Compare commits

...

2 Commits

Author SHA1 Message Date
amlrelsa-ms
0ebc909d57 update samples from Release-98 as a part of 1.33.0 SDK stable release 2021-08-02 17:00:14 +00:00
Harneet Virk
5cb465171e Merge pull request #1556 from Azure/update-spark-notebook
updating spark notebook
2021-07-26 17:09:42 -07:00
37 changed files with 2058 additions and 175 deletions

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -21,8 +21,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.32.0
- azureml-widgets~=1.33.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.32.0/validated_win32_requirements.txt [--no-deps]
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.33.0/validated_win32_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -21,8 +21,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.32.0
- azureml-widgets~=1.33.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.32.0/validated_linux_requirements.txt [--no-deps]
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.33.0/validated_linux_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -22,8 +22,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.32.0
- azureml-widgets~=1.33.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.32.0/validated_darwin_requirements.txt [--no-deps]
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.33.0/validated_darwin_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -86,7 +86,6 @@
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.interpret import ExplanationClient"
@@ -105,7 +104,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -599,27 +598,21 @@
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
"from azureml.train.automl import constants\n",
"\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" python_version_compatible = True\n",
"else:\n",
" python_version_compatible = False\n",
"\n",
"import onnxruntime\n",
"from azureml.automl.runtime.onnx_convert import OnnxInferenceHelper\n",
"\n",
"def get_onnx_res(run):\n",
" res_path = 'onnx_resource.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n",
" onnx_res = json.load(f)\n",
" return onnx_res\n",
" result = json.load(f)\n",
" return result\n",
"\n",
"if python_version_compatible:\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" test_df = test_dataset.to_pandas_dataframe()\n",
" mdl_bytes = onnx_mdl.SerializeToString()\n",
" onnx_res = get_onnx_res(best_run)\n",
" onnx_result = get_onnx_res(best_run)\n",
"\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_result)\n",
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(test_df)\n",
"\n",
" print(pred_onnx)\n",
@@ -708,14 +701,12 @@
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"inference_config = InferenceConfig(entry_script=script_file_name)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
" memory_gb = 2, \n",
" tags = {'area': \"bmData\", 'type': \"automl_classification\"}, \n",
" description = 'sample service for Automl Classification')\n",
"\n",
@@ -792,7 +783,6 @@
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import requests\n",
"\n",
"X_test_json = X_test.to_json(orient='records')\n",
@@ -832,7 +822,6 @@
"source": [
"%matplotlib notebook\n",
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf =confusion_matrix(actual,y_pred)\n",

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -81,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -91,7 +91,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -113,7 +113,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -372,7 +372,8 @@
" freq='MS' # Set the forecast frequency to be monthly (start of the month)\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
"# We will disable the enable_early_stopping flag to ensure the DNN model is recommended for demonstration purpose.\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_hours = 1,\n",
" training_data=train_dataset,\n",
@@ -383,6 +384,7 @@
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" enable_dnn=True,\n",
" enable_early_stopping=False,\n",
" forecasting_parameters=forecasting_parameters)"
]
},

View File

@@ -87,7 +87,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -99,7 +99,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -94,7 +94,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -60,7 +60,6 @@
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"\n",
"from azureml.core.workspace import Workspace\n",
@@ -82,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -688,8 +687,8 @@
"inference_config = InferenceConfig(environment = best_run.get_environment(), \n",
" entry_script = script_file_name)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 2, \n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
" memory_gb = 4, \n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Automl forecasting sample service\")\n",
"\n",

View File

@@ -0,0 +1,492 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-recipes-univariate/1_determine_experiment_settings.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook we will explore the univaraite time-series data to determine the settings for an automated ML experiment. We will follow the thought process depicted in the following diagram:<br/>\n",
"![Forecasting after training](figures/univariate_settings_map_20210408.jpg)\n",
"\n",
"The objective is to answer the following questions:\n",
"\n",
"<ol>\n",
" <li>Is there a seasonal pattern in the data? </li>\n",
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
" <li> Importance: If we are able to detect regular seasonal patterns, the forecast accuracy may be improved by extracting these patterns and including them as features into the model. </li>\n",
" </ul>\n",
" <li>Is the data stationary? </li>\n",
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
" <li> Importance: In the absense of features that capture trend behavior, ML models (regression and tree based) are not well equiped to predict stochastic trends. Working with stationary data solves this problem. </li>\n",
" </ul>\n",
" <li>Is there a detectable auto-regressive pattern in the stationary data? </li>\n",
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
" <li> Importance: The accuracy of ML models can be improved if serial correlation is modeled by including lags of the dependent/target varaible as features. Including target lags in every experiment by default will result in a regression in accuracy scores if such setting is not warranted. </li>\n",
" </ul>\n",
"</ol>\n",
"\n",
"The answers to these questions will help determine the appropriate settings for the automated ML experiment.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"import pandas as pd\n",
"\n",
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
"import matplotlib.pyplot as plt\n",
"from pandas.plotting import register_matplotlib_converters\n",
"register_matplotlib_converters() # fixes the future warning issue\n",
"\n",
"from helper_functions import unit_root_test_wrapper\n",
"from statsmodels.tools.sm_exceptions import InterpolationWarning\n",
"warnings.simplefilter('ignore', InterpolationWarning)\n",
"\n",
"\n",
"# set printing options\n",
"pd.set_option('display.max_columns', 500)\n",
"pd.set_option('display.width', 1000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# load data\n",
"main_data_loc = 'data'\n",
"train_file_name = 'S4248SM144SCEN.csv'\n",
"\n",
"TARGET_COLNAME = 'S4248SM144SCEN'\n",
"TIME_COLNAME = 'observation_date'\n",
"COVID_PERIOD_START = '2020-03-01'\n",
"\n",
"df = pd.read_csv(os.path.join(main_data_loc, train_file_name))\n",
"df[TIME_COLNAME] = pd.to_datetime(df[TIME_COLNAME], format='%Y-%m-%d')\n",
"df.sort_values(by=TIME_COLNAME, inplace=True)\n",
"df.set_index(TIME_COLNAME, inplace=True)\n",
"df.head(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the entire dataset\n",
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
"ax.plot(df)\n",
"ax.title.set_text('Original Data Series')\n",
"locs, labels = plt.xticks()\n",
"plt.xticks(rotation=45)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph plots the alcohol sales in the United States. Because the data is trending, it can be difficult to see cycles, seasonality or other interestng behaviors due to the scaling issues. For example, if there is a seasonal pattern, which we will discuss later, we cannot see them on the trending data. In such case, it is worth plotting the same data in first differences."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the entire dataset in first differences\n",
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
"ax.plot(df.diff().dropna())\n",
"ax.title.set_text('Data in first differences')\n",
"locs, labels = plt.xticks()\n",
"plt.xticks(rotation=45)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous plot we observe that the data is more volatile towards the end of the series. This period coincides with the Covid-19 period, so we will exclude it from our experiment. Since in this example there are no user-provided features it is hard to make an argument that a model trained on the less volatile pre-covid data will be able to accurately predict the covid period."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Seasonality\n",
"\n",
"#### Questions that need to be answered in this section:\n",
"1. Is there a seasonality?\n",
"2. If it's seasonal, does the data exhibit a trend (up or down)?\n",
"\n",
"It is hard to visually detect seasonality when the data is trending. The reason being is scale of seasonal fluctuations is dwarfed by the range of the trend in the data. One way to deal with this is to de-trend the data by taking the first differences. We will discuss this in more detail in the next section."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the entire dataset in first differences\n",
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
"ax.plot(df.diff().dropna())\n",
"ax.title.set_text('Data in first differences')\n",
"locs, labels = plt.xticks()\n",
"plt.xticks(rotation=45)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the next plot, we will exclude the Covid period again. We will also shorten the length of data because plotting a very long time series may prevent us from seeing seasonal patterns, if there are any, because the plot may look like a random walk."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# remove COVID period\n",
"df = df[:COVID_PERIOD_START]\n",
"\n",
"# plot the entire dataset in first differences\n",
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
"ax.plot(df['2015-01-01':].diff().dropna())\n",
"ax.title.set_text('Data in first differences')\n",
"locs, labels = plt.xticks()\n",
"plt.xticks(rotation=45)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
"\n",
"Visual examination does not suggest clear seasonal patterns. We will set the STL_TYPE = None, and we will move to the next section that examines stationarity. \n",
"\n",
"\n",
"Say, we are working with a different data set that shows clear patterns of seasonality, we have several options for setting the settings:is hard to say which option will work best in your case, hence you will need to run both options to see which one results in more accurate forecasts. </li>\n",
"<ol>\n",
" <li> If the data does not appear to be trending, set DIFFERENCE_SERIES=False, TARGET_LAGS=None and STL_TYPE = \"season\" </li>\n",
" <li> If the data appears to be trending, consider one of the following two settings:\n",
" <ul>\n",
" <ol type=\"a\">\n",
" <li> DIFFERENCE_SERIES=True, TARGET_LAGS=None and STL_TYPE = \"season\", or </li>\n",
" <li> DIFFERENCE_SERIES=False, TARGET_LAGS=None and STL_TYPE = \"trend_season\" </li>\n",
" </ol>\n",
" <li> In the first case, by taking first differences we are removing stochastic trend, but we do not remove seasonal patterns. In the second case, we do not remove the stochastic trend and it can be captured by the trend component of the STL decomposition. It is hard to say which option will work best in your case, hence you will need to run both options to see which one results in more accurate forecasts. </li>\n",
" </ul>\n",
"</ol>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Stationarity\n",
"If the data does not exhibit seasonal patterns, we would like to see if the data is non-stationary. Particularly, we want to see if there is a clear trending behavior. If such behavior is observed, we would like to first difference the data and examine the plot of an auto-correlation function (ACF) known as correlogram. If the data is seasonal, differencing it will not get rid off the seasonality and this will be shown on the correlogram as well.\n",
"\n",
"<ul>\n",
" <li> Question: What is stationarity and how to we detect it? </li>\n",
" <ul>\n",
" <li> This is a fairly complex topic. Please read the following <a href=\"https://otexts.com/fpp2/stationarity.html\"> link </a> for a high level discussion on this subject. </li>\n",
" <li> Simply put, we are looking for scenario when examining the time series plots the mean of the series is roughly the same, regardless which time interval you pick to compute it. Thus, trending and seasonal data are examples of non-stationary series. </li>\n",
" </ul>\n",
"</ul>\n",
"\n",
"\n",
"<ul>\n",
" <li> Question: Why do want to work with stationary data?</li>\n",
" <ul> \n",
" <li> In the absence of features that capture stochastic trends, the ML models that use (deterministic) time based features (hour of the day, day of the week, month of the year, etc) cannot capture such trends, and will over or under predict depending on the behavior of the time series. By working with stationary data, we eliminate the need to predict such trends, which improves the forecast accuracy. Classical time series models such as Arima and Exponential Smoothing handle non-stationary series by design and do not need such transformations. By differencing the data we are still able to run the same family of models. </li>\n",
" </ul>\n",
"</ul>\n",
"\n",
"#### Questions that need to be answered in this section:\n",
"<ol> \n",
" <li> Is the data stationary? </li>\n",
" <li> Does the stationarized data (either the original or the differenced series) exhibit a clear auto-regressive pattern?</li>\n",
"</ol>\n",
"\n",
"To answer the first question, we run a series of tests (we call them unit root tests)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# unit root tests\n",
"test = unit_root_test_wrapper(df[TARGET_COLNAME])\n",
"print('---------------', '\\n')\n",
"print('Summary table', '\\n', test['summary'], '\\n')\n",
"print('Is the {} series stationary?: {}'.format(TARGET_COLNAME, test['stationary']))\n",
"print('---------------', '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous cell, we ran a series of unit root tests. The summary table contains the following columns:\n",
"<ul> \n",
" <li> test_name is the name of the test.\n",
" <ul> \n",
" <li> ADF: Augmented Dickey-Fuller test </li>\n",
" <li> KPSS: Kwiatkowski-Phillips\u00e2\u20ac\u201cSchmidt\u00e2\u20ac\u201cShin test </li>\n",
" <li> PP: Phillips-Perron test\n",
" <li> ADF GLS: Augmented Dickey-Fuller using generalized least squares method </li>\n",
" <li> AZ: Andrews-Zivot test </li>\n",
" </ul>\n",
" <li> statistic: test statistic </li>\n",
" <li> crit_val: critical value of the test statistic </li>\n",
" <li> p_val: p-value of the test statistic. If the p-val is less than 0.05, the null hypothesis is rejected. </li>\n",
" <li> stationary: is the series stationary based on the test result? </li>\n",
" <li> Null hypothesis: what is being tested. Notice, some test such as ADF and PP assume the process has a unit root and looks for evidence to reject this hypothesis. Other tests, ex.g: KPSS, assumes the process is stationary and looks for evidence to reject such claim.\n",
"</ul>\n",
"\n",
"Each of the tests shows that the original time series is non-stationary. The final decision is based on the majority rule. If, there is a split decision, the algorithm will claim it is stationary. We run a series of tests because each test by itself may not be accurate. In many cases when there are conflicting test results, the user needs to make determination if the series is stationary or not.\n",
"\n",
"Since we found the series to be non-stationary, we will difference it and then test if the differenced series is stationary."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# unit root tests\n",
"test = unit_root_test_wrapper(df[TARGET_COLNAME].diff().dropna())\n",
"print('---------------', '\\n')\n",
"print('Summary table', '\\n', test['summary'], '\\n')\n",
"print('Is the {} series stationary?: {}'.format(TARGET_COLNAME, test['stationary']))\n",
"print('---------------', '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Four out of five tests show that the series in first differences is stationary. Notice that this decision is not unanimous. Next, let's plot the original series in first-differences to illustrate the difference between non-stationary (unit root) process vs the stationary one."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot original and stationary data\n",
"fig = plt.figure(figsize=(10,10))\n",
"ax1 = fig.add_subplot(211)\n",
"ax1.plot(df[TARGET_COLNAME], '-b')\n",
"ax2 = fig.add_subplot(212)\n",
"ax2.plot(df[TARGET_COLNAME].diff().dropna(), '-b')\n",
"ax1.title.set_text('Original data')\n",
"ax2.title.set_text('Data in first differences')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you were asked a question \"What is the mean of the series before and after 2008?\", for the series titled \"Original data\" the mean values will be significantly different. This implies that the first moment of the series (in this case, it is the mean) is time dependent, i.e., mean changes depending on the interval one is looking at. Thus, the series is deemed to be non-stationary. On the other hand, for the series titled \"Data in first differences\" the means for both periods are roughly the same. Hence, the first moment is time invariant; meaning it does not depend on the interval of time one is looking at. In this example it is easy to visually distinguish between stationary and non-stationary data. Often this distinction is not easy to make, therefore we rely on the statistical tests described above to help us make an informed decision. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
"Since we found the original process to be non-stationary (contains unit root), we will have to model the data in first differences. As a result, we will set the DIFFERENCE_SERIES parameter to True."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3 Check if there is a clear autoregressive pattern\n",
"We need to determine if we should include lags of the target variable as features in order to improve forecast accuracy. To do this, we will examine the ACF and partial ACF (PACF) plots of the stationary series. In our case, it is a series in first diffrences.\n",
"\n",
"<ul>\n",
" <li> Question: What is an Auto-regressive pattern? What are we looking for? </li>\n",
" <ul style=\"list-style-type:none;\">\n",
" <li> We are looking for a classical profiles for an AR(p) process such as an exponential decay of an ACF and a the first $p$ significant lags of the PACF. For a more detailed explanation of ACF and PACF please refer to the appendix at the end of this notebook. For illustration purposes, let's examine the ACF/PACF profiles of the simulated data that follows a second order auto-regressive process, abbreviated as an AR(2). <li/>\n",
" <li><img src=\"figures/ACF_PACF_for_AR2.png\" class=\"img_class\">\n",
" <br/>\n",
" The lag order is on the x-axis while the auto- and partial-correlation coefficients are on the y-axis. Vertical lines that are outside the shaded area represent statistically significant lags. Notice, the ACF function decays to zero and the PACF shows 2 significant spikes (we ignore the first spike for lag 0 in both plots since the linear relationship of any series with itself is always 1). <li/>\n",
" </ul>\n",
"<ul/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<ul>\n",
" <li> Question: What do I do if I observe an auto-regressive behavior? </li>\n",
" <ul style=\"list-style-type:none;\">\n",
" <li> If such behavior is observed, we might improve the forecast accuracy by enabling the target lags feature in AutoML. There are a few options of doing this </li>\n",
" <ol>\n",
" <li> Set the target lags parameter to 'auto', or </li>\n",
" <li> Specify the list of lags you want to include. Ex.g: target_lags = [1,2,5] </li>\n",
" </ol>\n",
" </ul>\n",
" <br/>\n",
" <li> Next, let's examine the ACF and PACF plots of the stationary target variable (depicted below). Here, we do not see a decay in the ACF, instead we see a decay in PACF. It is hard to make an argument the the target variable exhibits auto-regressive behavior. </li>\n",
" </ul>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot the ACF/PACF for the series in differences\n",
"fig, ax = plt.subplots(1,2,figsize=(10,5))\n",
"plot_acf(df[TARGET_COLNAME].diff().dropna().values.squeeze(), ax=ax[0])\n",
"plot_pacf(df[TARGET_COLNAME].diff().dropna().values.squeeze(), ax=ax[1])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
"Since we do not see a clear indication of an AR(p) process, we will not be using target lags and will set the TARGET_LAGS parameter to None."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p style=\"font-size:150%; color:blue; font-weight: bold\"> AutoML Experiment Settings </p>\n",
"Based on the analysis performed, we should try the following settings for the AutoML experiment and use them in the \"2_run_experiment\" notebook.\n",
"<ul>\n",
" <li> STL_TYPE=None </li>\n",
" <li> DIFFERENCE_SERIES=True </li>\n",
" <li> TARGET_LAGS=None </li>\n",
"</ul>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Appendix: ACF, PACF and Lag Selection\n",
"To do this, we will examine the ACF and partial ACF (PACF) plots of the differenced series. \n",
"\n",
"<ul>\n",
" <li> Question: What is the ACF? </li>\n",
" <ul style=\"list-style-type:none;\">\n",
" <li> To understand the ACF, first let's look at the correlation coefficient $\\rho_{xz}$\n",
" \\begin{equation}\n",
" \\rho_{xz} = \\frac{\\sigma_{xz}}{\\sigma_{x} \\sigma_{zy}}\n",
" \\end{equation}\n",
" </li>\n",
" where $\\sigma_{xzy}$ is the covariance between two random variables $X$ and $Z$; $\\sigma_x$ and $\\sigma_z$ is the variance for $X$ and $Z$, respectively. The correlation coefficient measures the strength of linear relationship between two random variables. This metric can take any value from -1 to 1. <li/>\n",
" <br/>\n",
" <li> The auto-correlation coefficient $\\rho_{Y_{t} Y_{t-k}}$ is the time series equivalent of the correlation coefficient, except instead of measuring linear association between two random variables $X$ and $Z$, it measures the strength of a linear relationship between a random variable $Y_t$ and its lag $Y_{t-k}$ for any positive interger value of $k$. </li> \n",
" <br />\n",
" <li> To visualize the ACF for a particular lag, say lag 2, plot the second lag of a series $y_{t-2}$ on the x-axis, and plot the series itself $y_t$ on the y-axis. The autocorrelation coefficient is the slope of the best fitted regression line and can be interpreted as follows. A one unit increase in the lag of a variable one period ago leads to a $\\rho_{Y_{t} Y_{t-2}}$ units change in the variable in the current period. This interpreation can be applied to any lag. </li> \n",
" <br />\n",
" <li> In the interpretation posted above we need to be careful not to confuse the word \"leads\" with \"causes\" since these are not the same thing. We do not know the lagged value of the varaible causes it to change. Afterall, there are probably many other features that may explain the movement in $Y_t$. All we are trying to do in this section is to identify situations when the variable contains the strong auto-regressive components that needs to be included in the model to improve forecast accuracy. </li>\n",
" </ul>\n",
"</ul>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<ul>\n",
" <li> Question: What is the PACF? </li>\n",
" <ul style=\"list-style-type:none;\">\n",
" <li> When describing the ACF we essentially running a regression between a partigular lag of a series, say, lag 4, and the series itself. What this implies is the regression coefficient for lag 4 captures the impact of everything that happens in lags 1, 2 and 3. In other words, if lag 1 is the most important lag and we exclude it from the regression, naturally, the regression model will assign the importance of the 1st lag to the 4th one. Partial auto-correlation function fixes this problem since it measures the contribution of each lag accounting for the information added by the intermediary lags. If we were to illustrate ACF and PACF for the fourth lag using the regression analogy, the difference is a follows: \n",
" \\begin{align}\n",
" Y_{t} &= a_{0} + a_{4} Y_{t-4} + e_{t} \\\\\n",
" Y_{t} &= b_{0} + b_{1} Y_{t-1} + b_{2} Y_{t-2} + b_{3} Y_{t-3} + b_{4} Y_{t-4} + \\varepsilon_{t} \\\\\n",
" \\end{align}\n",
" </li>\n",
" <br/>\n",
" <li>\n",
" Here, you can think of $a_4$ and $b_{4}$ as the auto- and partial auto-correlation coefficients for lag 4. Notice, in the second equation we explicitely accounting for the intermediate lags by adding them as regrerssors.\n",
" </li>\n",
" </ul>\n",
"</ul>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<ul>\n",
" <li> Question: Auto-regressive pattern? What are we looking for? </li>\n",
" <ul style=\"list-style-type:none;\">\n",
" <li> We are looking for a classical profiles for an AR(p) process such as an exponential decay of an ACF and a the first $p$ significant lags of the PACF. Let's examine the ACF/PACF profiles of the same simulated AR(2) shown in Section 3, and check if the ACF/PACF explanation are refelcted in these plots. <li/>\n",
" <li><img src=\"figures/ACF_PACF_for_AR2.png\" class=\"img_class\">\n",
" <li> The autocorrelation coefficient for the 3rd lag is 0.6, which can be interpreted that a one unit increase in the value of the target varaible three periods ago leads to 0.6 units increase in the current period. However, the PACF plot shows that the partial autocorrealtion coefficient is zero (from a statistical point of view since it lies within the shaded region). This is happening because the 1st and 2nd lags are good predictors of the target variable. Ommiting these two lags from the regression results in the misleading conclusion that the third lag is a good prediciton. <li/>\n",
" <br/>\n",
" <li> This is why it is important to examine both the ACF and the PACF plots when tring to determine the auto regressive order for the variable in question. <li/>\n",
" </ul>\n",
"</ul> "
]
}
],
"metadata": {
"authors": [
{
"name": "vlbejan"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-univariate-recipe-experiment-settings
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,560 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-recipes-univariate/2_run_experiment.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Running AutoML experiments\n",
"\n",
"See the `auto-ml-forecasting-univariate-recipe-experiment-settings` notebook on how to determine settings for seasonal features, target lags and whether the series needs to be differenced or not. To make experimentation user-friendly, the user has to specify several parameters: DIFFERENCE_SERIES, TARGET_LAGS and STL_TYPE. Once these parameters are set, the notebook will generate correct transformations and settings to run experiments, generate forecasts, compute inference set metrics and plot forecast vs actuals. It will also convert the forecast from first differences to levels (original units of measurement) if the DIFFERENCE_SERIES parameter is set to True before calculating inference set metrics.\n",
"\n",
"<br/>\n",
"\n",
"The output generated by this notebook is saved in the `experiment_output`folder."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import logging\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import azureml.automl.runtime\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"import matplotlib.pyplot as plt\n",
"from helper_functions import (ts_train_test_split, compute_metrics)\n",
"\n",
"import azureml.core\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"\n",
"\n",
"# set printing options\n",
"np.set_printoptions(precision=4, suppress=True, linewidth=100)\n",
"pd.set_option('display.max_columns', 500)\n",
"pd.set_option('display.width', 1000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a **Workspace**. You will also need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"amlcompute_cluster_name = \"recipe-cluster\"\n",
" \n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data\n",
"\n",
"Here, we will load the data from the csv file and drop the Covid period."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"main_data_loc = 'data'\n",
"train_file_name = 'S4248SM144SCEN.csv'\n",
"\n",
"TARGET_COLNAME = \"S4248SM144SCEN\"\n",
"TIME_COLNAME = \"observation_date\"\n",
"COVID_PERIOD_START = '2020-03-01' # start of the covid period. To be excluded from evaluation.\n",
"\n",
"# load data\n",
"df = pd.read_csv(os.path.join(main_data_loc, train_file_name))\n",
"df[TIME_COLNAME] = pd.to_datetime(df[TIME_COLNAME], format='%Y-%m-%d')\n",
"df.sort_values(by=TIME_COLNAME, inplace=True)\n",
"\n",
"# remove the Covid period\n",
"df = df.query('{} <= \"{}\"'.format(TIME_COLNAME, COVID_PERIOD_START))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set parameters\n",
"\n",
"The first set of parameters is based on the analysis performed in the `auto-ml-forecasting-univariate-recipe-experiment-settings` notebook. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# set parameters based on the settings notebook analysis\n",
"DIFFERENCE_SERIES = True\n",
"TARGET_LAGS = None\n",
"STL_TYPE = None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, define additional parameters to be used in the <a href=\"https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig?view=azure-ml-py\"> AutoML config </a> class.\n",
"\n",
"<ul> \n",
" <li> FORECAST_HORIZON: The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 12 periods (i.e. 12 quarters). For more discussion of forecast horizons and guiding principles for setting them, please see the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand\"> energy demand notebook </a>. \n",
" </li>\n",
" <li> TIME_SERIES_ID_COLNAMES: The names of columns used to group a timeseries. It can be used to create multiple series. If time series identifier is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. Since we are working with a single series, this list is empty.\n",
" </li>\n",
" <li> BLOCKED_MODELS: Optional list of models to be blocked from consideration during model selection stage. At this point we want to consider all ML and Time Series models.\n",
" <ul>\n",
" <li> See the following <a href=\"https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py\"> link </a> for a list of supported Forecasting models</li>\n",
" </ul>\n",
" </li>\n",
"</ul>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# set other parameters\n",
"FORECAST_HORIZON = 12\n",
"TIME_SERIES_ID_COLNAMES = []\n",
"BLOCKED_MODELS = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To run AutoML, you also need to create an **Experiment**. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# choose a name for the run history container in the workspace\n",
"if isinstance(TARGET_LAGS, list):\n",
" TARGET_LAGS_STR = '-'.join(map(str, TARGET_LAGS)) if (len(TARGET_LAGS) > 0) else None\n",
"else:\n",
" TARGET_LAGS_STR = TARGET_LAGS\n",
"\n",
"experiment_desc = 'diff-{}_lags-{}_STL-{}'.format(DIFFERENCE_SERIES, TARGET_LAGS_STR, STL_TYPE)\n",
"experiment_name = 'alcohol_{}'.format(experiment_desc)\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['SKU'] = ws.sku\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"print(outputDf.T)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create output directory\n",
"output_dir = 'experiment_output/{}'.format(experiment_desc)\n",
"if not os.path.exists(output_dir):\n",
" os.makedirs(output_dir) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# difference data and test for unit root\n",
"if DIFFERENCE_SERIES:\n",
" df_delta = df.copy()\n",
" df_delta[TARGET_COLNAME] = df[TARGET_COLNAME].diff()\n",
" df_delta.dropna(axis=0, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# split the data into train and test set\n",
"if DIFFERENCE_SERIES: \n",
" # generate train/inference sets using data in first differences\n",
" df_train, df_test = ts_train_test_split(df_input=df_delta,\n",
" n=FORECAST_HORIZON,\n",
" time_colname=TIME_COLNAME,\n",
" ts_id_colnames=TIME_SERIES_ID_COLNAMES)\n",
"else:\n",
" df_train, df_test = ts_train_test_split(df_input=df,\n",
" n=FORECAST_HORIZON,\n",
" time_colname=TIME_COLNAME,\n",
" ts_id_colnames=TIME_SERIES_ID_COLNAMES)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload files to the Datastore\n",
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace) is paired with the storage account, which contains the default data store. We will use it to upload the bike share data and create [tabular dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_train.to_csv(\"train.csv\", index=False)\n",
"df_test.to_csv(\"test.csv\", index=False)\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files = ['./train.csv'], target_path = 'uni-recipe-dataset/tabular/', overwrite = True,show_progress = True)\n",
"datastore.upload_files(files = ['./test.csv'], target_path = 'uni-recipe-dataset/tabular/', overwrite = True,show_progress = True)\n",
"\n",
"from azureml.core import Dataset\n",
"train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'uni-recipe-dataset/tabular/train.csv')])\n",
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'uni-recipe-dataset/tabular/test.csv')])\n",
"\n",
"# print the first 5 rows of the Dataset\n",
"train_dataset.to_pandas_dataframe().reset_index(drop=True).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Config AutoML"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_series_settings = {\n",
" 'time_column_name': TIME_COLNAME,\n",
" 'forecast_horizon': FORECAST_HORIZON,\n",
" 'target_lags': TARGET_LAGS,\n",
" 'use_stl': STL_TYPE,\n",
" 'blocked_models': BLOCKED_MODELS,\n",
" 'time_series_id_column_names': TIME_SERIES_ID_COLNAMES\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='sample_experiment.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_minutes=20,\n",
" iteration_timeout_minutes=5,\n",
" enable_early_stopping=True,\n",
" training_data=train_dataset,\n",
" label_column_name=TARGET_COLNAME,\n",
" n_cross_validations=5,\n",
" verbosity=logging.INFO,\n",
" max_cores_per_iteration=-1,\n",
" compute_target=compute_target,\n",
" **time_series_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now run the experiment, you can go to Azure ML portal to view the run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)\n",
"remote_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the best model\n",
"Below we select the best model from all the training iterations using get_output method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Inference\n",
"\n",
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
"\n",
"The inference will run on a remote compute. In this example, it will re-use the training compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_experiment = Experiment(ws, experiment_name + \"_inference\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retreiving forecasts from the model\n",
"We have created a function called `run_forecast` that submits the test data to the best model determined during the training run and retrieves forecasts. This function uses a helper script `forecasting_script` which is uploaded and expecuted on the remote compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from run_forecast import run_remote_inference\n",
"remote_run = run_remote_inference(test_experiment=test_experiment, \n",
" compute_target=compute_target,\n",
" train_run=best_run,\n",
" test_dataset=test_dataset,\n",
" target_column_name=TARGET_COLNAME)\n",
"remote_run.wait_for_completion(show_output=False)\n",
"\n",
"remote_run.download_file('outputs/predictions.csv', f'{output_dir}/predictions.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the prediction result for metrics calcuation\n",
"The test data with predictions are saved in artifact `outputs/predictions.csv`. We will use it to calculate accuracy metrics and vizualize predictions versus actuals."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_trans = pd.read_csv(f'{output_dir}/predictions.csv', parse_dates=[TIME_COLNAME])\n",
"X_trans.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# convert forecast in differences to levels\n",
"def convert_fcst_diff_to_levels(fcst, yt, df_orig):\n",
" \"\"\" Convert forecast from first differences to levels. \"\"\"\n",
" fcst = fcst.reset_index(drop=False, inplace=False)\n",
" fcst['predicted_level'] = fcst['predicted'].cumsum()\n",
" fcst['predicted_level'] = fcst['predicted_level'].astype(float) + float(yt)\n",
" # merge actuals\n",
" out = pd.merge(fcst,\n",
" df_orig[[TIME_COLNAME, TARGET_COLNAME]], \n",
" on=[TIME_COLNAME], how='inner')\n",
" out.rename(columns={TARGET_COLNAME: 'actual_level'}, inplace=True)\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if DIFFERENCE_SERIES: \n",
" # convert forecast in differences to the levels\n",
" INFORMATION_SET_DATE = max(df_train[TIME_COLNAME])\n",
" YT = df.query('{} == @INFORMATION_SET_DATE'.format(TIME_COLNAME))[TARGET_COLNAME]\n",
"\n",
" fcst_df = convert_fcst_diff_to_levels(fcst=X_trans, yt=YT, df_orig=df)\n",
"else:\n",
" fcst_df = X_trans.copy()\n",
" fcst_df['actual_level'] = y_test\n",
" fcst_df['predicted_level'] = y_predictions\n",
"\n",
"del X_trans"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics and save output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# compute metrics\n",
"metrics_df = compute_metrics(fcst_df=fcst_df,\n",
" metric_name=None,\n",
" ts_id_colnames=None)\n",
"# save output\n",
"metrics_file_name = '{}_metrics.csv'.format(experiment_name)\n",
"fcst_file_name = '{}_forecst.csv'.format(experiment_name)\n",
"plot_file_name = '{}_plot.pdf'.format(experiment_name)\n",
"\n",
"metrics_df.to_csv(os.path.join(output_dir, metrics_file_name), index=True)\n",
"fcst_df.to_csv(os.path.join(output_dir, fcst_file_name), index=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate and save visuals"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_df = df.query('{} > \"2010-01-01\"'.format(TIME_COLNAME))\n",
"plot_df.set_index(TIME_COLNAME, inplace=True)\n",
"fcst_df.set_index(TIME_COLNAME, inplace=True)\n",
"\n",
"# generate and save plots\n",
"fig, ax = plt.subplots(dpi=180)\n",
"ax.plot(plot_df[TARGET_COLNAME], '-g', label='Historical')\n",
"ax.plot(fcst_df['actual_level'], '-b', label='Actual')\n",
"ax.plot(fcst_df['predicted_level'], '-r', label='Forecast')\n",
"ax.legend()\n",
"ax.set_title(\"Forecast vs Actuals\")\n",
"ax.set_xlabel(TIME_COLNAME)\n",
"ax.set_ylabel(TARGET_COLNAME)\n",
"locs, labels = plt.xticks()\n",
"\n",
"plt.setp(labels, rotation=45)\n",
"plt.savefig(os.path.join(output_dir, plot_file_name))"
]
}
],
"metadata": {
"authors": [
{
"name": "vlbejan"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-univariate-recipe-run-experiment
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,350 @@
observation_date,S4248SM144SCEN
1992-01-01,4302
1992-02-01,4323
1992-03-01,4199
1992-04-01,4397
1992-05-01,4159
1992-06-01,4091
1992-07-01,4109
1992-08-01,4116
1992-09-01,4093
1992-10-01,4095
1992-11-01,4169
1992-12-01,4169
1993-01-01,4124
1993-02-01,4107
1993-03-01,4168
1993-04-01,4254
1993-05-01,4290
1993-06-01,4163
1993-07-01,4274
1993-08-01,4253
1993-09-01,4312
1993-10-01,4296
1993-11-01,4221
1993-12-01,4233
1994-01-01,4218
1994-02-01,4237
1994-03-01,4343
1994-04-01,4357
1994-05-01,4264
1994-06-01,4392
1994-07-01,4381
1994-08-01,4290
1994-09-01,4348
1994-10-01,4357
1994-11-01,4417
1994-12-01,4411
1995-01-01,4417
1995-02-01,4339
1995-03-01,4256
1995-04-01,4276
1995-05-01,4290
1995-06-01,4413
1995-07-01,4305
1995-08-01,4476
1995-09-01,4393
1995-10-01,4447
1995-11-01,4492
1995-12-01,4489
1996-01-01,4635
1996-02-01,4697
1996-03-01,4588
1996-04-01,4633
1996-05-01,4685
1996-06-01,4672
1996-07-01,4666
1996-08-01,4726
1996-09-01,4571
1996-10-01,4624
1996-11-01,4691
1996-12-01,4604
1997-01-01,4657
1997-02-01,4711
1997-03-01,4810
1997-04-01,4626
1997-05-01,4860
1997-06-01,4757
1997-07-01,4916
1997-08-01,4921
1997-09-01,4985
1997-10-01,4905
1997-11-01,4880
1997-12-01,5165
1998-01-01,4885
1998-02-01,4925
1998-03-01,5049
1998-04-01,5090
1998-05-01,5094
1998-06-01,4929
1998-07-01,5132
1998-08-01,5061
1998-09-01,5471
1998-10-01,5327
1998-11-01,5257
1998-12-01,5354
1999-01-01,5427
1999-02-01,5415
1999-03-01,5387
1999-04-01,5483
1999-05-01,5510
1999-06-01,5539
1999-07-01,5532
1999-08-01,5625
1999-09-01,5799
1999-10-01,5843
1999-11-01,5836
1999-12-01,5724
2000-01-01,5757
2000-02-01,5731
2000-03-01,5839
2000-04-01,5825
2000-05-01,5877
2000-06-01,5979
2000-07-01,5828
2000-08-01,6016
2000-09-01,6113
2000-10-01,6150
2000-11-01,6111
2000-12-01,6088
2001-01-01,6360
2001-02-01,6300
2001-03-01,5935
2001-04-01,6204
2001-05-01,6164
2001-06-01,6231
2001-07-01,6336
2001-08-01,6179
2001-09-01,6120
2001-10-01,6134
2001-11-01,6381
2001-12-01,6521
2002-01-01,6333
2002-02-01,6541
2002-03-01,6692
2002-04-01,6591
2002-05-01,6554
2002-06-01,6596
2002-07-01,6620
2002-08-01,6577
2002-09-01,6625
2002-10-01,6441
2002-11-01,6584
2002-12-01,6923
2003-01-01,6600
2003-02-01,6742
2003-03-01,6831
2003-04-01,6782
2003-05-01,6714
2003-06-01,6736
2003-07-01,7146
2003-08-01,7027
2003-09-01,6896
2003-10-01,7107
2003-11-01,6997
2003-12-01,7075
2004-01-01,7235
2004-02-01,7072
2004-03-01,6968
2004-04-01,7144
2004-05-01,7232
2004-06-01,7095
2004-07-01,7181
2004-08-01,7146
2004-09-01,7230
2004-10-01,7327
2004-11-01,7328
2004-12-01,7425
2005-01-01,7520
2005-02-01,7551
2005-03-01,7572
2005-04-01,7701
2005-05-01,7819
2005-06-01,7770
2005-07-01,7627
2005-08-01,7816
2005-09-01,7718
2005-10-01,7772
2005-11-01,7788
2005-12-01,7576
2006-01-01,7940
2006-02-01,8027
2006-03-01,7884
2006-04-01,8043
2006-05-01,7995
2006-06-01,8218
2006-07-01,8159
2006-08-01,8331
2006-09-01,8320
2006-10-01,8397
2006-11-01,8603
2006-12-01,8515
2007-01-01,8336
2007-02-01,8233
2007-03-01,8475
2007-04-01,8310
2007-05-01,8583
2007-06-01,8645
2007-07-01,8713
2007-08-01,8636
2007-09-01,8791
2007-10-01,8984
2007-11-01,8867
2007-12-01,9059
2008-01-01,8911
2008-02-01,8701
2008-03-01,8956
2008-04-01,9095
2008-05-01,9102
2008-06-01,9170
2008-07-01,9194
2008-08-01,9164
2008-09-01,9337
2008-10-01,9186
2008-11-01,9029
2008-12-01,9025
2009-01-01,9486
2009-02-01,9219
2009-03-01,9059
2009-04-01,9171
2009-05-01,9114
2009-06-01,8926
2009-07-01,9150
2009-08-01,9105
2009-09-01,9011
2009-10-01,8743
2009-11-01,8958
2009-12-01,8969
2010-01-01,8984
2010-02-01,9068
2010-03-01,9335
2010-04-01,9481
2010-05-01,9132
2010-06-01,9192
2010-07-01,9123
2010-08-01,9091
2010-09-01,9155
2010-10-01,9556
2010-11-01,9477
2010-12-01,9436
2011-01-01,9519
2011-02-01,9667
2011-03-01,9668
2011-04-01,9628
2011-05-01,9376
2011-06-01,9830
2011-07-01,9626
2011-08-01,9802
2011-09-01,9858
2011-10-01,9838
2011-11-01,9846
2011-12-01,9789
2012-01-01,9955
2012-02-01,9909
2012-03-01,9897
2012-04-01,9909
2012-05-01,10127
2012-06-01,10175
2012-07-01,10129
2012-08-01,10251
2012-09-01,10227
2012-10-01,10174
2012-11-01,10402
2012-12-01,10664
2013-01-01,10585
2013-02-01,10661
2013-03-01,10649
2013-04-01,10676
2013-05-01,10863
2013-06-01,10690
2013-07-01,11007
2013-08-01,10835
2013-09-01,10900
2013-10-01,10749
2013-11-01,10946
2013-12-01,10864
2014-01-01,10726
2014-02-01,10821
2014-03-01,10789
2014-04-01,10892
2014-05-01,10892
2014-06-01,10789
2014-07-01,10662
2014-08-01,10767
2014-09-01,10779
2014-10-01,10922
2014-11-01,10662
2014-12-01,10808
2015-01-01,10865
2015-02-01,10740
2015-03-01,10917
2015-04-01,10933
2015-05-01,11074
2015-06-01,11108
2015-07-01,11493
2015-08-01,11386
2015-09-01,11502
2015-10-01,11487
2015-11-01,11375
2015-12-01,11445
2016-01-01,11787
2016-02-01,11792
2016-03-01,11649
2016-04-01,11810
2016-05-01,11496
2016-06-01,11600
2016-07-01,11503
2016-08-01,11715
2016-09-01,11732
2016-10-01,11885
2016-11-01,12092
2016-12-01,11857
2017-01-01,11881
2017-02-01,12355
2017-03-01,12027
2017-04-01,12183
2017-05-01,12170
2017-06-01,12387
2017-07-01,12041
2017-08-01,12139
2017-09-01,11861
2017-10-01,12202
2017-11-01,12178
2017-12-01,12126
2018-01-01,11942
2018-02-01,12206
2018-03-01,12362
2018-04-01,12287
2018-05-01,12497
2018-06-01,12621
2018-07-01,12729
2018-08-01,12689
2018-09-01,12874
2018-10-01,12776
2018-11-01,12995
2018-12-01,13291
2019-01-01,13364
2019-02-01,13135
2019-03-01,13123
2019-04-01,13110
2019-05-01,13152
2019-06-01,13201
2019-07-01,13354
2019-08-01,13427
2019-09-01,13472
2019-10-01,13436
2019-11-01,13430
2019-12-01,13588
2020-01-01,13533
2020-02-01,13575
2020-03-01,13867
2020-04-01,12319
2020-05-01,13909
2020-06-01,13982
2020-07-01,15384
2020-08-01,15701
2020-09-01,15006
2020-10-01,15741
2020-11-01,14934
2020-12-01,13061
2021-01-01,15743
1 observation_date S4248SM144SCEN
2 1992-01-01 4302
3 1992-02-01 4323
4 1992-03-01 4199
5 1992-04-01 4397
6 1992-05-01 4159
7 1992-06-01 4091
8 1992-07-01 4109
9 1992-08-01 4116
10 1992-09-01 4093
11 1992-10-01 4095
12 1992-11-01 4169
13 1992-12-01 4169
14 1993-01-01 4124
15 1993-02-01 4107
16 1993-03-01 4168
17 1993-04-01 4254
18 1993-05-01 4290
19 1993-06-01 4163
20 1993-07-01 4274
21 1993-08-01 4253
22 1993-09-01 4312
23 1993-10-01 4296
24 1993-11-01 4221
25 1993-12-01 4233
26 1994-01-01 4218
27 1994-02-01 4237
28 1994-03-01 4343
29 1994-04-01 4357
30 1994-05-01 4264
31 1994-06-01 4392
32 1994-07-01 4381
33 1994-08-01 4290
34 1994-09-01 4348
35 1994-10-01 4357
36 1994-11-01 4417
37 1994-12-01 4411
38 1995-01-01 4417
39 1995-02-01 4339
40 1995-03-01 4256
41 1995-04-01 4276
42 1995-05-01 4290
43 1995-06-01 4413
44 1995-07-01 4305
45 1995-08-01 4476
46 1995-09-01 4393
47 1995-10-01 4447
48 1995-11-01 4492
49 1995-12-01 4489
50 1996-01-01 4635
51 1996-02-01 4697
52 1996-03-01 4588
53 1996-04-01 4633
54 1996-05-01 4685
55 1996-06-01 4672
56 1996-07-01 4666
57 1996-08-01 4726
58 1996-09-01 4571
59 1996-10-01 4624
60 1996-11-01 4691
61 1996-12-01 4604
62 1997-01-01 4657
63 1997-02-01 4711
64 1997-03-01 4810
65 1997-04-01 4626
66 1997-05-01 4860
67 1997-06-01 4757
68 1997-07-01 4916
69 1997-08-01 4921
70 1997-09-01 4985
71 1997-10-01 4905
72 1997-11-01 4880
73 1997-12-01 5165
74 1998-01-01 4885
75 1998-02-01 4925
76 1998-03-01 5049
77 1998-04-01 5090
78 1998-05-01 5094
79 1998-06-01 4929
80 1998-07-01 5132
81 1998-08-01 5061
82 1998-09-01 5471
83 1998-10-01 5327
84 1998-11-01 5257
85 1998-12-01 5354
86 1999-01-01 5427
87 1999-02-01 5415
88 1999-03-01 5387
89 1999-04-01 5483
90 1999-05-01 5510
91 1999-06-01 5539
92 1999-07-01 5532
93 1999-08-01 5625
94 1999-09-01 5799
95 1999-10-01 5843
96 1999-11-01 5836
97 1999-12-01 5724
98 2000-01-01 5757
99 2000-02-01 5731
100 2000-03-01 5839
101 2000-04-01 5825
102 2000-05-01 5877
103 2000-06-01 5979
104 2000-07-01 5828
105 2000-08-01 6016
106 2000-09-01 6113
107 2000-10-01 6150
108 2000-11-01 6111
109 2000-12-01 6088
110 2001-01-01 6360
111 2001-02-01 6300
112 2001-03-01 5935
113 2001-04-01 6204
114 2001-05-01 6164
115 2001-06-01 6231
116 2001-07-01 6336
117 2001-08-01 6179
118 2001-09-01 6120
119 2001-10-01 6134
120 2001-11-01 6381
121 2001-12-01 6521
122 2002-01-01 6333
123 2002-02-01 6541
124 2002-03-01 6692
125 2002-04-01 6591
126 2002-05-01 6554
127 2002-06-01 6596
128 2002-07-01 6620
129 2002-08-01 6577
130 2002-09-01 6625
131 2002-10-01 6441
132 2002-11-01 6584
133 2002-12-01 6923
134 2003-01-01 6600
135 2003-02-01 6742
136 2003-03-01 6831
137 2003-04-01 6782
138 2003-05-01 6714
139 2003-06-01 6736
140 2003-07-01 7146
141 2003-08-01 7027
142 2003-09-01 6896
143 2003-10-01 7107
144 2003-11-01 6997
145 2003-12-01 7075
146 2004-01-01 7235
147 2004-02-01 7072
148 2004-03-01 6968
149 2004-04-01 7144
150 2004-05-01 7232
151 2004-06-01 7095
152 2004-07-01 7181
153 2004-08-01 7146
154 2004-09-01 7230
155 2004-10-01 7327
156 2004-11-01 7328
157 2004-12-01 7425
158 2005-01-01 7520
159 2005-02-01 7551
160 2005-03-01 7572
161 2005-04-01 7701
162 2005-05-01 7819
163 2005-06-01 7770
164 2005-07-01 7627
165 2005-08-01 7816
166 2005-09-01 7718
167 2005-10-01 7772
168 2005-11-01 7788
169 2005-12-01 7576
170 2006-01-01 7940
171 2006-02-01 8027
172 2006-03-01 7884
173 2006-04-01 8043
174 2006-05-01 7995
175 2006-06-01 8218
176 2006-07-01 8159
177 2006-08-01 8331
178 2006-09-01 8320
179 2006-10-01 8397
180 2006-11-01 8603
181 2006-12-01 8515
182 2007-01-01 8336
183 2007-02-01 8233
184 2007-03-01 8475
185 2007-04-01 8310
186 2007-05-01 8583
187 2007-06-01 8645
188 2007-07-01 8713
189 2007-08-01 8636
190 2007-09-01 8791
191 2007-10-01 8984
192 2007-11-01 8867
193 2007-12-01 9059
194 2008-01-01 8911
195 2008-02-01 8701
196 2008-03-01 8956
197 2008-04-01 9095
198 2008-05-01 9102
199 2008-06-01 9170
200 2008-07-01 9194
201 2008-08-01 9164
202 2008-09-01 9337
203 2008-10-01 9186
204 2008-11-01 9029
205 2008-12-01 9025
206 2009-01-01 9486
207 2009-02-01 9219
208 2009-03-01 9059
209 2009-04-01 9171
210 2009-05-01 9114
211 2009-06-01 8926
212 2009-07-01 9150
213 2009-08-01 9105
214 2009-09-01 9011
215 2009-10-01 8743
216 2009-11-01 8958
217 2009-12-01 8969
218 2010-01-01 8984
219 2010-02-01 9068
220 2010-03-01 9335
221 2010-04-01 9481
222 2010-05-01 9132
223 2010-06-01 9192
224 2010-07-01 9123
225 2010-08-01 9091
226 2010-09-01 9155
227 2010-10-01 9556
228 2010-11-01 9477
229 2010-12-01 9436
230 2011-01-01 9519
231 2011-02-01 9667
232 2011-03-01 9668
233 2011-04-01 9628
234 2011-05-01 9376
235 2011-06-01 9830
236 2011-07-01 9626
237 2011-08-01 9802
238 2011-09-01 9858
239 2011-10-01 9838
240 2011-11-01 9846
241 2011-12-01 9789
242 2012-01-01 9955
243 2012-02-01 9909
244 2012-03-01 9897
245 2012-04-01 9909
246 2012-05-01 10127
247 2012-06-01 10175
248 2012-07-01 10129
249 2012-08-01 10251
250 2012-09-01 10227
251 2012-10-01 10174
252 2012-11-01 10402
253 2012-12-01 10664
254 2013-01-01 10585
255 2013-02-01 10661
256 2013-03-01 10649
257 2013-04-01 10676
258 2013-05-01 10863
259 2013-06-01 10690
260 2013-07-01 11007
261 2013-08-01 10835
262 2013-09-01 10900
263 2013-10-01 10749
264 2013-11-01 10946
265 2013-12-01 10864
266 2014-01-01 10726
267 2014-02-01 10821
268 2014-03-01 10789
269 2014-04-01 10892
270 2014-05-01 10892
271 2014-06-01 10789
272 2014-07-01 10662
273 2014-08-01 10767
274 2014-09-01 10779
275 2014-10-01 10922
276 2014-11-01 10662
277 2014-12-01 10808
278 2015-01-01 10865
279 2015-02-01 10740
280 2015-03-01 10917
281 2015-04-01 10933
282 2015-05-01 11074
283 2015-06-01 11108
284 2015-07-01 11493
285 2015-08-01 11386
286 2015-09-01 11502
287 2015-10-01 11487
288 2015-11-01 11375
289 2015-12-01 11445
290 2016-01-01 11787
291 2016-02-01 11792
292 2016-03-01 11649
293 2016-04-01 11810
294 2016-05-01 11496
295 2016-06-01 11600
296 2016-07-01 11503
297 2016-08-01 11715
298 2016-09-01 11732
299 2016-10-01 11885
300 2016-11-01 12092
301 2016-12-01 11857
302 2017-01-01 11881
303 2017-02-01 12355
304 2017-03-01 12027
305 2017-04-01 12183
306 2017-05-01 12170
307 2017-06-01 12387
308 2017-07-01 12041
309 2017-08-01 12139
310 2017-09-01 11861
311 2017-10-01 12202
312 2017-11-01 12178
313 2017-12-01 12126
314 2018-01-01 11942
315 2018-02-01 12206
316 2018-03-01 12362
317 2018-04-01 12287
318 2018-05-01 12497
319 2018-06-01 12621
320 2018-07-01 12729
321 2018-08-01 12689
322 2018-09-01 12874
323 2018-10-01 12776
324 2018-11-01 12995
325 2018-12-01 13291
326 2019-01-01 13364
327 2019-02-01 13135
328 2019-03-01 13123
329 2019-04-01 13110
330 2019-05-01 13152
331 2019-06-01 13201
332 2019-07-01 13354
333 2019-08-01 13427
334 2019-09-01 13472
335 2019-10-01 13436
336 2019-11-01 13430
337 2019-12-01 13588
338 2020-01-01 13533
339 2020-02-01 13575
340 2020-03-01 13867
341 2020-04-01 12319
342 2020-05-01 13909
343 2020-06-01 13982
344 2020-07-01 15384
345 2020-08-01 15701
346 2020-09-01 15006
347 2020-10-01 15741
348 2020-11-01 14934
349 2020-12-01 13061
350 2021-01-01 15743

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@@ -0,0 +1,46 @@
"""
This is the script that is executed on the compute instance. It relies
on the model.pkl file which is uploaded along with this script to the
compute instance.
"""
import argparse
from azureml.core import Dataset, Run
from azureml.automl.core.shared.constants import TimeSeriesInternal
from sklearn.externals import joblib
parser = argparse.ArgumentParser()
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--test_dataset', type=str, dest='test_dataset',
help='Test Dataset')
args = parser.parse_args()
target_column_name = args.target_column_name
test_dataset_id = args.test_dataset
run = Run.get_context()
ws = run.experiment.workspace
# get the input dataset by id
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()
# generate forecast
fitted_model = joblib.load('model.pkl')
y_pred, X_trans = fitted_model.forecast(X_test_df)
# rename target column
X_trans.reset_index(drop=False, inplace=True)
X_trans.rename(columns={TimeSeriesInternal.DUMMY_TARGET_COLUMN: 'predicted'}, inplace=True)
X_trans['actual'] = y_test_df[target_column_name].values
file_name = 'outputs/predictions.csv'
export_csv = X_trans.to_csv(file_name, header=True, index=False) # added Index
# Upload the predictions into artifacts
run.upload_file(name=file_name, path_or_stream=file_name)

View File

@@ -0,0 +1,250 @@
"""
Helper functions to determine AutoML experiment settings for forecasting.
"""
import pandas as pd
import statsmodels.tsa.stattools as stattools
from arch import unitroot
from azureml.automl.core.shared import constants
from azureml.automl.runtime.shared.score import scoring
def adf_test(series, **kw):
"""
Wrapper for the augmented Dickey-Fuller test. Allows users to set the lag order.
:param series: series to test
:return: dictionary of results
"""
if 'lags' in kw.keys():
msg = 'Lag order of {} detected. Running the ADF test...'.format(str(kw['lags']))
print(msg)
statistic, pval, critval, resstore = stattools.adfuller(series,
maxlag=kw['lags'],
autolag=kw['autolag'],
store=kw['store'])
else:
statistic, pval, critval, resstore = stattools.adfuller(series,
autolag=kw['IC'],
store=kw['store'])
output = {'statistic': statistic,
'pval': pval,
'critical': critval,
'resstore': resstore}
return output
def kpss_test(series, **kw):
"""
Wrapper for the KPSS test. Allows users to set the lag order.
:param series: series to test
:return: dictionary of results
"""
if kw['store']:
statistic, p_value, critical_values, rstore = stattools.kpss(series,
regression=kw['reg_type'],
lags=kw['lags'],
store=kw['store'])
else:
statistic, p_value, lags, critical_values = stattools.kpss(series,
regression=kw['reg_type'],
lags=kw['lags'])
output = {'statistic': statistic,
'pval': p_value,
'critical': critical_values,
'lags': rstore.lags if kw['store'] else lags}
if kw['store']:
output.update({'resstore': rstore})
return output
def format_test_output(test_name, test_res, H0_unit_root=True):
"""
Helper function to format output. Return a dictionary with specific keys. Will be used to
construct the summary data frame for all unit root tests.
TODO: Add functionality of choosing based on the max lag order specified by user.
:param test_name: name of the test
:param test_res: object that contains corresponding test information. Can be None if test failed.
:param H0_unit_root: does the null hypothesis of the test assume a unit root process? Some tests do (ADF),
some don't (KPSS).
:return: dictionary of summary table for all tests and final decision on stationary vs non-stationary.
If test failed (test_res is None), return empty dictionary.
"""
# Check if the test failed by trying to extract the test statistic
if test_name in ('ADF', 'KPSS'):
try:
test_res['statistic']
except BaseException:
test_res = None
else:
try:
test_res.stat
except BaseException:
test_res = None
if test_res is None:
return {}
# extract necessary information
if test_name in ('ADF', 'KPSS'):
statistic = test_res['statistic']
crit_val = test_res['critical']['5%']
p_val = test_res['pval']
lags = test_res['resstore'].usedlag if test_name == 'ADF' else test_res['lags']
else:
statistic = test_res.stat
crit_val = test_res.critical_values['5%']
p_val = test_res.pvalue
lags = test_res.lags
if H0_unit_root:
H0 = 'The process is non-stationary'
stationary = "yes" if p_val < 0.05 else "not"
else:
H0 = 'The process is stationary'
stationary = "yes" if p_val > 0.05 else "not"
out = {
'test_name': test_name,
'statistic': statistic,
'crit_val': crit_val,
'p_val': p_val,
'lags': int(lags),
'stationary': stationary,
'Null Hypothesis': H0
}
return out
def unit_root_test_wrapper(series, lags=None):
"""
Main function to run multiple stationarity tests. Runs five tests and returns a summary table + decision
based on the majority rule. If the number of tests that determine a series is stationary equals to the
number of tests that deem it non-stationary, we assume the series is non-stationary.
* Augmented Dickey-Fuller (ADF),
* KPSS,
* ADF using GLS,
* Phillips-Perron (PP),
* Zivot-Andrews (ZA)
:param lags: (optional) parameter that allows user to run a series of tests for a specific lag value.
:param series: series to test
:return: dictionary of summary table for all tests and final decision on stationary vs nonstaionary
"""
# setting for ADF and KPSS tests
adf_settings = {
'IC': 'AIC',
'store': True
}
kpss_settings = {
'reg_type': 'c',
'lags': 'auto',
'store': True
}
arch_test_settings = {} # settings for PP, ADF GLS and ZA tests
if lags is not None:
adf_settings.update({'lags': lags, 'autolag': None})
kpss_settings.update({'lags:': lags})
arch_test_settings = {'lags': lags}
# Run individual tests
adf = adf_test(series, **adf_settings) # ADF test
kpss = kpss_test(series, **kpss_settings) # KPSS test
pp = unitroot.PhillipsPerron(series, **arch_test_settings) # Phillips-Perron test
adfgls = unitroot.DFGLS(series, **arch_test_settings) # ADF using GLS test
za = unitroot.ZivotAndrews(series, **arch_test_settings) # Zivot-Andrews test
# generate output table
adf_dict = format_test_output(test_name='ADF', test_res=adf, H0_unit_root=True)
kpss_dict = format_test_output(test_name='KPSS', test_res=kpss, H0_unit_root=False)
pp_dict = format_test_output(test_name='Philips Perron', test_res=pp, H0_unit_root=True)
adfgls_dict = format_test_output(test_name='ADF GLS', test_res=adfgls, H0_unit_root=True)
za_dict = format_test_output(test_name='Zivot-Andrews', test_res=za, H0_unit_root=True)
test_dict = {'ADF': adf_dict, 'KPSS': kpss_dict, 'PP': pp_dict, 'ADF GLS': adfgls_dict, 'ZA': za_dict}
test_sum = pd.DataFrame.from_dict(test_dict, orient='index').reset_index(drop=True)
# decision based on the majority rule
if test_sum.shape[0] > 0:
ratio = test_sum[test_sum["stationary"] == "yes"].shape[0] / test_sum.shape[0]
else:
ratio = 1 # all tests fail, assume the series is stationary
# Majority rule. If the ratio is exactly 0.5, assume the series in non-stationary.
stationary = 'YES' if (ratio > 0.5) else 'NO'
out = {'summary': test_sum, 'stationary': stationary}
return out
def ts_train_test_split(df_input, n, time_colname, ts_id_colnames=None):
"""
Group data frame by time series ID and split on last n rows for each group.
:param df_input: input data frame
:param n: number of observations in the test set
:param time_colname: time column
:param ts_id_colnames: (optional) list of grain column names
:return train and test data frames
"""
if ts_id_colnames is None:
ts_id_colnames = []
ts_id_colnames_original = ts_id_colnames.copy()
if len(ts_id_colnames) == 0:
ts_id_colnames = ['Grain']
df_input[ts_id_colnames[0]] = 'dummy'
# Sort by ascending time
df_grouped = (df_input.sort_values(time_colname).groupby(ts_id_colnames, group_keys=False))
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])
# drop group column name if it was not originally provided
if len(ts_id_colnames_original) == 0:
df_head.drop(ts_id_colnames, axis=1, inplace=True)
df_tail.drop(ts_id_colnames, axis=1, inplace=True)
return df_head, df_tail
def compute_metrics(fcst_df, metric_name=None, ts_id_colnames=None):
"""
Calculate metrics per grain.
:param fcst_df: forecast data frame. Must contain 2 columns: 'actual_level' and 'predicted_level'
:param metric_name: (optional) name of the metric to return
:param ts_id_colnames: (optional) list of grain column names
:return: dictionary of summary table for all tests and final decision on stationary vs nonstaionary
"""
if ts_id_colnames is None:
ts_id_colnames = []
if len(ts_id_colnames) == 0:
ts_id_colnames = ['TS_ID']
fcst_df[ts_id_colnames[0]] = 'dummy'
metrics_list = []
for grain, df in fcst_df.groupby(ts_id_colnames):
try:
scores = scoring.score_regression(
y_test=df['actual_level'],
y_pred=df['predicted_level'],
metrics=list(constants.Metric.SCALAR_REGRESSION_SET))
except BaseException:
msg = '{}: metrics calculation failed.'.format(grain)
print(msg)
scores = {}
one_grain_metrics_df = pd.DataFrame(list(scores.items()), columns=['metric_name', 'metric']).\
sort_values(['metric_name'])
one_grain_metrics_df.reset_index(inplace=True, drop=True)
if len(ts_id_colnames) < 2:
one_grain_metrics_df['grain'] = ts_id_colnames[0]
else:
one_grain_metrics_df['grain'] = "|".join(list(grain))
metrics_list.append(one_grain_metrics_df)
# collect into a data frame
grain_metrics = pd.concat(metrics_list)
if metric_name is not None:
grain_metrics = grain_metrics.query('metric_name == @metric_name')
return grain_metrics

View File

@@ -0,0 +1,38 @@
import os
import shutil
from azureml.core import ScriptRunConfig
def run_remote_inference(test_experiment, compute_target, train_run,
test_dataset, target_column_name, inference_folder='./forecast'):
# Create local directory to copy the model.pkl and forecsting_script.py files into.
# These files will be uploaded to and executed on the compute instance.
os.makedirs(inference_folder, exist_ok=True)
shutil.copy('forecasting_script.py', inference_folder)
train_run.download_file('outputs/model.pkl',
os.path.join(inference_folder, 'model.pkl'))
inference_env = train_run.get_environment()
config = ScriptRunConfig(source_directory=inference_folder,
script='forecasting_script.py',
arguments=['--target_column_name',
target_column_name,
'--test_dataset',
test_dataset.as_named_input(test_dataset.name)],
compute_target=compute_target,
environment=inference_env)
run = test_experiment.submit(config,
tags={'training_run_id':
train_run.id,
'run_algorithm':
train_run.properties['run_algorithm'],
'valid_score':
train_run.properties['score'],
'primary_metric':
train_run.properties['primary_metric']})
run.log("run_algorithm", run.tags['run_algorithm'])
return run

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -77,7 +77,6 @@
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.core.dataset import Dataset"
@@ -96,7 +95,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -541,8 +540,6 @@
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
@@ -720,14 +717,13 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=2, \n",
" memory_gb=2, \n",
" tags={\"data\": \"Machine Data\", \n",
" \"method\" : \"local_explanation\"}, \n",
" description='Get local explanations for Machine test data')\n",

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -2,22 +2,23 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.png)"
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register Spark Model and deploy as Webservice\n",
"\n",
@@ -25,110 +26,109 @@
"\n",
" 1. Register Spark Model\n",
" 2. Deploy Spark Model as Webservice"
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# Check core SDK version number\r\n",
"import azureml.core\r\n",
"\r\n",
"print(\"SDK version:\", azureml.core.VERSION)"
],
"metadata": {},
"outputs": [],
"metadata": {}
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from azureml.core import Workspace\r\n",
"\r\n",
"ws = Workspace.from_config()\r\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
],
"outputs": [],
"metadata": {
"tags": [
"create workspace"
]
}
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Model"
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your Models. Note you need to have a `iris.model` file in the current directory. This model file is generated using [train in spark](../training/train-in-spark/train-in-spark.ipynb) notebook. The below call registers that file as a Model with the same name `iris.model` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from azureml.core.model import Model\r\n",
"\r\n",
"model = Model.register(model_path=\"iris.model\",\r\n",
" model_name=\"iris.model\",\r\n",
" tags={'type': \"regression\"},\r\n",
" description=\"Logistic regression model to predict iris species\",\r\n",
" workspace=ws)"
],
"outputs": [],
"metadata": {
"tags": [
"register model from file"
]
}
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path=\"iris.model\",\n",
" model_name=\"iris.model\",\n",
" tags={'type': \"regression\"},\n",
" description=\"Logistic regression model to predict iris species\",\n",
" workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fetch Environment"
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now create and/or use an Environment object when deploying a Webservice. The Environment can have been previously registered with your Workspace, or it will be registered with it as a part of the Webservice deployment.\n",
"\n",
"In this notebook, we will be using 'AzureML-PySpark-MmlSpark-0.15', a curated environment.\n",
"\n",
"More information can be found in our [using environments notebook](../training/using-environments/using-environments.ipynb)."
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\r\n",
"from azureml.core.environment import SparkPackage\r\n",
@@ -141,12 +141,11 @@
"myenv.python.conda_dependencies.add_channel(\"conda-forge\")\r\n",
"myenv.spark.packages = [SparkPackage(\"com.microsoft.ml.spark\", \"mmlspark_2.11\", \"0.15\"), SparkPackage(\"com.microsoft.azure\", \"azure-storage\", \"2.0.0\"), SparkPackage(\"org.apache.hadoop\", \"hadoop-azure\", \"2.7.0\")]\r\n",
"myenv.spark.repositories = [\"https://mmlspark.azureedge.net/maven\"]\r\n"
],
"outputs": [],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration\n",
"\n",
@@ -164,109 +163,109 @@
" - source_directory = holds source path as string, this entire folder gets added in image so its really easy to access any files within this folder or subfolder\n",
" - entry_script = contains logic specific to initializing your model and running predictions\n",
" - environment = An environment object to use for the deployment. Doesn't have to be registered"
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from azureml.core.model import InferenceConfig\r\n",
"\r\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
],
"outputs": [],
"metadata": {
"tags": [
"create image"
]
}
},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy Model as Webservice on Azure Container Instance\n",
"\n",
"Note that the service creation can take few minutes."
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from azureml.core.webservice import AciWebservice, Webservice\r\n",
"from azureml.exceptions import WebserviceException\r\n",
"\r\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\r\n",
"aci_service_name = 'aciservice1'\r\n",
"\r\n",
"try:\r\n",
" # if you want to get existing service below is the command\r\n",
" # since aci name needs to be unique in subscription deleting existing aci if any\r\n",
" # we use aci_service_name to create azure aci\r\n",
" service = Webservice(ws, name=aci_service_name)\r\n",
" if service:\r\n",
" service.delete()\r\n",
"except WebserviceException as e:\r\n",
" print()\r\n",
"\r\n",
"service = Model.deploy(ws, aci_service_name, [model], inference_config, deployment_config)\r\n",
"\r\n",
"service.wait_for_deployment(True)\r\n",
"print(service.state)"
],
"outputs": [],
"metadata": {
"tags": [
"azuremlexception-remarks-sample"
]
}
},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice, Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"aci_service_name = 'aciservice1'\n",
"\n",
"try:\n",
" # if you want to get existing service below is the command\n",
" # since aci name needs to be unique in subscription deleting existing aci if any\n",
" # we use aci_service_name to create azure aci\n",
" service = Webservice(ws, name=aci_service_name)\n",
" if service:\n",
" service.delete()\n",
"except WebserviceException as e:\n",
" print()\n",
"\n",
"service = Model.deploy(ws, aci_service_name, [model], inference_config, deployment_config)\n",
"\n",
"service.wait_for_deployment(True)\n",
"print(service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test web service"
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"import json\r\n",
"test_sample = json.dumps({'features':{'type':1,'values':[4.3,3.0,1.1,0.1]},'label':2.0})\r\n",
"\r\n",
"test_sample_encoded = bytes(test_sample, encoding='utf8')\r\n",
"prediction = service.run(input_data=test_sample_encoded)\r\n",
"print(prediction)"
],
"metadata": {},
"outputs": [],
"metadata": {}
"source": [
"import json\n",
"test_sample = json.dumps({'features':{'type':1,'values':[4.3,3.0,1.1,0.1]},'label':2.0})\n",
"\n",
"test_sample_encoded = bytes(test_sample, encoding='utf8')\n",
"prediction = service.run(input_data=test_sample_encoded)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Delete ACI to clean up"
],
"metadata": {}
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"service.delete()"
],
"outputs": [],
"metadata": {
"tags": [
"deploy service",
"aci"
]
}
},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Profiling\n",
"\n",
@@ -278,11 +277,11 @@
"profiling_results = profile.get_results()\n",
"print(profiling_results)\n",
"```"
],
"metadata": {}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Packaging\n",
"\n",
@@ -303,8 +302,7 @@
"package.wait_for_creation(show_output=True)\n",
"package.save(\"./local_context_dir\")\n",
"```"
],
"metadata": {}
]
}
],
"metadata": {

View File

@@ -126,7 +126,7 @@
},
"outputs": [],
"source": [
"from msrest.exceptions import HttpOperationError\n",
"from azureml.exceptions import UserErrorException\n",
"\n",
"blob_datastore_name='MyBlobDatastore'\n",
"account_name=os.getenv(\"BLOB_ACCOUNTNAME_62\", \"<my-account-name>\") # Storage account name\n",
@@ -136,7 +136,7 @@
"try:\n",
" blob_datastore = Datastore.get(ws, blob_datastore_name)\n",
" print(\"Found Blob Datastore with name: %s\" % blob_datastore_name)\n",
"except HttpOperationError:\n",
"except UserErrorException:\n",
" blob_datastore = Datastore.register_azure_blob_container(\n",
" workspace=ws,\n",
" datastore_name=blob_datastore_name,\n",
@@ -180,7 +180,7 @@
"try:\n",
" adls_datastore = Datastore.get(ws, datastore_name)\n",
" print(\"Found datastore with name: %s\" % datastore_name)\n",
"except HttpOperationError:\n",
"except UserErrorException:\n",
" adls_datastore = Datastore.register_azure_data_lake(\n",
" workspace=ws,\n",
" datastore_name=datastore_name,\n",
@@ -270,7 +270,7 @@
"try:\n",
" sql_datastore = Datastore.get(ws, sql_datastore_name)\n",
" print(\"Found sql database datastore with name: %s\" % sql_datastore_name)\n",
"except HttpOperationError:\n",
"except UserErrorException:\n",
" sql_datastore = Datastore.register_azure_sql_database(\n",
" workspace=ws,\n",
" datastore_name=sql_datastore_name,\n",
@@ -312,7 +312,7 @@
"try:\n",
" psql_datastore = Datastore.get(ws, psql_datastore_name)\n",
" print(\"Found PostgreSQL database datastore with name: %s\" % psql_datastore_name)\n",
"except HttpOperationError:\n",
"except UserErrorException:\n",
" psql_datastore = Datastore.register_azure_postgre_sql(\n",
" workspace=ws,\n",
" datastore_name=psql_datastore_name,\n",
@@ -353,7 +353,7 @@
"try:\n",
" mysql_datastore = Datastore.get(ws, mysql_datastore_name)\n",
" print(\"Found MySQL database datastore with name: %s\" % mysql_datastore_name)\n",
"except HttpOperationError:\n",
"except UserErrorException:\n",
" mysql_datastore = Datastore.register_azure_my_sql(\n",
" workspace=ws,\n",
" datastore_name=mysql_datastore_name,\n",

View File

@@ -183,7 +183,7 @@
"outputs": [],
"source": [
"# make sure utils.py is in the same directory as this code\n",
"from utils import load_data, one_hot_encode\n",
"from utils import load_data\n",
"\n",
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the model converge faster.\n",
"X_train = load_data(os.path.join(data_folder, 'train-images-idx3-ubyte.gz'), False) / 255.0\n",
@@ -253,11 +253,12 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.exceptions import UserErrorException\n",
"dataset_registered = False\n",
"try:\n",
" temp = Dataset.get_by_name(workspace = ws, name = 'mnist-dataset')\n",
" dataset_registered = True\n",
"except:\n",
"except UserErrorException:\n",
" print(\"The dataset mnist-dataset is not registered in workspace yet.\")\n",
"\n",
"if not dataset_registered:\n",
@@ -1009,15 +1010,14 @@
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=2,\n",
" auth_enabled=True, # this flag generates API keys to secure access\n",
" memory_gb=1,\n",
" memory_gb=2,\n",
" tags={'name': 'mnist', 'framework': 'Keras'},\n",
" description='Keras MLP on MNIST')\n",
"\n",

View File

@@ -579,13 +579,12 @@
"source": [
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"\n",
"inference_config = InferenceConfig(entry_script=\"pytorch_score.py\", environment=pytorch_env)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=2, \n",
" memory_gb=2, \n",
" tags={'data': 'birds', 'method':'transfer learning', 'framework':'pytorch'},\n",
" description='Classify turkey/chickens using transfer learning with PyTorch')\n",
"\n",

View File

@@ -265,11 +265,12 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.exceptions import UserErrorException\n",
"dataset_registered = False\n",
"try:\n",
" temp = Dataset.get_by_name(workspace = ws, name = 'mnist-dataset')\n",
" dataset_registered = True\n",
"except:\n",
"except UserErrorException:\n",
" print(\"The dataset mnist-dataset is not registered in workspace yet.\")\n",
"\n",
"if not dataset_registered:\n",
@@ -964,14 +965,13 @@
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=2, \n",
" memory_gb=2, \n",
" tags={'name':'mnist', 'framework': 'TensorFlow DNN'},\n",
" description='Tensorflow DNN on MNIST')\n",
"\n",

View File

@@ -100,7 +100,7 @@
"\n",
"# Check core SDK version number\n",
"\n",
"print(\"This notebook was created using SDK version 1.32.0, you are currently running version\", azureml.core.VERSION)"
"print(\"This notebook was created using SDK version 1.33.0, you are currently running version\", azureml.core.VERSION)"
]
},
{

View File

@@ -0,0 +1,151 @@
sepal_length,sepal_width,petal_length,petal_width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3,1.4,0.1,Iris-setosa
4.3,3,1.1,0.1,Iris-setosa
5.8,4,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5,3,1.6,0.2,Iris-setosa
5,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5,3.3,1.4,0.2,Iris-setosa
7,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5,2,3.5,1,Iris-versicolor
5.9,3,4.2,1.5,Iris-versicolor
6,2.2,4,1,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3,5,1.7,Iris-versicolor
6,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6,2.7,5.1,1.6,Iris-versicolor
5.4,3,4.5,1.5,Iris-versicolor
6,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3,4.1,1.3,Iris-versicolor
5.5,2.5,4,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3,4.6,1.4,Iris-versicolor
5.8,2.6,4,1.2,Iris-versicolor
5,2.3,3.3,1,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3,5.8,2.2,Iris-virginica
7.6,3,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3,5.5,2.1,Iris-virginica
5.7,2.5,5,2,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6,2.2,5,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2,Iris-virginica
7.7,2.8,6.7,2,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6,3,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3,5.2,2.3,Iris-virginica
6.3,2.5,5,1.9,Iris-virginica
6.5,3,5.2,2,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3,5.1,1.8,Iris-virginica
1 sepal_length sepal_width petal_length petal_width species
2 5.1 3.5 1.4 0.2 Iris-setosa
3 4.9 3 1.4 0.2 Iris-setosa
4 4.7 3.2 1.3 0.2 Iris-setosa
5 4.6 3.1 1.5 0.2 Iris-setosa
6 5 3.6 1.4 0.2 Iris-setosa
7 5.4 3.9 1.7 0.4 Iris-setosa
8 4.6 3.4 1.4 0.3 Iris-setosa
9 5 3.4 1.5 0.2 Iris-setosa
10 4.4 2.9 1.4 0.2 Iris-setosa
11 4.9 3.1 1.5 0.1 Iris-setosa
12 5.4 3.7 1.5 0.2 Iris-setosa
13 4.8 3.4 1.6 0.2 Iris-setosa
14 4.8 3 1.4 0.1 Iris-setosa
15 4.3 3 1.1 0.1 Iris-setosa
16 5.8 4 1.2 0.2 Iris-setosa
17 5.7 4.4 1.5 0.4 Iris-setosa
18 5.4 3.9 1.3 0.4 Iris-setosa
19 5.1 3.5 1.4 0.3 Iris-setosa
20 5.7 3.8 1.7 0.3 Iris-setosa
21 5.1 3.8 1.5 0.3 Iris-setosa
22 5.4 3.4 1.7 0.2 Iris-setosa
23 5.1 3.7 1.5 0.4 Iris-setosa
24 4.6 3.6 1 0.2 Iris-setosa
25 5.1 3.3 1.7 0.5 Iris-setosa
26 4.8 3.4 1.9 0.2 Iris-setosa
27 5 3 1.6 0.2 Iris-setosa
28 5 3.4 1.6 0.4 Iris-setosa
29 5.2 3.5 1.5 0.2 Iris-setosa
30 5.2 3.4 1.4 0.2 Iris-setosa
31 4.7 3.2 1.6 0.2 Iris-setosa
32 4.8 3.1 1.6 0.2 Iris-setosa
33 5.4 3.4 1.5 0.4 Iris-setosa
34 5.2 4.1 1.5 0.1 Iris-setosa
35 5.5 4.2 1.4 0.2 Iris-setosa
36 4.9 3.1 1.5 0.1 Iris-setosa
37 5 3.2 1.2 0.2 Iris-setosa
38 5.5 3.5 1.3 0.2 Iris-setosa
39 4.9 3.1 1.5 0.1 Iris-setosa
40 4.4 3 1.3 0.2 Iris-setosa
41 5.1 3.4 1.5 0.2 Iris-setosa
42 5 3.5 1.3 0.3 Iris-setosa
43 4.5 2.3 1.3 0.3 Iris-setosa
44 4.4 3.2 1.3 0.2 Iris-setosa
45 5 3.5 1.6 0.6 Iris-setosa
46 5.1 3.8 1.9 0.4 Iris-setosa
47 4.8 3 1.4 0.3 Iris-setosa
48 5.1 3.8 1.6 0.2 Iris-setosa
49 4.6 3.2 1.4 0.2 Iris-setosa
50 5.3 3.7 1.5 0.2 Iris-setosa
51 5 3.3 1.4 0.2 Iris-setosa
52 7 3.2 4.7 1.4 Iris-versicolor
53 6.4 3.2 4.5 1.5 Iris-versicolor
54 6.9 3.1 4.9 1.5 Iris-versicolor
55 5.5 2.3 4 1.3 Iris-versicolor
56 6.5 2.8 4.6 1.5 Iris-versicolor
57 5.7 2.8 4.5 1.3 Iris-versicolor
58 6.3 3.3 4.7 1.6 Iris-versicolor
59 4.9 2.4 3.3 1 Iris-versicolor
60 6.6 2.9 4.6 1.3 Iris-versicolor
61 5.2 2.7 3.9 1.4 Iris-versicolor
62 5 2 3.5 1 Iris-versicolor
63 5.9 3 4.2 1.5 Iris-versicolor
64 6 2.2 4 1 Iris-versicolor
65 6.1 2.9 4.7 1.4 Iris-versicolor
66 5.6 2.9 3.6 1.3 Iris-versicolor
67 6.7 3.1 4.4 1.4 Iris-versicolor
68 5.6 3 4.5 1.5 Iris-versicolor
69 5.8 2.7 4.1 1 Iris-versicolor
70 6.2 2.2 4.5 1.5 Iris-versicolor
71 5.6 2.5 3.9 1.1 Iris-versicolor
72 5.9 3.2 4.8 1.8 Iris-versicolor
73 6.1 2.8 4 1.3 Iris-versicolor
74 6.3 2.5 4.9 1.5 Iris-versicolor
75 6.1 2.8 4.7 1.2 Iris-versicolor
76 6.4 2.9 4.3 1.3 Iris-versicolor
77 6.6 3 4.4 1.4 Iris-versicolor
78 6.8 2.8 4.8 1.4 Iris-versicolor
79 6.7 3 5 1.7 Iris-versicolor
80 6 2.9 4.5 1.5 Iris-versicolor
81 5.7 2.6 3.5 1 Iris-versicolor
82 5.5 2.4 3.8 1.1 Iris-versicolor
83 5.5 2.4 3.7 1 Iris-versicolor
84 5.8 2.7 3.9 1.2 Iris-versicolor
85 6 2.7 5.1 1.6 Iris-versicolor
86 5.4 3 4.5 1.5 Iris-versicolor
87 6 3.4 4.5 1.6 Iris-versicolor
88 6.7 3.1 4.7 1.5 Iris-versicolor
89 6.3 2.3 4.4 1.3 Iris-versicolor
90 5.6 3 4.1 1.3 Iris-versicolor
91 5.5 2.5 4 1.3 Iris-versicolor
92 5.5 2.6 4.4 1.2 Iris-versicolor
93 6.1 3 4.6 1.4 Iris-versicolor
94 5.8 2.6 4 1.2 Iris-versicolor
95 5 2.3 3.3 1 Iris-versicolor
96 5.6 2.7 4.2 1.3 Iris-versicolor
97 5.7 3 4.2 1.2 Iris-versicolor
98 5.7 2.9 4.2 1.3 Iris-versicolor
99 6.2 2.9 4.3 1.3 Iris-versicolor
100 5.1 2.5 3 1.1 Iris-versicolor
101 5.7 2.8 4.1 1.3 Iris-versicolor
102 6.3 3.3 6 2.5 Iris-virginica
103 5.8 2.7 5.1 1.9 Iris-virginica
104 7.1 3 5.9 2.1 Iris-virginica
105 6.3 2.9 5.6 1.8 Iris-virginica
106 6.5 3 5.8 2.2 Iris-virginica
107 7.6 3 6.6 2.1 Iris-virginica
108 4.9 2.5 4.5 1.7 Iris-virginica
109 7.3 2.9 6.3 1.8 Iris-virginica
110 6.7 2.5 5.8 1.8 Iris-virginica
111 7.2 3.6 6.1 2.5 Iris-virginica
112 6.5 3.2 5.1 2 Iris-virginica
113 6.4 2.7 5.3 1.9 Iris-virginica
114 6.8 3 5.5 2.1 Iris-virginica
115 5.7 2.5 5 2 Iris-virginica
116 5.8 2.8 5.1 2.4 Iris-virginica
117 6.4 3.2 5.3 2.3 Iris-virginica
118 6.5 3 5.5 1.8 Iris-virginica
119 7.7 3.8 6.7 2.2 Iris-virginica
120 7.7 2.6 6.9 2.3 Iris-virginica
121 6 2.2 5 1.5 Iris-virginica
122 6.9 3.2 5.7 2.3 Iris-virginica
123 5.6 2.8 4.9 2 Iris-virginica
124 7.7 2.8 6.7 2 Iris-virginica
125 6.3 2.7 4.9 1.8 Iris-virginica
126 6.7 3.3 5.7 2.1 Iris-virginica
127 7.2 3.2 6 1.8 Iris-virginica
128 6.2 2.8 4.8 1.8 Iris-virginica
129 6.1 3 4.9 1.8 Iris-virginica
130 6.4 2.8 5.6 2.1 Iris-virginica
131 7.2 3 5.8 1.6 Iris-virginica
132 7.4 2.8 6.1 1.9 Iris-virginica
133 7.9 3.8 6.4 2 Iris-virginica
134 6.4 2.8 5.6 2.2 Iris-virginica
135 6.3 2.8 5.1 1.5 Iris-virginica
136 6.1 2.6 5.6 1.4 Iris-virginica
137 7.7 3 6.1 2.3 Iris-virginica
138 6.3 3.4 5.6 2.4 Iris-virginica
139 6.4 3.1 5.5 1.8 Iris-virginica
140 6 3 4.8 1.8 Iris-virginica
141 6.9 3.1 5.4 2.1 Iris-virginica
142 6.7 3.1 5.6 2.4 Iris-virginica
143 6.9 3.1 5.1 2.3 Iris-virginica
144 5.8 2.7 5.1 1.9 Iris-virginica
145 6.8 3.2 5.9 2.3 Iris-virginica
146 6.7 3.3 5.7 2.5 Iris-virginica
147 6.7 3 5.2 2.3 Iris-virginica
148 6.3 2.5 5 1.9 Iris-virginica
149 6.5 3 5.2 2 Iris-virginica
150 6.2 3.4 5.4 2.3 Iris-virginica
151 5.9 3 5.1 1.8 Iris-virginica

View File

@@ -107,6 +107,8 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
| [auto-ml-regression-model-proxy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/experimental/regression-model-proxy/auto-ml-regression-model-proxy.ipynb) | | | | | | |
| [auto-ml-forecasting-beer-remote](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb) | | | | | | |
| [auto-ml-forecasting-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb) | | | | | | |
| [auto-ml-forecasting-univariate-recipe-experiment-settings](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-experiment-settings.ipynb) | | | | | | |
| [auto-ml-forecasting-univariate-recipe-run-experiment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-run-experiment.ipynb) | | | | | | |
| [auto-ml-regression](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb) | | | | | | |
| [automl-databricks-local-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.ipynb) | | | | | | |
| [automl-databricks-local-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.ipynb) | | | | | | |

View File

@@ -102,7 +102,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.32.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.33.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},