from ray_on_aml.core import Ray_On_AML import yaml from ray.tune.tune import run_experiments from utils import callbacks import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--config', help='Path to yaml configuration file') args = parser.parse_args() ray_on_aml = Ray_On_AML() ray = ray_on_aml.getRay() if ray: # in the headnode ray.init(address="auto") print("Configuring run from file: ", args.config) experiment_config = None with open(args.config, "r") as file: experiment_config = yaml.safe_load(file) print(f'Config: {experiment_config}') # Set local_dir in each experiment configuration to ensure generated logs get picked up # by Azure ML for experiment in experiment_config.values(): experiment["local_dir"] = "./logs" trials = run_experiments( experiment_config, callbacks=[callbacks.TrialCallback()], verbose=2 ) else: print("in worker node")