{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/work-with-data/dataprep/how-to-guides/secrets.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Providing Secrets\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Currently, secrets are only persisted for the lifetime of the engine process. Even if the dataflow is saved to a file, the secrets are not persisted in the dprep file. If you started a new session (i.e. start a new engine process), loaded a dataflow and wanted to run it, you will need to call `use_secrets` to register the required secrets to use during execution, otherwise the execution will fail as the required secrets are not available.\n", "\n", "In this notebook, we will:\n", "1. Loading a previously saved dataflow\n", "2. Call `get_missing_secrets` to determine the missing secrets\n", "3. Call `use_secrets` and pass in the missing secrets to register it with the engine for this session\n", "4. Call `head` to see the a preview of the data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import azureml.dataprep as dprep\n", "\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's load the previously saved dataflow." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dflow = dprep.Dataflow.open(file_path='../data/secrets.dprep')\n", "dflow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can call `get_missing_secrets` to see which required secrets are missing in the engine." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dflow.get_missing_secrets()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can now read the secrets from an environment variable, put it in a secret dictionary, and call `use_secrets` with the secrets. This will register the secrets in the engine so you don't need to provide them again in this session.\n", "\n", "_Note: It is a bad practice to have secrets in files that will be checked into source control._" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sas = os.environ['SCENARIOS_SECRETS']\n", "secrets = {\n", " 'https://dpreptestfiles.blob.core.windows.net/testfiles/read_csv_duplicate_headers.csv': sas\n", "}\n", "dflow.use_secrets(secrets=secrets)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can now call `head` without passing in `secrets` and the engine will successfully execute. Here is a preview of the data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dflow.head(5)" ] } ], "metadata": { "authors": [ { "name": "sihhu" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "notice": "Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License." }, "nbformat": 4, "nbformat_minor": 2 }