{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved. \n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-automated-machine-learning-step.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Azure Machine Learning Pipeline with AutoMLStep\n", "This notebook demonstrates the use of AutoMLStep in Azure Machine Learning Pipeline." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "In this example we showcase how you can use AzureML Dataset to load data for AutoML via AML Pipeline. \n", "\n", "If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you have executed the [configuration](https://aka.ms/pl-config) before running this notebook.\n", "\n", "In this notebook you will learn how to:\n", "1. Create an `Experiment` in an existing `Workspace`.\n", "2. Create or Attach existing AmlCompute to a workspace.\n", "3. Define data loading in a `TabularDataset`.\n", "4. Configure AutoML using `AutoMLConfig`.\n", "5. Use AutoMLStep\n", "6. Train the model using AmlCompute\n", "7. Explore the results.\n", "8. Test the best fitted model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Azure Machine Learning and Pipeline SDK-specific imports" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import logging\n", "import os\n", "import csv\n", "\n", "from matplotlib import pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn import datasets\n", "import pkg_resources\n", "\n", "import azureml.core\n", "from azureml.core.experiment import Experiment\n", "from azureml.core.workspace import Workspace\n", "from azureml.train.automl import AutoMLConfig\n", "from azureml.core.compute import AmlCompute\n", "from azureml.core.compute import ComputeTarget\n", "from azureml.core.dataset import Dataset\n", "from azureml.core.runconfig import RunConfiguration\n", "from azureml.core.conda_dependencies import CondaDependencies\n", "\n", "from azureml.train.automl import AutoMLStep\n", "\n", "# Check core SDK version number\n", "print(\"SDK version:\", azureml.core.VERSION)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialize Workspace\n", "Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ws = Workspace.from_config()\n", "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create an Azure ML experiment\n", "Let's create an experiment named \"automl-classification\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure.\n", "\n", "The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Choose a name for the run history container in the workspace.\n", "experiment_name = 'automlstep-classification'\n", "project_folder = './project'\n", "\n", "experiment = Experiment(ws, experiment_name)\n", "experiment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create or Attach an AmlCompute cluster\n", "You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Choose a name for your cluster.\n", "amlcompute_cluster_name = \"cpu-cluster\"\n", "\n", "found = False\n", "# Check if this compute target already exists in the workspace.\n", "cts = ws.compute_targets\n", "if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n", " found = True\n", " print('Found existing compute target.')\n", " compute_target = cts[amlcompute_cluster_name]\n", " \n", "if not found:\n", " print('Creating a new compute target...')\n", " provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n", " #vm_priority = 'lowpriority', # optional\n", " max_nodes = 4)\n", "\n", " # Create the cluster.\n", " compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n", " \n", " # Can poll for a minimum number of nodes and for a specific timeout.\n", " # If no min_node_count is provided, it will use the scale settings for the cluster.\n", " compute_target.wait_for_completion(show_output = True, min_node_count = 1, timeout_in_minutes = 10)\n", " \n", " # For a more detailed view of current AmlCompute status, use get_status()." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# create a new RunConfig object\n", "conda_run_config = RunConfiguration(framework=\"python\")\n", "\n", "conda_run_config.environment.docker.enabled = True\n", "conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n", "\n", "cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], \n", " conda_packages=['numpy', 'py-xgboost<=0.80'])\n", "conda_run_config.environment.python.conda_dependencies = cd\n", "\n", "print('run config is ready')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n", "example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n", "dataset = Dataset.Tabular.from_delimited_files(example_data)\n", "dataset.to_pandas_dataframe().describe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset.take(5).to_pandas_dataframe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Review the Dataset Result\n", "\n", "You can peek the result of a TabularDataset at any range using `skip(i)` and `take(j).to_pandas_dataframe()`. Doing so evaluates only `j` records for all the steps in the TabularDataset, which makes it fast even against large datasets.\n", "\n", "`TabularDataset` objects are composed of a list of transformation steps (optional)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X = dataset.drop_columns(columns=['Primary Type', 'FBI Code'])\n", "y = dataset.keep_columns(columns=['Primary Type'], validate=True)\n", "print('X and y are ready!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train\n", "This creates a general AutoML settings object." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "automl_settings = {\n", " \"iteration_timeout_minutes\" : 5,\n", " \"iterations\" : 2,\n", " \"primary_metric\" : 'AUC_weighted',\n", " \"preprocess\" : True,\n", " \"verbosity\" : logging.INFO\n", "}\n", "automl_config = AutoMLConfig(task = 'classification',\n", " debug_log = 'automl_errors.log',\n", " path = project_folder,\n", " compute_target=compute_target,\n", " run_configuration=conda_run_config,\n", " X = X,\n", " y = y,\n", " **automl_settings\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can define outputs for the AutoMLStep using TrainingOutput." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.pipeline.core import PipelineData, TrainingOutput\n", "\n", "ds = ws.get_default_datastore()\n", "metrics_output_name = 'metrics_output'\n", "best_model_output_name = 'best_model_output'\n", "\n", "metirics_data = PipelineData(name='metrics_data',\n", " datastore=ds,\n", " pipeline_output_name=metrics_output_name,\n", " training_output=TrainingOutput(type='Metrics'))\n", "model_data = PipelineData(name='model_data',\n", " datastore=ds,\n", " pipeline_output_name=best_model_output_name,\n", " training_output=TrainingOutput(type='Model'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create an AutoMLStep." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "automl_step = AutoMLStep(\n", " name='automl_module',\n", " automl_config=automl_config,\n", " outputs=[metirics_data, model_data],\n", " allow_reuse=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.pipeline.core import Pipeline\n", "pipeline = Pipeline(\n", " description=\"pipeline_with_automlstep\",\n", " workspace=ws, \n", " steps=[automl_step])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pipeline_run = experiment.submit(pipeline)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.widgets import RunDetails\n", "RunDetails(pipeline_run).show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pipeline_run.wait_for_completion()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Examine Results\n", "\n", "### Retrieve the metrics of all child runs\n", "Outputs of above run can be used as inputs of other steps in pipeline. In this tutorial, we will examine the outputs by retrieve output data and running some tests." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "metrics_output = pipeline_run.get_pipeline_output(metrics_output_name)\n", "num_file_downloaded = metrics_output.download('.', show_progress=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "with open(metrics_output._path_on_datastore) as f: \n", " metrics_output_result = f.read()\n", " \n", "deserialized_metrics_output = json.loads(metrics_output_result)\n", "df = pd.DataFrame(deserialized_metrics_output)\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Retrieve the Best Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "best_model_output = pipeline_run.get_pipeline_output(best_model_output_name)\n", "num_file_downloaded = best_model_output.download('.', show_progress=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "\n", "with open(best_model_output._path_on_datastore, \"rb\" ) as f:\n", " best_model = pickle.load(f)\n", "best_model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Test the Model\n", "#### Load Test Data\n", "For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset = Dataset.Tabular.from_delimited_files(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv')\n", "df_test = dataset_test.to_pandas_dataframe()\n", "df_test = df_test[pd.notnull(df['Primary Type'])]\n", "\n", "y_test = df_test[['Primary Type']]\n", "X_test = df_test.drop(['Primary Type', 'FBI Code'], axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Testing Our Best Fitted Model\n", "\n", "We will use confusion matrix to see how our model works." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pandas_ml import ConfusionMatrix\n", "\n", "ypred = best_model.predict(X_test)\n", "\n", "cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n", "\n", "print(cm)\n", "\n", "cm.plot()" ] } ], "metadata": { "authors": [ { "name": "sanpil" } ], "category": "tutorial", "compute": [ "AML Compute" ], "datasets": [ "Custom" ], "deployment": [ "None" ], "exclude_from_index": false, "framework": [ "Automated Machine Learning" ], "friendly_name": "How to use AutoMLStep with AML Pipelines", "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" }, "order_index": 11, "star_tag": [ "featured" ], "tags": [ "None" ], "task": "Demonstrates the use of AutoMLStep" }, "nbformat": 4, "nbformat_minor": 2 }