Compare commits

...

2 Commits

Author SHA1 Message Date
vizhur
a7c3a0fdb8 update samples from Release-54 as a part of SDK release 2020-06-02 21:34:10 +00:00
Harneet Virk
6d11cdfa0a Merge pull request #984 from Azure/release_update/Release-53
update samples from Release-53 as a part of  SDK release
2020-05-26 19:59:58 -07:00

View File

@@ -4,15 +4,14 @@ import os
from azureml.core.run import Run from azureml.core.run import Run
from azureml.core.experiment import Experiment from azureml.core.experiment import Experiment
from sklearn.externals import joblib
from azureml.core.dataset import Dataset from azureml.core.dataset import Dataset
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \ from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations, automl_check_model_if_explainable automl_setup_model_explanations, automl_check_model_if_explainable
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
from azureml.explain.model.mimic_wrapper import MimicWrapper from azureml.explain.model.mimic_wrapper import MimicWrapper
from azureml.automl.core.shared.constants import MODEL_PATH from azureml.automl.core.shared.constants import MODEL_PATH
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer
import joblib
OUTPUT_DIR = './outputs/' OUTPUT_DIR = './outputs/'
os.makedirs(OUTPUT_DIR, exist_ok=True) os.makedirs(OUTPUT_DIR, exist_ok=True)
@@ -74,7 +73,8 @@ print("Engineered and raw explanations computed successfully")
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map]) scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
# Pickle scoring explainer locally # Pickle scoring explainer locally
save(scoring_explainer, exist_ok=True) with open('scoring_explainer.pkl', 'wb') as stream:
joblib.dump(scoring_explainer, stream)
# Upload the scoring explainer to the automl run # Upload the scoring explainer to the automl run
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl') automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')