# 06-run-pytorch-data.py from azureml.core import Workspace from azureml.core import Experiment from azureml.core import Environment from azureml.core import ScriptRunConfig from azureml.core import Dataset if __name__ == "__main__": ws = Workspace.from_config() datastore = ws.get_default_datastore() dataset = Dataset.File.from_files(path=(datastore, 'datasets/cifar10')) experiment = Experiment(workspace=ws, name='day1-experiment-data') config = ScriptRunConfig( source_directory='./src', script='train.py', compute_target='cpu-cluster', arguments=[ '--data_path', dataset.as_named_input('input').as_mount(), '--learning_rate', 0.003, '--momentum', 0.92], ) # set up pytorch environment env = Environment.from_conda_specification( name='pytorch-env', file_path='./environments/pytorch-env.yml' ) config.run_config.environment = env run = experiment.submit(config) aml_url = run.get_portal_url() print("Submitted to compute cluster. Click link below") print("") print(aml_url)