## Azure Machine Learning service training examples These examples show you: 1. [How to use the Estimator pattern in Azure ML](how-to-use-estimator) 2. [Train using TensorFlow Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-tensorflow) 3. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch) 4. [Train using Keras and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-keras) 5. [Train using Chainer Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-chainer) 6. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server) 7. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod) 8. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod) 9. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker) 10. [Distributed training using Chainer](distributed-chainer) 11. [Export run history records to Tensorboard](export-run-history-to-tensorboard) 12. [Use TensorBoard to monitor training execution](tensorboard) 13. [Resuming training from previous run](train-tensorflow-resume-training) Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models). ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training-with-deep-learning/README.png)