# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. import argparse import os import pandas as pd import azureml.dataprep as dprep def get_dict(dict_str): pairs = dict_str.strip("{}").split("\;") new_dict = {} for pair in pairs: key, value = pair.strip('\\').split(":") new_dict[key.strip().strip("'")] = value.strip().strip("'") return new_dict print("Cleans the input data") parser = argparse.ArgumentParser("cleanse") parser.add_argument("--input_cleanse", type=str, help="raw taxi data") parser.add_argument("--output_cleanse", type=str, help="cleaned taxi data directory") parser.add_argument("--useful_columns", type=str, help="useful columns to keep") parser.add_argument("--columns", type=str, help="rename column pattern") args = parser.parse_args() print("Argument 1(input taxi data path): %s" % args.input_cleanse) print("Argument 2(columns to keep): %s" % str(args.useful_columns.strip("[]").split("\;"))) print("Argument 3(columns renaming mapping): %s" % str(args.columns.strip("{}").split("\;"))) print("Argument 4(output cleansed taxi data path): %s" % args.output_cleanse) raw_df = dprep.read_csv(path=args.input_cleanse, header=dprep.PromoteHeadersMode.GROUPED) # These functions ensure that null data is removed from the data set, # which will help increase machine learning model accuracy. # Visit https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-data-prep # for more details useful_columns = [s.strip().strip("'") for s in args.useful_columns.strip("[]").split("\;")] columns = get_dict(args.columns) all_columns = dprep.ColumnSelector(term=".*", use_regex=True) drop_if_all_null = [all_columns, dprep.ColumnRelationship(dprep.ColumnRelationship.ALL)] new_df = (raw_df .replace_na(columns=all_columns) .drop_nulls(*drop_if_all_null) .rename_columns(column_pairs=columns) .keep_columns(columns=useful_columns)) if not (args.output_cleanse is None): os.makedirs(args.output_cleanse, exist_ok=True) print("%s created" % args.output_cleanse) write_df = new_df.write_to_csv(directory_path=dprep.LocalFileOutput(args.output_cleanse)) write_df.run_local()