import os import ray from ray.rllib import train from ray import tune from utils import callbacks if __name__ == "__main__": # Parse arguments and add callbacks to config train_parser = train.create_parser() args = train_parser.parse_args() args.config["callbacks"] = {"on_train_result": callbacks.on_train_result} # Trace if video capturing is on if 'monitor' in args.config and args.config['monitor']: print("Video capturing is ON!") # Start ray head (single node) os.system('ray start --head') ray.init(address='auto') # Run training task using tune.run tune.run( run_or_experiment=args.run, config=dict(args.config, env=args.env), stop=args.stop, checkpoint_freq=args.checkpoint_freq, checkpoint_at_end=args.checkpoint_at_end, local_dir=args.local_dir )