{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Automated Machine Learning\n", "_**Text Classification Using Deep Learning**_\n", "\n", "## Contents\n", "1. [Introduction](#Introduction)\n", "1. [Setup](#Setup)\n", "1. [Data](#Data)\n", "1. [Train](#Train)\n", "1. [Evaluate](#Evaluate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "This notebook demonstrates classification with text data using deep learning in AutoML.\n", "\n", "AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data. Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used, and Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.\n", "\n", "Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n", "\n", "An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade).\n", "\n", "Notebook synopsis:\n", "1. Creating an Experiment in an existing Workspace\n", "2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n", "3. Evaluating the final model on a test set\n", "4. Deploying the model on ACI" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import logging\n", "import os\n", "import shutil\n", "\n", "import pandas as pd\n", "\n", "import azureml.core\n", "from azureml.core.experiment import Experiment\n", "from azureml.core.workspace import Workspace\n", "from azureml.core.dataset import Dataset\n", "from azureml.core.compute import AmlCompute\n", "from azureml.core.compute import ComputeTarget\n", "from azureml.core.run import Run\n", "from azureml.widgets import RunDetails\n", "from azureml.core.model import Model \n", "from helper import run_inference, get_result_df\n", "from azureml.train.automl import AutoMLConfig\n", "from sklearn.datasets import fetch_20newsgroups" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As part of the setup you have already created a Workspace. To run AutoML, you also need to create an Experiment. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ws = Workspace.from_config()\n", "\n", "# Choose an experiment name.\n", "experiment_name = 'automl-classification-text-dnn'\n", "\n", "experiment = Experiment(ws, experiment_name)\n", "\n", "output = {}\n", "output['SDK version'] = azureml.core.VERSION\n", "output['Subscription ID'] = ws.subscription_id\n", "output['Workspace Name'] = ws.name\n", "output['Resource Group'] = ws.resource_group\n", "output['Location'] = ws.location\n", "output['Experiment Name'] = experiment.name\n", "pd.set_option('display.max_colwidth', -1)\n", "outputDf = pd.DataFrame(data = output, index = [''])\n", "outputDf.T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set up a compute cluster\n", "This section uses a user-provided compute cluster (named \"cpu-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n", "\n", "Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Choose a name for your cluster.\n", "amlcompute_cluster_name = \"cpu-dnntext\"\n", "\n", "found = False\n", "# Check if this compute target already exists in the workspace.\n", "cts = ws.compute_targets\n", "if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n", " found = True\n", " print('Found existing compute target.')\n", " compute_target = cts[amlcompute_cluster_name]\n", "\n", "if not found:\n", " print('Creating a new compute target...')\n", " provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # CPU for BiLSTM\n", " # To use BERT, select a GPU such as \"STANDARD_NC6\" \n", " # or similar GPU option\n", " # available in your workspace\n", " max_nodes = 6)\n", "\n", " # Create the cluster\n", " compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n", "\n", "print('Checking cluster status...')\n", "# Can poll for a minimum number of nodes and for a specific timeout.\n", "# If no min_node_count is provided, it will use the scale settings for the cluster.\n", "compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n", "\n", "# For a more detailed view of current AmlCompute status, use get_status()." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Get data\n", "For this notebook we will use 20 Newsgroups data from scikit-learn. We filter the data to contain four classes and take a sample as training data. Please note that for accuracy improvement, more data is needed. For this notebook we provide a small-data example so that you can use this template to use with your larger sized data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_dir = \"text-dnn-data\" # Local directory to store data\n", "blobstore_datadir = data_dir # Blob store directory to store data in\n", "target_column_name = 'y'\n", "feature_column_name = 'X'\n", "\n", "def get_20newsgroups_data():\n", " '''Fetches 20 Newsgroups data from scikit-learn\n", " Returns them in form of pandas dataframes\n", " '''\n", " remove = ('headers', 'footers', 'quotes')\n", " categories = [\n", " 'alt.atheism',\n", " 'talk.religion.misc',\n", " 'comp.graphics',\n", " 'sci.space',\n", " ]\n", "\n", " data = fetch_20newsgroups(subset = 'train', categories = categories,\n", " shuffle = True, random_state = 42,\n", " remove = remove)\n", " data = pd.DataFrame({feature_column_name: data.data, target_column_name: data.target})\n", "\n", " data_train = data[:200]\n", " data_test = data[200:300] \n", "\n", " data_train = remove_blanks_20news(data_train, feature_column_name, target_column_name)\n", " data_test = remove_blanks_20news(data_test, feature_column_name, target_column_name)\n", " \n", " return data_train, data_test\n", " \n", "def remove_blanks_20news(data, feature_column_name, target_column_name):\n", " \n", " data[feature_column_name] = data[feature_column_name].replace(r'\\n', ' ', regex=True).apply(lambda x: x.strip())\n", " data = data[data[feature_column_name] != '']\n", " \n", " return data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Featch data and upload to datastore for use in training" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_train, data_test = get_20newsgroups_data()\n", "\n", "if not os.path.isdir(data_dir):\n", " os.mkdir(data_dir)\n", " \n", "train_data_fname = data_dir + '/train_data.csv'\n", "test_data_fname = data_dir + '/test_data.csv'\n", "\n", "data_train.to_csv(train_data_fname, index=False)\n", "data_test.to_csv(test_data_fname, index=False)\n", "\n", "datastore = ws.get_default_datastore()\n", "datastore.upload(src_dir=data_dir, target_path=blobstore_datadir,\n", " overwrite=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/train_data.csv')])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Prepare AutoML run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "automl_settings = {\n", " \"experiment_timeout_minutes\": 20,\n", " \"primary_metric\": 'accuracy',\n", " \"preprocess\": True,\n", " \"max_concurrent_iterations\": 4, \n", " \"max_cores_per_iteration\": -1,\n", " \"enable_dnn\": True,\n", " \"enable_early_stopping\": True,\n", " \"validation_size\": 0.3,\n", " \"verbosity\": logging.INFO,\n", " \"enable_voting_ensemble\": False,\n", " \"enable_stack_ensemble\": False,\n", "}\n", "\n", "automl_config = AutoMLConfig(task = 'classification',\n", " debug_log = 'automl_errors.log',\n", " compute_target=compute_target,\n", " training_data=train_dataset,\n", " label_column_name=target_column_name,\n", " **automl_settings\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Submit AutoML Run" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "automl_run = experiment.submit(automl_config, show_output=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "automl_run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Retrieve the Best Model\n", "Below we select the best model pipeline from our iterations, use it to test on test data on the same compute cluster." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can test the model locally to get a feel of the input/output. This step may require additional package installations such as pytorch." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#best_run, fitted_model = automl_run.get_output()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Deploying the model\n", "We now use the best fitted model from the AutoML Run to make predictions on the test set. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get results stats, extract the best model from AutoML run, download and register the resultant best model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "summary_df = get_result_df(automl_run)\n", "best_dnn_run_id = summary_df['run_id'].iloc[0]\n", "best_dnn_run = Run(experiment, best_dnn_run_id)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model_dir = 'Model' # Local folder where the model will be stored temporarily\n", "if not os.path.isdir(model_dir):\n", " os.mkdir(model_dir)\n", " \n", "best_dnn_run.download_file('outputs/model.pkl', model_dir + '/model.pkl')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Register the model in your Azure Machine Learning Workspace. If you previously registered a model, please make sure to delete it so as to replace it with this new model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Register the model\n", "model_name = 'textDNN-20News'\n", "model = Model.register(model_path = model_dir + '/model.pkl',\n", " model_name = model_name,\n", " tags=None,\n", " workspace=ws)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Evaluate on Test Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now use the best fitted model from the AutoML Run to make predictions on the test set. \n", "\n", "Test set schema should match that of the training set." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/test_data.csv')])\n", "\n", "# preview the first 3 rows of the dataset\n", "test_dataset.take(3).to_pandas_dataframe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_experiment = Experiment(ws, experiment_name + \"_test\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "script_folder = os.path.join(os.getcwd(), 'inference')\n", "os.makedirs(script_folder, exist_ok=True)\n", "shutil.copy2('infer.py', script_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset,\n", " target_column_name, model_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Display computed metrics" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_run" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "RunDetails(test_run).show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_run.wait_for_completion()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pd.Series(test_run.get_metrics())" ] } ], "metadata": { "authors": [ { "name": "anshirga" } ], "datasets": [ "None" ], "compute": [ "AML Compute" ], "deployment": [ "None" ], "exclude_from_index": false, "framework": [ "None" ], "friendly_name": "DNN Text Featurization", "index_order": 2, "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" }, "tags": [ "None" ], "task": "Text featurization using DNNs for classification" }, "nbformat": 4, "nbformat_minor": 2 }