||
|
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
|
||||||
|
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
|
||||||
|
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
|
||||||
|
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
|
||||||
|
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
|
||||||
|
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
|
||||||
|
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
|
||||||
|
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
|
||||||
|
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
|
||||||
|
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
|
||||||
|
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
|
||||||
|
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
|
||||||
|
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
|
||||||
|
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
|
||||||
|
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
|
||||||
|
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
|
||||||
|
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
|
||||||
|
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
|
||||||
|
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
|
||||||
|
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
|
||||||
|
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
|
||||||
|
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
|
||||||
|
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
|
||||||
|
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
|
||||||
|
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
|
||||||
|
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
|
||||||
|
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
|
||||||
|
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
|
||||||
|
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
|
||||||
|
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
|
||||||
|
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
|
||||||
|
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
|
||||||
|
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
|
||||||
|
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
|
||||||
|
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
|
||||||
|
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
|
||||||
|
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
|
||||||
|
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
|
||||||
|
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
|
||||||
|
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
|
||||||
|
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
|
||||||
|
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
|
||||||
|
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
|
||||||
|
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
|
||||||
|
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
|
||||||
|
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
|
||||||
|
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
|
||||||
|
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
|
||||||
|
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
|
||||||
|
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
|
||||||
|
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
|
||||||
|
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
|
||||||
|
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
|
||||||
|
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
|
||||||
|
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
|
||||||
|
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
|
||||||
|
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
|
||||||
|
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
|
||||||
|
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
|
||||||
|
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
|
||||||
|
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
|
||||||
|
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
|
||||||
|
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
|
||||||
|
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
|
||||||
|
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
|
||||||
|
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
|
||||||
|
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
|
||||||
|
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
|
||||||
|
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
|
||||||
|
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
|
||||||
|
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
|
||||||
|
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
|
||||||
|
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
|
||||||
|
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
|
||||||
|
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
|
||||||
|
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
|
||||||
|
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
|
||||||
|
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
|
||||||
|
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
|
||||||
|
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
|
||||||
|
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
|
||||||
|
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
|
||||||
|
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
|
||||||
|
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
|
||||||
|
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
|
||||||
|
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
|
||||||
|
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
|
||||||
|
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
|
||||||
|
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
|
||||||
|
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
|
||||||
|
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
|
||||||
|
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
|
||||||
|
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
|
||||||
|
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
|
||||||
|
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
|
||||||
|
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
|
||||||
|
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
|
||||||
|
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
|
||||||
|
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
|
||||||
|
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
|
||||||
|
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
|
||||||
|
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
|
||||||
|
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
|
||||||
|
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
|
||||||
|
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
|
||||||
|
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
|
||||||
|
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
|
||||||
|
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
|
||||||
|
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
|
||||||
|
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
|
||||||
|
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
|
||||||
|
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
|
||||||
|
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
|
||||||
|
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
|
||||||
|
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
|
||||||
|
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
|
||||||
|
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
|
||||||
|
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
|
||||||
|
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
|
||||||
|
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
|
||||||
|
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
|
||||||
|
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
|
||||||
|
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
|
||||||
|
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
|
||||||
|
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
|
||||||
|
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
|
||||||
|
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
|
||||||
|
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
|
||||||
|
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
|
||||||
|
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
|
||||||
|
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
|
||||||
|
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
|
||||||
|
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
|
||||||
|
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
|
||||||
|
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
|
||||||
|
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
|
||||||
|
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
|
||||||
|
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
|
||||||
|
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
|
||||||
|
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
|
||||||
|
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
|
||||||
|
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
|
||||||
|
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
|
||||||
|
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
|
||||||
|
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
|
||||||
|
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
|
||||||
|
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
|
||||||
|
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
|
||||||
|
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
|
||||||
|
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
|
||||||
|
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
|
||||||
|
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
|
||||||
|
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
|
||||||
|
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
|
||||||
|
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
|
||||||
|
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
|
||||||
|
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||||
|
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
|
||||||
|
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
|
||||||
|
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
|
||||||
|
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
|
||||||
|
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
|
||||||
|
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
|
||||||
|
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
|
||||||
|
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
|
||||||
|
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
|
||||||
|
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
|
||||||
|
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
|
||||||
|
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
|
||||||
|
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
|
||||||
|
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
|
||||||
|
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
|
||||||
|
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
|
||||||
|
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
|
||||||
|
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
|
||||||
|
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
|
||||||
|
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
|
||||||
|
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
|
||||||
|
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
|
||||||
|
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
|
||||||
|
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
|
||||||
|
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
|
||||||
|
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
|
||||||
|
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
|
||||||
|
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
|
||||||
|
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
|
||||||
|
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
|
||||||
|
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
|
||||||
|
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
|
||||||
|
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
|
||||||
|
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
|
||||||
|
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
|
||||||
|
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
|
||||||
|
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
|
||||||
|
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
|
||||||
|
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
|
||||||
|
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
|
||||||
|
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
|
||||||
|
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
|
||||||
|
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
|
||||||
|
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
|
||||||
|
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
|
||||||
|
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
|
||||||
|
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
|
||||||
|
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
|
||||||
|
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
|
||||||
|
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
|
||||||
|
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
|
||||||
|
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
|
||||||
|
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
|
||||||
|
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
|
||||||
|
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
|
||||||
|
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
|
||||||
|
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
|
||||||
|
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
|
||||||
|
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
|
||||||
|
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
|
||||||
|
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
|
||||||
|
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
|
||||||
|
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
|
||||||
|
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
|
||||||
|
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
|
||||||
|
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
|
||||||
|
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
|
||||||
|
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
|
||||||
|
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
|
||||||
|
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
|
||||||
|
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
|
||||||
|
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
|
||||||
|
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
|
||||||
|
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
|
||||||
|
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
|
||||||
|
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
|
||||||
|
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
|
||||||
|
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
|
||||||
|
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
|
||||||
|
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
|
||||||
|
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
|
||||||
|
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
|
||||||
|
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
|
||||||
|
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
|
||||||
|
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
|
||||||
|
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
|
||||||
|
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
|
||||||
|
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
|
||||||
|
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
|
||||||
|
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
|
||||||
|
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
|
||||||
|
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
|
||||||
|
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
|
||||||
|
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
|
||||||
|
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
|
||||||
|
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
|
||||||
|
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
|
||||||
|
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
|
||||||
|
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
|
||||||
|
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
|
||||||
|
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
|
||||||
|
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
|
||||||
|
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
|
||||||
|
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
|
||||||
|
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
|
||||||
|
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
|
||||||
|
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
|
||||||
|
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
|
||||||
|
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
|
||||||
|
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
|
||||||
|
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
|
||||||
|
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
|
||||||
|
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
|
||||||
|
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
|
||||||
|
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
|
||||||
|
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
|
||||||
|
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
|
||||||
|
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
|
||||||
|
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
|
||||||
|
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
|
||||||
|
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
|
||||||
|
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
|
||||||
|
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
|
||||||
|
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
|
||||||
|
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
|
||||||
|
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
|
||||||
|
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
|
||||||
|
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
|
||||||
|
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
|
||||||
|
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
|
||||||
|
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
|
||||||
|
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
|
||||||
|
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
|
||||||
|
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
|
||||||
|
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
|
||||||
|
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
|
||||||
|
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
|
||||||
|
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
|
||||||
|
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
|
||||||
|
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
|
||||||
|
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
|
||||||
|
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
|
||||||
|
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
|
||||||
|
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
|
||||||
|
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
|
||||||
|
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
|
||||||
|
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
|
||||||
|
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
|
||||||
|
@@ -0,0 +1,507 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||||
|
"\n",
|
||||||
|
"Licensed under the MIT License."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Using Synapse Spark Pool as a Compute Target from Azure Machine Learning Remote Run\n",
|
||||||
|
"1. To use Synapse Spark Pool as a compute target from Experiment Run, [ScriptRunConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) is used, the same as other Experiment Runs. This notebook demonstrates how to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster.\n",
|
||||||
|
"2. To use Synapse Spark Pool as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [SynapseSparkStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.synapse_spark_step.synapsesparkstep?view=azure-ml-py) is used. This notebook demonstrates how to leverage SynapseSparkStep in Azure Machine Learning Pipeline.\n",
|
||||||
|
"\n",
|
||||||
|
"## Before you begin:\n",
|
||||||
|
"1. **Create an Azure Synapse workspace**, check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace) for more information.\n",
|
||||||
|
"2. **Create Spark Pool in Synapse workspace**: check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal) for more information."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Azure Machine Learning and Pipeline SDK-specific imports"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"import azureml.core\n",
|
||||||
|
"from azureml.core import Workspace, Experiment\n",
|
||||||
|
"from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration\n",
|
||||||
|
"from azureml.core.compute import ComputeTarget, SynapseCompute\n",
|
||||||
|
"from azureml.exceptions import ComputeTargetException\n",
|
||||||
|
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||||
|
"from azureml.core.datastore import Datastore\n",
|
||||||
|
"from azureml.core.runconfig import RunConfiguration\n",
|
||||||
|
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||||
|
"from azureml.pipeline.core import Pipeline\n",
|
||||||
|
"from azureml.pipeline.steps import PythonScriptStep, SynapseSparkStep\n",
|
||||||
|
"\n",
|
||||||
|
"# Check core SDK version number\n",
|
||||||
|
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"ws = Workspace.from_config()\n",
|
||||||
|
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Link Synapse workspace to AML \n",
|
||||||
|
"You have to be an \"Owner\" of Synapse workspace resource to perform linking. You can check your role in the Azure resource management portal, if you don't have an \"Owner\" role, you can contact an \"Owner\" to link the workspaces for you."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"# Replace with your resource info before running.\n",
|
||||||
|
"\n",
|
||||||
|
"synapse_subscription_id=os.getenv(\"SYNAPSE_SUBSCRIPTION_ID\", \"<my-synapse-subscription-id>\")\n",
|
||||||
|
"synapse_resource_group=os.getenv(\"SYNAPSE_RESOURCE_GROUP\", \"<my-synapse-resource-group>\")\n",
|
||||||
|
"synapse_workspace_name=os.getenv(\"SYNAPSE_WORKSPACE_NAME\", \"<my-synapse-workspace-name>\")\n",
|
||||||
|
"synapse_linked_service_name=os.getenv(\"SYNAPSE_LINKED_SERVICE_NAME\", \"<my-synapse-linked-service-name>\")\n",
|
||||||
|
"\n",
|
||||||
|
"synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(\n",
|
||||||
|
" subscription_id=synapse_subscription_id,\n",
|
||||||
|
" resource_group=synapse_resource_group,\n",
|
||||||
|
" name=synapse_workspace_name\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"linked_service = LinkedService.register(\n",
|
||||||
|
" workspace=ws,\n",
|
||||||
|
" name=synapse_linked_service_name,\n",
|
||||||
|
" linked_service_config=synapse_link_config)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Linked service property\n",
|
||||||
|
"\n",
|
||||||
|
"A MSI (system_assigned_identity_principal_id) will be generated for each linked service, for example:\n",
|
||||||
|
"\n",
|
||||||
|
"name=synapselink,</p>\n",
|
||||||
|
"type=Synapse, </p>\n",
|
||||||
|
"linked_service_resource_id=/subscriptions/4faaaf21-663f-4391-96fd-47197c630979/resourceGroups/static_resources_synapse_test/providers/Microsoft.Synapse/workspaces/synapsetest2, </p>\n",
|
||||||
|
"system_assigned_identity_principal_id=eb355d52-3806-4c5a-aec9-91447e8cfc2e </p>\n",
|
||||||
|
"\n",
|
||||||
|
"#### Make sure you grant \"Synapse Apache Spark Administrator\" role of the synapse workspace to the generated workspace linking MSI in Synapse studio portal before you submit job."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"linked_service"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"LinkedService.list(ws)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Attach Synapse spark pool as AML compute target"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"synapse_spark_pool_name=os.getenv(\"SYNAPSE_SPARK_POOL_NAME\", \"<my-synapse-spark-pool-name>\")\n",
|
||||||
|
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")\n",
|
||||||
|
"\n",
|
||||||
|
"attach_config = SynapseCompute.attach_configuration(\n",
|
||||||
|
" linked_service,\n",
|
||||||
|
" type=\"SynapseSpark\",\n",
|
||||||
|
" pool_name=synapse_spark_pool_name)\n",
|
||||||
|
"\n",
|
||||||
|
"synapse_compute=ComputeTarget.attach(\n",
|
||||||
|
" workspace=ws,\n",
|
||||||
|
" name=synapse_compute_name,\n",
|
||||||
|
" attach_configuration=attach_config)\n",
|
||||||
|
"\n",
|
||||||
|
"synapse_compute.wait_for_completion()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Start an experiment run"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Prepare data"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Use the default blob storage\n",
|
||||||
|
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
|
||||||
|
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
|
||||||
|
"\n",
|
||||||
|
"# We are uploading a sample file in the local directory to be used as a datasource\n",
|
||||||
|
"file_name = \"Titanic.csv\"\n",
|
||||||
|
"def_blob_store.upload_files(files=[\"./{}\".format(file_name)], overwrite=False)\n",
|
||||||
|
" "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Tabular dataset as input"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core import Dataset\n",
|
||||||
|
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||||
|
"input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## File dataset as input"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core import Dataset\n",
|
||||||
|
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||||
|
"input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Output config: the output will be registered as a File dataset\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||||
|
"output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Dataprep script"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"os.makedirs(\"code\", exist_ok=True)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%writefile code/dataprep.py\n",
|
||||||
|
"import os\n",
|
||||||
|
"import sys\n",
|
||||||
|
"import azureml.core\n",
|
||||||
|
"from pyspark.sql import SparkSession\n",
|
||||||
|
"from azureml.core import Run, Dataset\n",
|
||||||
|
"\n",
|
||||||
|
"print(azureml.core.VERSION)\n",
|
||||||
|
"print(os.environ)\n",
|
||||||
|
"\n",
|
||||||
|
"import argparse\n",
|
||||||
|
"parser = argparse.ArgumentParser()\n",
|
||||||
|
"parser.add_argument(\"--tabular_input\")\n",
|
||||||
|
"parser.add_argument(\"--file_input\")\n",
|
||||||
|
"parser.add_argument(\"--output_dir\")\n",
|
||||||
|
"args = parser.parse_args()\n",
|
||||||
|
"\n",
|
||||||
|
"# use dataset sdk to read tabular dataset\n",
|
||||||
|
"run_context = Run.get_context()\n",
|
||||||
|
"dataset = Dataset.get_by_id(run_context.experiment.workspace,id=args.tabular_input)\n",
|
||||||
|
"sdf = dataset.to_spark_dataframe()\n",
|
||||||
|
"sdf.show()\n",
|
||||||
|
"\n",
|
||||||
|
"# use hdfs path to read file dataset\n",
|
||||||
|
"spark= SparkSession.builder.getOrCreate()\n",
|
||||||
|
"sdf = spark.read.option(\"header\", \"true\").csv(args.file_input)\n",
|
||||||
|
"sdf.show()\n",
|
||||||
|
"\n",
|
||||||
|
"sdf.coalesce(1).write\\\n",
|
||||||
|
".option(\"header\", \"true\")\\\n",
|
||||||
|
".mode(\"append\")\\\n",
|
||||||
|
".csv(args.output_dir)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Set up Conda dependency for the following Script Run"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core.environment import CondaDependencies\n",
|
||||||
|
"conda_dep = CondaDependencies()\n",
|
||||||
|
"conda_dep.add_pip_package(\"azureml-core==1.20.0\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## How to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core import RunConfiguration\n",
|
||||||
|
"from azureml.core import ScriptRunConfig \n",
|
||||||
|
"from azureml.core import Experiment\n",
|
||||||
|
"\n",
|
||||||
|
"run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||||
|
"run_config.target = synapse_compute_name\n",
|
||||||
|
"\n",
|
||||||
|
"run_config.spark.configuration[\"spark.driver.memory\"] = \"1g\" \n",
|
||||||
|
"run_config.spark.configuration[\"spark.driver.cores\"] = 2 \n",
|
||||||
|
"run_config.spark.configuration[\"spark.executor.memory\"] = \"1g\" \n",
|
||||||
|
"run_config.spark.configuration[\"spark.executor.cores\"] = 1 \n",
|
||||||
|
"run_config.spark.configuration[\"spark.executor.instances\"] = 1 \n",
|
||||||
|
"\n",
|
||||||
|
"run_config.environment.python.conda_dependencies = conda_dep\n",
|
||||||
|
"\n",
|
||||||
|
"script_run_config = ScriptRunConfig(source_directory = './code',\n",
|
||||||
|
" script= 'dataprep.py',\n",
|
||||||
|
" arguments = [\"--tabular_input\", input1, \n",
|
||||||
|
" \"--file_input\", input2,\n",
|
||||||
|
" \"--output_dir\", output],\n",
|
||||||
|
" run_config = run_config) "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from azureml.core import Experiment \n",
|
||||||
|
"exp = Experiment(workspace=ws, name=\"synapse-spark\") \n",
|
||||||
|
"run = exp.submit(config=script_run_config) \n",
|
||||||
|
"run"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## How to leverage SynapseSparkStep in an AML pipeline to orchestrate data prep step on Synapse Spark and training step on AzureML compute."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Choose a name for your CPU cluster\n",
|
||||||
|
"cpu_cluster_name = \"cpucluster\"\n",
|
||||||
|
"\n",
|
||||||
|
"# Verify that cluster does not exist already\n",
|
||||||
|
"try:\n",
|
||||||
|
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||||
|
" print('Found existing cluster, use it.')\n",
|
||||||
|
"except ComputeTargetException:\n",
|
||||||
|
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||||
|
" max_nodes=1)\n",
|
||||||
|
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||||
|
"\n",
|
||||||
|
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%writefile code/train.py\n",
|
||||||
|
"import glob\n",
|
||||||
|
"import os\n",
|
||||||
|
"import sys\n",
|
||||||
|
"from os import listdir\n",
|
||||||
|
"from os.path import isfile, join\n",
|
||||||
|
"\n",
|
||||||
|
"mypath = os.environ[\"step2_input\"]\n",
|
||||||
|
"files = [f for f in listdir(mypath) if isfile(join(mypath, f))]\n",
|
||||||
|
"for file in files:\n",
|
||||||
|
" with open(join(mypath,file)) as f:\n",
|
||||||
|
" print(f.read())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||||
|
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||||
|
"\n",
|
||||||
|
"step1_input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")\n",
|
||||||
|
"step1_input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()\n",
|
||||||
|
"step1_output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")\n",
|
||||||
|
"\n",
|
||||||
|
"step2_input = step1_output.as_input(\"step2_input\").as_download()\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"from azureml.core.environment import Environment\n",
|
||||||
|
"env = Environment(name=\"myenv\")\n",
|
||||||
|
"env.python.conda_dependencies.add_pip_package(\"azureml-core==1.20.0\")\n",
|
||||||
|
"\n",
|
||||||
|
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
|
||||||
|
" file = 'dataprep.py',\n",
|
||||||
|
" source_directory=\"./code\", \n",
|
||||||
|
" inputs=[step1_input1, step1_input2],\n",
|
||||||
|
" outputs=[step1_output],\n",
|
||||||
|
" arguments = [\"--tabular_input\", step1_input1, \n",
|
||||||
|
" \"--file_input\", step1_input2,\n",
|
||||||
|
" \"--output_dir\", step1_output],\n",
|
||||||
|
" compute_target = synapse_compute_name,\n",
|
||||||
|
" driver_memory = \"7g\",\n",
|
||||||
|
" driver_cores = 4,\n",
|
||||||
|
" executor_memory = \"7g\",\n",
|
||||||
|
" executor_cores = 2,\n",
|
||||||
|
" num_executors = 1,\n",
|
||||||
|
" environment = env)\n",
|
||||||
|
"\n",
|
||||||
|
"step_2 = PythonScriptStep(script_name=\"train.py\",\n",
|
||||||
|
" arguments=[step2_input],\n",
|
||||||
|
" inputs=[step2_input],\n",
|
||||||
|
" compute_target=cpu_cluster_name,\n",
|
||||||
|
" source_directory=\"./code\",\n",
|
||||||
|
" allow_reuse=False)\n",
|
||||||
|
"\n",
|
||||||
|
"pipeline = Pipeline(workspace=ws, steps=[step_1, step_2])\n",
|
||||||
|
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"authors": [
|
||||||
|
{
|
||||||
|
"name": "yunzhan"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.6",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python36"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.6.7"
|
||||||
|
},
|
||||||
|
"nteract": {
|
||||||
|
"version": "0.28.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
@@ -0,0 +1,327 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||||
|
"\n",
|
||||||
|
"Licensed under the MIT License."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Interactive Spark Session on Synapse Spark Pool"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Install package"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install -U \"azureml-synapse\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"For JupyterLab, please additionally run:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!jupyter lab build --minimize=False"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## PLEASE restart kernel and then refresh web page before starting spark session."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## 0. How to leverage Spark Magic for interactive Spark experience"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"execution": {
|
||||||
|
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
|
||||||
|
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
|
||||||
|
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
|
||||||
|
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
|
||||||
|
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# show help\n",
|
||||||
|
"%synapse ?"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## 1. Start Synapse Session"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# use Synapse compute linked to the Compute Instance's workspace with an aml envrionment.\n",
|
||||||
|
"# conda dependencies specified in the environment will be installed before the spark session started.\n",
|
||||||
|
"\n",
|
||||||
|
"%synapse start -c $synapse_compute_name -e AzureML-Minimal"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# use Synapse compute from anther workspace via its config file\n",
|
||||||
|
"\n",
|
||||||
|
"# %synapse start -c <compute-name> -f config.json"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# use Synapse compute from anther workspace via subscription_id, resource_group and workspace_name\n",
|
||||||
|
"\n",
|
||||||
|
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# start a spark session with an AML environment, \n",
|
||||||
|
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name> -e AzureML-Minimal"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## 2. Data prepration\n",
|
||||||
|
"\n",
|
||||||
|
"Three types of datastore are supported in synapse spark, and you have two ways to load the data.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"| Datastore Type | Data Acess |\n",
|
||||||
|
"|--------------------|-------------------------------|\n",
|
||||||
|
"| Blob | Credential |\n",
|
||||||
|
"| Adlsgen1 | Credential & Credential-less |\n",
|
||||||
|
"| Adlsgen2 | Credential & Credential-less |"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Example 1: Data loading by HDFS path"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Read data from Blob**\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"# setup access key or sas token\n",
|
||||||
|
"\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.key.<storage account name>.blob.core.windows.net\", \"<acess key>\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.sas.<container name>.<storage account name>.blob.core.windows.net\", \"sas token\")\n",
|
||||||
|
"\n",
|
||||||
|
"df = spark.read.parquet(\"wasbs://<container name>@<storage account name>.blob.core.windows.net/<path>\")\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"**Read data from Adlsgen1**\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"# setup service pricinpal which has access of the data\n",
|
||||||
|
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||||
|
"\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.access.token.provider.type\",\"ClientCredential\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.client.id\", \"<client id>\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.credential\", \"<client secret>\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.refresh.url\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||||
|
"\n",
|
||||||
|
"df = spark.read.csv(\"adl://<storage account name>.azuredatalakestore.net/<path>\")\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"**Read data from Adlsgen2**\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"# setup service pricinpal which has access of the data\n",
|
||||||
|
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||||
|
"\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.auth.type.<storage account name>.dfs.core.windows.net\",\"OAuth\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth.provider.type.<storage account name>.dfs.core.windows.net\", \"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.id.<storage account name>.dfs.core.windows.net\", \"<client id>\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.secret.<storage account name>.dfs.core.windows.net\", \"<client secret>\")\n",
|
||||||
|
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.endpoint.<storage account name>.dfs.core.windows.net\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||||
|
"\n",
|
||||||
|
"df = spark.read.csv(\"abfss://<container name>@<storage account>.dfs.core.windows.net/<path>\")\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"execution": {
|
||||||
|
"iopub.execute_input": "2020-06-04T08:11:18.812276Z",
|
||||||
|
"iopub.status.busy": "2020-06-04T08:11:18.812276Z",
|
||||||
|
"iopub.status.idle": "2020-06-04T08:11:23.854526Z",
|
||||||
|
"shell.execute_reply": "2020-06-04T08:11:23.853525Z",
|
||||||
|
"shell.execute_reply.started": "2020-06-04T08:11:18.812276Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%synapse\n",
|
||||||
|
"\n",
|
||||||
|
"from pyspark.sql.functions import col, desc\n",
|
||||||
|
"\n",
|
||||||
|
"df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
|
||||||
|
"df.filter(col('Survived') == 1).groupBy('Age').count().orderBy(desc('count')).show(10)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Example 2: Data loading by AML Dataset\n",
|
||||||
|
"\n",
|
||||||
|
"You can create tabular data by following the [guidance](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-register-datasets) and use to_spark_dataframe() to load the data.\n",
|
||||||
|
"\n",
|
||||||
|
"```text\n",
|
||||||
|
"%%synapse\n",
|
||||||
|
"\n",
|
||||||
|
"import azureml.core\n",
|
||||||
|
"print(azureml.core.VERSION)\n",
|
||||||
|
"\n",
|
||||||
|
"from azureml.core import Workspace, Dataset\n",
|
||||||
|
"ws = Workspace.get(name='<workspace name>', subscription_id='<subscription id>', resource_group='<resource group>')\n",
|
||||||
|
"ds = Dataset.get_by_name(ws, \"<tabular dataset name>\")\n",
|
||||||
|
"df = ds.to_spark_dataframe()\n",
|
||||||
|
"\n",
|
||||||
|
"# You can do more data transformation on spark dataframe\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## 3. Session Metadata\n",
|
||||||
|
"After session started, you can check the session's metadata, find the links to Synapse portal."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%synapse meta"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## 4. Stop Session\n",
|
||||||
|
"When current session reach the status timeout, dead or any failure, you must explicitly stop it before start new one. "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%synapse stop"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"authors": [
|
||||||
|
{
|
||||||
|
"name": "yunzhan"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.6",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python36"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.6.7"
|
||||||
|
},
|
||||||
|
"nteract": {
|
||||||
|
"version": "0.28.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: multi-model-register-and-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- numpy
|
||||||
|
- scikit-learn
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: model-register-and-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- numpy
|
||||||
|
- scikit-learn
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: deploy-aks-with-controlled-rollout
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: enable-app-insights-in-production-service
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -94,6 +94,17 @@ def main():
|
|||||||
os.makedirs(output_dir, exist_ok=True)
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
|
||||||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
||||||
|
# Use Azure Open Datasets for MNIST dataset
|
||||||
|
datasets.MNIST.resources = [
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
|
||||||
|
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
|
||||||
|
"d53e105ee54ea40749a09fcbcd1e9432"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
|
||||||
|
"9fb629c4189551a2d022fa330f9573f3"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
|
||||||
|
"ec29112dd5afa0611ce80d1b7f02629c")
|
||||||
|
]
|
||||||
train_loader = torch.utils.data.DataLoader(
|
train_loader = torch.utils.data.DataLoader(
|
||||||
datasets.MNIST('data', train=True, download=True,
|
datasets.MNIST('data', train=True, download=True,
|
||||||
transform=transforms.Compose([transforms.ToTensor(),
|
transform=transforms.Compose([transforms.ToTensor(),
|
||||||
|
|||||||
@@ -0,0 +1,8 @@
|
|||||||
|
name: onnx-convert-aml-deploy-tinyyolo
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- numpy
|
||||||
|
- git+https://github.com/apple/coremltools@v2.1
|
||||||
|
- onnx<1.7.0
|
||||||
|
- onnxmltools
|
||||||
@@ -0,0 +1,9 @@
|
|||||||
|
name: onnx-inference-facial-expression-recognition-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- matplotlib
|
||||||
|
- numpy
|
||||||
|
- onnx<1.7.0
|
||||||
|
- opencv-python-headless
|
||||||
@@ -0,0 +1,9 @@
|
|||||||
|
name: onnx-inference-mnist-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- matplotlib
|
||||||
|
- numpy
|
||||||
|
- onnx<1.7.0
|
||||||
|
- opencv-python-headless
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: onnx-model-register-and-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: onnx-modelzoo-aml-deploy-resnet50
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: onnx-train-pytorch-aml-deploy-mnist
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: production-deploy-to-aks-gpu
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- tensorflow
|
||||||
@@ -0,0 +1,8 @@
|
|||||||
|
name: production-deploy-to-aks-ssl
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- matplotlib
|
||||||
|
- tqdm
|
||||||
|
- scipy
|
||||||
|
- sklearn
|
||||||
@@ -0,0 +1,8 @@
|
|||||||
|
name: production-deploy-to-aks
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- matplotlib
|
||||||
|
- tqdm
|
||||||
|
- scipy
|
||||||
|
- sklearn
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: model-register-and-deploy-spark
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -0,0 +1,13 @@
|
|||||||
|
name: explain-model-on-amlcompute
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-interpret
|
||||||
|
- flask
|
||||||
|
- flask-cors
|
||||||
|
- gevent>=1.3.6
|
||||||
|
- jinja2
|
||||||
|
- ipython
|
||||||
|
- matplotlib
|
||||||
|
- azureml-dataset-runtime
|
||||||
|
- ipywidgets
|
||||||
@@ -226,36 +226,6 @@
|
|||||||
" ('classifier', SVC(C=1.0, probability=True))])"
|
" ('classifier', SVC(C=1.0, probability=True))])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"'''\n",
|
|
||||||
"# Uncomment below if sklearn-pandas is not installed\n",
|
|
||||||
"#!pip install sklearn-pandas\n",
|
|
||||||
"from sklearn_pandas import DataFrameMapper\n",
|
|
||||||
"\n",
|
|
||||||
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"numeric_transformations = [([f], Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])) for f in numerical]\n",
|
|
||||||
"\n",
|
|
||||||
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
|
|
||||||
"\n",
|
|
||||||
"transformations = numeric_transformations + categorical_transformations\n",
|
|
||||||
"\n",
|
|
||||||
"# Append classifier to preprocessing pipeline.\n",
|
|
||||||
"# Now we have a full prediction pipeline.\n",
|
|
||||||
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
|
|
||||||
" ('classifier', SVC(C=1.0, probability=True))]) \n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"'''"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|||||||
@@ -0,0 +1,12 @@
|
|||||||
|
name: save-retrieve-explanations-run-history
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-interpret
|
||||||
|
- flask
|
||||||
|
- flask-cors
|
||||||
|
- gevent>=1.3.6
|
||||||
|
- jinja2
|
||||||
|
- ipython
|
||||||
|
- matplotlib
|
||||||
|
- ipywidgets
|
||||||
@@ -166,12 +166,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from sklearn.model_selection import train_test_split\n",
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
"import joblib\n",
|
"import joblib\n",
|
||||||
|
"from sklearn.compose import ColumnTransformer\n",
|
||||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||||
"from sklearn.impute import SimpleImputer\n",
|
"from sklearn.impute import SimpleImputer\n",
|
||||||
"from sklearn.pipeline import Pipeline\n",
|
"from sklearn.pipeline import Pipeline\n",
|
||||||
"from sklearn.linear_model import LogisticRegression\n",
|
"from sklearn.linear_model import LogisticRegression\n",
|
||||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||||
"from sklearn_pandas import DataFrameMapper\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"from interpret.ext.blackbox import TabularExplainer\n",
|
"from interpret.ext.blackbox import TabularExplainer\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -201,17 +201,23 @@
|
|||||||
"# Store the numerical columns in a list numerical\n",
|
"# Store the numerical columns in a list numerical\n",
|
||||||
"numerical = attritionXData.columns.difference(categorical)\n",
|
"numerical = attritionXData.columns.difference(categorical)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"numeric_transformations = [([f], Pipeline(steps=[\n",
|
"# We create the preprocessing pipelines for both numeric and categorical data.\n",
|
||||||
|
"numeric_transformer = Pipeline(steps=[\n",
|
||||||
" ('imputer', SimpleImputer(strategy='median')),\n",
|
" ('imputer', SimpleImputer(strategy='median')),\n",
|
||||||
" ('scaler', StandardScaler())])) for f in numerical]\n",
|
" ('scaler', StandardScaler())])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
|
"categorical_transformer = Pipeline(steps=[\n",
|
||||||
|
" ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),\n",
|
||||||
|
" ('onehot', OneHotEncoder(handle_unknown='ignore'))])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"transformations = numeric_transformations + categorical_transformations\n",
|
"transformations = ColumnTransformer(\n",
|
||||||
|
" transformers=[\n",
|
||||||
|
" ('num', numeric_transformer, numerical),\n",
|
||||||
|
" ('cat', categorical_transformer, categorical)])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Append classifier to preprocessing pipeline.\n",
|
"# Append classifier to preprocessing pipeline.\n",
|
||||||
"# Now we have a full prediction pipeline.\n",
|
"# Now we have a full prediction pipeline.\n",
|
||||||
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n",
|
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
|
||||||
" ('classifier', RandomForestClassifier())])\n",
|
" ('classifier', RandomForestClassifier())])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Split data into train and test\n",
|
"# Split data into train and test\n",
|
||||||
@@ -350,7 +356,7 @@
|
|||||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||||
"myenv = CondaDependencies.create(pip_packages=['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
|
"myenv = CondaDependencies.create(pip_packages=['pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
|
||||||
" pin_sdk_version=False)\n",
|
" pin_sdk_version=False)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||||
|
|||||||
@@ -0,0 +1,12 @@
|
|||||||
|
name: train-explain-model-locally-and-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-interpret
|
||||||
|
- flask
|
||||||
|
- flask-cors
|
||||||
|
- gevent>=1.3.6
|
||||||
|
- jinja2
|
||||||
|
- ipython
|
||||||
|
- matplotlib
|
||||||
|
- ipywidgets
|
||||||
@@ -294,7 +294,7 @@
|
|||||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||||
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
|
"azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
|
||||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||||
"# Now submit a run on AmlCompute\n",
|
"# Now submit a run on AmlCompute\n",
|
||||||
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
||||||
@@ -458,7 +458,7 @@
|
|||||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||||
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
|
"azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
|
||||||
"myenv = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
"myenv = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||||
|
|||||||
@@ -0,0 +1,14 @@
|
|||||||
|
name: train-explain-model-on-amlcompute-and-deploy
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-interpret
|
||||||
|
- flask
|
||||||
|
- flask-cors
|
||||||
|
- gevent>=1.3.6
|
||||||
|
- jinja2
|
||||||
|
- ipython
|
||||||
|
- matplotlib
|
||||||
|
- azureml-dataset-runtime
|
||||||
|
- azureml-core
|
||||||
|
- ipywidgets
|
||||||
@@ -5,13 +5,13 @@
|
|||||||
import os
|
import os
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import zipfile
|
import zipfile
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
import joblib
|
import joblib
|
||||||
|
from sklearn.compose import ColumnTransformer
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
||||||
from sklearn.impute import SimpleImputer
|
from sklearn.impute import SimpleImputer
|
||||||
from sklearn.pipeline import Pipeline
|
from sklearn.pipeline import Pipeline
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
from sklearn_pandas import DataFrameMapper
|
|
||||||
|
|
||||||
from azureml.core.run import Run
|
from azureml.core.run import Run
|
||||||
from interpret.ext.blackbox import TabularExplainer
|
from interpret.ext.blackbox import TabularExplainer
|
||||||
@@ -57,16 +57,22 @@ for col, value in attritionXData.iteritems():
|
|||||||
# store the numerical columns
|
# store the numerical columns
|
||||||
numerical = attritionXData.columns.difference(categorical)
|
numerical = attritionXData.columns.difference(categorical)
|
||||||
|
|
||||||
numeric_transformations = [([f], Pipeline(steps=[
|
# We create the preprocessing pipelines for both numeric and categorical data.
|
||||||
|
numeric_transformer = Pipeline(steps=[
|
||||||
('imputer', SimpleImputer(strategy='median')),
|
('imputer', SimpleImputer(strategy='median')),
|
||||||
('scaler', StandardScaler())])) for f in numerical]
|
('scaler', StandardScaler())])
|
||||||
|
|
||||||
categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]
|
categorical_transformer = Pipeline(steps=[
|
||||||
|
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
|
||||||
|
('onehot', OneHotEncoder(handle_unknown='ignore'))])
|
||||||
|
|
||||||
transformations = numeric_transformations + categorical_transformations
|
transformations = ColumnTransformer(
|
||||||
|
transformers=[
|
||||||
|
('num', numeric_transformer, numerical),
|
||||||
|
('cat', categorical_transformer, categorical)])
|
||||||
|
|
||||||
# append classifier to preprocessing pipeline
|
# append classifier to preprocessing pipeline
|
||||||
clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),
|
clf = Pipeline(steps=[('preprocessor', transformations),
|
||||||
('classifier', LogisticRegression(solver='lbfgs'))])
|
('classifier', LogisticRegression(solver='lbfgs'))])
|
||||||
|
|
||||||
# get the run this was submitted from to interact with run history
|
# get the run this was submitted from to interact with run history
|
||||||
|
|||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-data-transfer
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-getting-started
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-how-to-use-modulestep
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-how-to-use-pipeline-drafts
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -121,12 +121,17 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"os.makedirs('./data/mnist', exist_ok=True)\n",
|
"data_folder = os.path.join(os.getcwd(), 'data/mnist')\n",
|
||||||
|
"os.makedirs(data_folder, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename = './data/mnist/train-images.gz')\n",
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')\n",
|
" filename=os.path.join(data_folder, 'train-images.gz'))\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz',\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')"
|
" filename=os.path.join(data_folder, 'train-labels.gz'))\n",
|
||||||
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
|
||||||
|
" filename=os.path.join(data_folder, 'test-images.gz'))\n",
|
||||||
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
|
||||||
|
" filename=os.path.join(data_folder, 'test-labels.gz'))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -146,11 +151,11 @@
|
|||||||
"from utils import load_data\n",
|
"from utils import load_data\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
|
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
|
||||||
"X_train = load_data('./data/mnist/train-images.gz', False) / 255.0\n",
|
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / np.float32(255.0)\n",
|
||||||
"y_train = load_data('./data/mnist/train-labels.gz', True).reshape(-1)\n",
|
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / np.float32(255.0)\n",
|
||||||
|
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
|
||||||
|
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"X_test = load_data('./data/mnist/test-images.gz', False) / 255.0\n",
|
|
||||||
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"count = 0\n",
|
"count = 0\n",
|
||||||
"sample_size = 30\n",
|
"sample_size = 30\n",
|
||||||
|
|||||||
@@ -0,0 +1,9 @@
|
|||||||
|
name: aml-pipelines-parameter-tuning-with-hyperdrive
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- matplotlib
|
||||||
|
- numpy
|
||||||
|
- pandas_ml
|
||||||
|
- azureml-dataset-runtime[pandas,fuse]
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: aml-pipelines-publish-and-run-using-rest-endpoint
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- requests
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-setup-schedule-for-a-published-pipeline
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: aml-pipelines-setup-versioned-pipeline-endpoints
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- requests
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-showcasing-datapath-and-pipelineparameter
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-showcasing-dataset-and-pipelineparameter
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,4 @@
|
|||||||
|
name: aml-pipelines-with-automated-machine-learning-step
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-with-commandstep-r
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-with-commandstep
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: aml-pipelines-with-data-dependency-steps
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: aml-pipelines-with-notebook-runner-step
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- azureml-contrib-notebook
|
||||||
@@ -0,0 +1,10 @@
|
|||||||
|
name: nyc-taxi-data-regression-model-building
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- azureml-opendatasets
|
||||||
|
- azureml-train-automl
|
||||||
|
- matplotlib
|
||||||
|
- pandas
|
||||||
|
- pyarrow
|
||||||
@@ -0,0 +1,7 @@
|
|||||||
|
name: file-dataset-image-inference-mnist
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-pipeline-steps
|
||||||
|
- azureml-widgets
|
||||||
|
- pandas
|
||||||
@@ -0,0 +1,7 @@
|
|||||||
|
name: tabular-dataset-inference-iris
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-pipeline-steps
|
||||||
|
- azureml-widgets
|
||||||
|
- pandas
|
||||||
@@ -81,12 +81,12 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||||
"from azureml.core.datastore import Datastore\n",
|
"from azureml.core import Datastore, Dataset\n",
|
||||||
"from azureml.data.data_reference import DataReference\n",
|
"from azureml.pipeline.core import Pipeline\n",
|
||||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
|
||||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||||
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
|
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
|
||||||
"from azureml.core.compute_target import ComputeTargetException"
|
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||||
|
"from azureml.data import OutputFileDatasetConfig"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -297,9 +297,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"video_name=os.getenv(\"STYLE_TRANSFER_VIDEO_NAME\", \"orangutan.mp4\") \n",
|
"video_name=os.getenv(\"STYLE_TRANSFER_VIDEO_NAME\", \"orangutan.mp4\") \n",
|
||||||
"orangutan_video = DataReference(datastore=video_ds,\n",
|
"orangutan_video = Dataset.File.from_files((video_ds,video_name))"
|
||||||
" data_reference_name=\"video\",\n",
|
|
||||||
" path_on_datastore=video_name, mode=\"download\")"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -325,13 +323,11 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"ffmpeg_audio = PipelineData(name=\"ffmpeg_audio\", datastore=default_datastore)\n",
|
"ffmpeg_audio = OutputFileDatasetConfig(name=\"ffmpeg_audio\")\n",
|
||||||
"processed_images = PipelineData(name=\"processed_images\", datastore=default_datastore)\n",
|
"processed_images = OutputFileDatasetConfig(name=\"processed_images\")\n",
|
||||||
"output_video = PipelineData(name=\"output_video\", datastore=default_datastore)\n",
|
"output_video = OutputFileDatasetConfig(name=\"output_video\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"ffmpeg_images_ds_name = \"ffmpeg_images_data\"\n",
|
"ffmpeg_images = OutputFileDatasetConfig(name=\"ffmpeg_images\")"
|
||||||
"ffmpeg_images = PipelineData(name=\"ffmpeg_images\", datastore=default_datastore)\n",
|
|
||||||
"ffmpeg_images_file_dataset = ffmpeg_images.as_dataset()"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -367,13 +363,10 @@
|
|||||||
"split_video_step = PythonScriptStep(\n",
|
"split_video_step = PythonScriptStep(\n",
|
||||||
" name=\"split video\",\n",
|
" name=\"split video\",\n",
|
||||||
" script_name=\"process_video.py\",\n",
|
" script_name=\"process_video.py\",\n",
|
||||||
" arguments=[\"--input_video\", orangutan_video,\n",
|
" arguments=[\"--input_video\", orangutan_video.as_mount(),\n",
|
||||||
" \"--output_audio\", ffmpeg_audio,\n",
|
" \"--output_audio\", ffmpeg_audio,\n",
|
||||||
" \"--output_images\", ffmpeg_images_file_dataset,\n",
|
" \"--output_images\", ffmpeg_images],\n",
|
||||||
" ],\n",
|
|
||||||
" compute_target=cpu_cluster,\n",
|
" compute_target=cpu_cluster,\n",
|
||||||
" inputs=[orangutan_video],\n",
|
|
||||||
" outputs=[ffmpeg_images_file_dataset, ffmpeg_audio],\n",
|
|
||||||
" runconfig=amlcompute_run_config,\n",
|
" runconfig=amlcompute_run_config,\n",
|
||||||
" source_directory=scripts_folder\n",
|
" source_directory=scripts_folder\n",
|
||||||
")\n",
|
")\n",
|
||||||
@@ -381,12 +374,10 @@
|
|||||||
"stitch_video_step = PythonScriptStep(\n",
|
"stitch_video_step = PythonScriptStep(\n",
|
||||||
" name=\"stitch\",\n",
|
" name=\"stitch\",\n",
|
||||||
" script_name=\"stitch_video.py\",\n",
|
" script_name=\"stitch_video.py\",\n",
|
||||||
" arguments=[\"--images_dir\", processed_images, \n",
|
" arguments=[\"--images_dir\", processed_images.as_input(), \n",
|
||||||
" \"--input_audio\", ffmpeg_audio, \n",
|
" \"--input_audio\", ffmpeg_audio.as_input(), \n",
|
||||||
" \"--output_dir\", output_video],\n",
|
" \"--output_dir\", output_video],\n",
|
||||||
" compute_target=cpu_cluster,\n",
|
" compute_target=cpu_cluster,\n",
|
||||||
" inputs=[processed_images, ffmpeg_audio],\n",
|
|
||||||
" outputs=[output_video],\n",
|
|
||||||
" runconfig=amlcompute_run_config,\n",
|
" runconfig=amlcompute_run_config,\n",
|
||||||
" source_directory=scripts_folder\n",
|
" source_directory=scripts_folder\n",
|
||||||
")"
|
")"
|
||||||
@@ -415,7 +406,6 @@
|
|||||||
"parallel_cd.add_conda_package(\"torchvision\")\n",
|
"parallel_cd.add_conda_package(\"torchvision\")\n",
|
||||||
"parallel_cd.add_conda_package(\"pillow<7\") # needed for torchvision==0.4.0\n",
|
"parallel_cd.add_conda_package(\"pillow<7\") # needed for torchvision==0.4.0\n",
|
||||||
"parallel_cd.add_pip_package(\"azureml-core\")\n",
|
"parallel_cd.add_pip_package(\"azureml-core\")\n",
|
||||||
"parallel_cd.add_pip_package(\"azureml-dataset-runtime[fuse]\")\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"styleenvironment = Environment(name=\"styleenvironment\")\n",
|
"styleenvironment = Environment(name=\"styleenvironment\")\n",
|
||||||
"styleenvironment.python.conda_dependencies=parallel_cd\n",
|
"styleenvironment.python.conda_dependencies=parallel_cd\n",
|
||||||
@@ -457,7 +447,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"distributed_style_transfer_step = ParallelRunStep(\n",
|
"distributed_style_transfer_step = ParallelRunStep(\n",
|
||||||
" name=parallel_step_name,\n",
|
" name=parallel_step_name,\n",
|
||||||
" inputs=[ffmpeg_images_file_dataset], # Input file share/blob container/file dataset\n",
|
" inputs=[ffmpeg_images], # Input file share/blob container/file dataset\n",
|
||||||
" output=processed_images, # Output file share/blob container\n",
|
" output=processed_images, # Output file share/blob container\n",
|
||||||
" arguments=[\"--style\", style_param],\n",
|
" arguments=[\"--style\", style_param],\n",
|
||||||
" parallel_run_config=parallel_run_config,\n",
|
" parallel_run_config=parallel_run_config,\n",
|
||||||
@@ -552,8 +542,8 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"def download_video(run, target_dir=None):\n",
|
"def download_video(run, target_dir=None):\n",
|
||||||
" stitch_run = run.find_step_run(stitch_video_step.name)[0]\n",
|
" stitch_run = run.find_step_run(stitch_video_step.name)[0]\n",
|
||||||
" port_data = stitch_run.get_output_data(output_video.name)\n",
|
" port_data = stitch_run.get_details()['outputDatasets'][0]['dataset']\n",
|
||||||
" port_data.download(target_dir, show_progress=True)"
|
" port_data.download(target_dir)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -0,0 +1,7 @@
|
|||||||
|
name: pipeline-style-transfer-parallel-run
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-pipeline-steps
|
||||||
|
- azureml-widgets
|
||||||
|
- requests
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: distributed-chainer
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -4,6 +4,8 @@ import os
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from utils import download_mnist
|
||||||
|
|
||||||
import chainer
|
import chainer
|
||||||
from chainer import backend
|
from chainer import backend
|
||||||
from chainer import backends
|
from chainer import backends
|
||||||
@@ -17,6 +19,7 @@ from chainer.training import extensions
|
|||||||
from chainer.dataset import concat_examples
|
from chainer.dataset import concat_examples
|
||||||
from chainer.backends.cuda import to_cpu
|
from chainer.backends.cuda import to_cpu
|
||||||
|
|
||||||
|
|
||||||
from azureml.core.run import Run
|
from azureml.core.run import Run
|
||||||
run = Run.get_context()
|
run = Run.get_context()
|
||||||
|
|
||||||
@@ -49,7 +52,7 @@ def main():
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Download the MNIST data if you haven't downloaded it yet
|
# Download the MNIST data if you haven't downloaded it yet
|
||||||
train, test = datasets.mnist.get_mnist(withlabel=True, ndim=1)
|
train, test = download_mnist()
|
||||||
|
|
||||||
gpu_id = args.gpu_id
|
gpu_id = args.gpu_id
|
||||||
batchsize = args.batchsize
|
batchsize = args.batchsize
|
||||||
|
|||||||
@@ -2,6 +2,8 @@ import numpy as np
|
|||||||
import os
|
import os
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
from utils import download_mnist
|
||||||
|
|
||||||
from chainer import serializers, using_config, Variable, datasets
|
from chainer import serializers, using_config, Variable, datasets
|
||||||
import chainer.functions as F
|
import chainer.functions as F
|
||||||
import chainer.links as L
|
import chainer.links as L
|
||||||
@@ -41,7 +43,7 @@ def init():
|
|||||||
def run(input_data):
|
def run(input_data):
|
||||||
i = np.array(json.loads(input_data)['data'])
|
i = np.array(json.loads(input_data)['data'])
|
||||||
|
|
||||||
_, test = datasets.get_mnist()
|
_, test = download_mnist()
|
||||||
x = Variable(np.asarray([test[i][0]]))
|
x = Variable(np.asarray([test[i][0]]))
|
||||||
y = model(x)
|
y = model(x)
|
||||||
|
|
||||||
|
|||||||
@@ -217,7 +217,8 @@
|
|||||||
"import shutil\n",
|
"import shutil\n",
|
||||||
"\n",
|
"\n",
|
||||||
"shutil.copy('chainer_mnist.py', project_folder)\n",
|
"shutil.copy('chainer_mnist.py', project_folder)\n",
|
||||||
"shutil.copy('chainer_score.py', project_folder)"
|
"shutil.copy('chainer_score.py', project_folder)\n",
|
||||||
|
"shutil.copy('utils.py', project_folder)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -263,6 +264,7 @@
|
|||||||
"- python=3.6.2\n",
|
"- python=3.6.2\n",
|
||||||
"- pip:\n",
|
"- pip:\n",
|
||||||
" - azureml-defaults\n",
|
" - azureml-defaults\n",
|
||||||
|
" - azureml-opendatasets\n",
|
||||||
" - chainer==5.1.0\n",
|
" - chainer==5.1.0\n",
|
||||||
" - cupy-cuda90==5.1.0\n",
|
" - cupy-cuda90==5.1.0\n",
|
||||||
" - mpi4py==3.0.0\n",
|
" - mpi4py==3.0.0\n",
|
||||||
@@ -557,6 +559,7 @@
|
|||||||
"cd.add_conda_package('numpy')\n",
|
"cd.add_conda_package('numpy')\n",
|
||||||
"cd.add_pip_package('chainer==5.1.0')\n",
|
"cd.add_pip_package('chainer==5.1.0')\n",
|
||||||
"cd.add_pip_package(\"azureml-defaults\")\n",
|
"cd.add_pip_package(\"azureml-defaults\")\n",
|
||||||
|
"cd.add_pip_package(\"azureml-opendatasets\")\n",
|
||||||
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
|
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(cd.serialize_to_string())"
|
"print(cd.serialize_to_string())"
|
||||||
@@ -584,7 +587,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
|
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
|
||||||
"inference_config = InferenceConfig(entry_script=\"chainer_score.py\", environment=myenv)\n",
|
"inference_config = InferenceConfig(entry_script=\"chainer_score.py\", environment=myenv,\n",
|
||||||
|
" source_directory=project_folder)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,\n",
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,\n",
|
||||||
" auth_enabled=True, # this flag generates API keys to secure access\n",
|
" auth_enabled=True, # this flag generates API keys to secure access\n",
|
||||||
@@ -592,10 +596,10 @@
|
|||||||
" tags={'name': 'mnist', 'framework': 'Chainer'},\n",
|
" tags={'name': 'mnist', 'framework': 'Chainer'},\n",
|
||||||
" description='Chainer DNN with MNIST')\n",
|
" description='Chainer DNN with MNIST')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"service = Model.deploy(workspace=ws, \n",
|
"service = Model.deploy(workspace=ws,\n",
|
||||||
" name='chainer-mnist-1', \n",
|
" name='chainer-mnist-1',\n",
|
||||||
" models=[model], \n",
|
" models=[model],\n",
|
||||||
" inference_config=inference_config, \n",
|
" inference_config=inference_config,\n",
|
||||||
" deployment_config=aciconfig)\n",
|
" deployment_config=aciconfig)\n",
|
||||||
"service.wait_for_deployment(True)\n",
|
"service.wait_for_deployment(True)\n",
|
||||||
"print(service.state)\n",
|
"print(service.state)\n",
|
||||||
@@ -685,13 +689,16 @@
|
|||||||
" res = res.reshape(n_items[0], 1)\n",
|
" res = res.reshape(n_items[0], 1)\n",
|
||||||
" return res\n",
|
" return res\n",
|
||||||
"\n",
|
"\n",
|
||||||
"os.makedirs('./data/mnist', exist_ok=True)\n",
|
"data_folder = os.path.join(os.getcwd(), 'data/mnist')\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
|
"os.makedirs(data_folder, exist_ok=True)\n",
|
||||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"X_test = load_data('./data/mnist/test-images.gz', False)\n",
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
|
||||||
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
|
" filename=os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'))\n",
|
||||||
|
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
|
||||||
|
" filename=os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'))\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"X_test = load_data(os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'), False) / np.float32(255.0)\n",
|
||||||
|
"y_test = load_data(os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'), True).reshape(-1)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# send a random row from the test set to score\n",
|
"# send a random row from the test set to score\n",
|
||||||
"random_index = np.random.randint(0, len(X_test)-1)\n",
|
"random_index = np.random.randint(0, len(X_test)-1)\n",
|
||||||
|
|||||||
@@ -0,0 +1,13 @@
|
|||||||
|
name: train-hyperparameter-tune-deploy-with-chainer
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- numpy
|
||||||
|
- matplotlib
|
||||||
|
- json
|
||||||
|
- urllib
|
||||||
|
- gzip
|
||||||
|
- struct
|
||||||
|
- requests
|
||||||
|
- azureml-opendatasets
|
||||||
@@ -0,0 +1,50 @@
|
|||||||
|
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||||
|
# Licensed under the MIT License.
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import gzip
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
|
||||||
|
from azureml.core import Dataset
|
||||||
|
from azureml.opendatasets import MNIST
|
||||||
|
from chainer.datasets import tuple_dataset
|
||||||
|
|
||||||
|
|
||||||
|
# load compressed MNIST gz files and return numpy arrays
|
||||||
|
def load_data(filename, label=False):
|
||||||
|
with gzip.open(filename) as gz:
|
||||||
|
struct.unpack('I', gz.read(4))
|
||||||
|
n_items = struct.unpack('>I', gz.read(4))
|
||||||
|
if not label:
|
||||||
|
n_rows = struct.unpack('>I', gz.read(4))[0]
|
||||||
|
n_cols = struct.unpack('>I', gz.read(4))[0]
|
||||||
|
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
|
||||||
|
res = res.reshape(n_items[0], n_rows * n_cols)
|
||||||
|
else:
|
||||||
|
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
|
||||||
|
res = res.reshape(n_items[0], 1)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def download_mnist():
|
||||||
|
data_folder = os.path.join(os.getcwd(), 'data/mnist')
|
||||||
|
os.makedirs(data_folder, exist_ok=True)
|
||||||
|
|
||||||
|
mnist_file_dataset = MNIST.get_file_dataset()
|
||||||
|
mnist_file_dataset.download(data_folder, overwrite=True)
|
||||||
|
|
||||||
|
X_train = load_data(glob.glob(os.path.join(data_folder, "**/train-images-idx3-ubyte.gz"),
|
||||||
|
recursive=True)[0], False) / 255.0
|
||||||
|
X_test = load_data(glob.glob(os.path.join(data_folder, "**/t10k-images-idx3-ubyte.gz"),
|
||||||
|
recursive=True)[0], False) / 255.0
|
||||||
|
y_train = load_data(glob.glob(os.path.join(data_folder, "**/train-labels-idx1-ubyte.gz"),
|
||||||
|
recursive=True)[0], True).reshape(-1)
|
||||||
|
y_test = load_data(glob.glob(os.path.join(data_folder, "**/t10k-labels-idx1-ubyte.gz"),
|
||||||
|
recursive=True)[0], True).reshape(-1)
|
||||||
|
|
||||||
|
train = tuple_dataset.TupleDataset(X_train.astype(np.float32), y_train.astype(np.int32))
|
||||||
|
test = tuple_dataset.TupleDataset(X_test.astype(np.float32), y_test.astype(np.int32))
|
||||||
|
|
||||||
|
return train, test
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: fastai-with-custom-docker
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- fastai==1.0.61
|
||||||
@@ -0,0 +1,8 @@
|
|||||||
|
name: train-hyperparameter-tune-deploy-with-keras
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- tensorflow
|
||||||
|
- keras<=2.3.1
|
||||||
|
- matplotlib
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: distributed-pytorch-with-distributeddataparallel
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: distributed-pytorch-with-horovod
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
@@ -51,6 +51,17 @@ if args.cuda:
|
|||||||
|
|
||||||
|
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
|
# Use Azure Open Datasets for MNIST dataset
|
||||||
|
datasets.MNIST.resources = [
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
|
||||||
|
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
|
||||||
|
"d53e105ee54ea40749a09fcbcd1e9432"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
|
||||||
|
"9fb629c4189551a2d022fa330f9573f3"),
|
||||||
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
|
||||||
|
"ec29112dd5afa0611ce80d1b7f02629c")
|
||||||
|
]
|
||||||
train_dataset = \
|
train_dataset = \
|
||||||
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
|
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
|
||||||
transform=transforms.Compose([
|
transform=transforms.Compose([
|
||||||
|
|||||||
@@ -0,0 +1,10 @@
|
|||||||
|
name: train-hyperparameter-tune-deploy-with-pytorch
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- pillow==5.4.1
|
||||||
|
- matplotlib
|
||||||
|
- numpy==1.19.3
|
||||||
|
- https://download.pytorch.org/whl/cpu/torch-1.6.0%2Bcpu-cp36-cp36m-win_amd64.whl
|
||||||
|
- https://download.pytorch.org/whl/cpu/torchvision-0.7.0%2Bcpu-cp36-cp36m-win_amd64.whl
|
||||||
@@ -0,0 +1,6 @@
|
|||||||
|
name: train-hyperparameter-tune-deploy-with-sklearn
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- numpy
|
||||||
@@ -0,0 +1,11 @@
|
|||||||
|
name: distributed-tensorflow-with-horovod
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
|
- keras
|
||||||
|
- tensorflow-gpu==1.13.2
|
||||||
|
- horovod==0.19.1
|
||||||
|
- matplotlib
|
||||||
|
- pandas
|
||||||
|
- fuse
|
||||||
@@ -0,0 +1,5 @@
|
|||||||
|
name: distributed-tensorflow-with-parameter-server
|
||||||
|
dependencies:
|
||||||
|
- pip:
|
||||||
|
- azureml-sdk
|
||||||
|
- azureml-widgets
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user