{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/using-mlflow/deploy-model/deploy-model.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deploy Model as Azure Machine Learning Web Service using MLflow\n", "\n", "This example shows you how to use mlflow together with Azure Machine Learning services for deploying a model as a web service. You'll learn how to:\n", "\n", " 1. Retrieve a previously trained scikit-learn model\n", " 2. Create a Docker image from the model\n", " 3. Deploy the model as a web service on Azure Container Instance\n", " 4. Make a scoring request against the web service.\n", "\n", "## Prerequisites and Set-up\n", "\n", "This notebook requires you to first complete the [Use MLflow with Azure Machine Learning for Local Training Run](../train-local/train-local.ipnyb) or [Use MLflow with Azure Machine Learning for Remote Training Run](../train-remote/train-remote.ipnyb) notebook, so as to have an experiment run with uploaded model in your Azure Machine Learning Workspace.\n", "\n", "Also install following packages if you haven't already\n", "\n", "```\n", "pip install azureml-mlflow pandas\n", "```\n", "\n", "Then, import necessary packages:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import mlflow\n", "import azureml.mlflow\n", "import azureml.core\n", "from azureml.core import Workspace\n", "\n", "# Check core SDK version number\n", "print(\"SDK version:\", azureml.core.VERSION)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Connect to workspace and set MLflow tracking URI\n", "\n", "Setting the tracking URI is required for retrieving the model and creating an image using the MLflow APIs." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ws = Workspace.from_config()\n", "\n", "mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Retrieve model from previous run\n", "\n", "Let's retrieve the experiment from training notebook, and list the runs within that experiment." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "experiment_name = \"experiment-with-mlflow\"\n", "exp = ws.experiments[experiment_name]\n", "\n", "runs = list(exp.get_runs())\n", "runs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, let's select the most recent training run and find its ID. You also need to specify the path in run history where the model was saved. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "runid = runs[0].id\n", "model_save_path = \"model\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create Docker image\n", "\n", "To create a Docker image with Azure Machine Learning for Model Management, use ```mlflow.azureml.build_image``` method. Specify the model path, your workspace, run ID and other parameters.\n", "\n", "MLflow automatically recognizes the model framework as scikit-learn, and creates the scoring logic and includes library dependencies for you.\n", "\n", "Note that the image creation can take several minutes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import mlflow.azureml\n", "\n", "azure_image, azure_model = mlflow.azureml.build_image(model_uri=\"runs:/{}/{}\".format(runid, model_save_path),\n", " workspace=ws,\n", " model_name='diabetes-sklearn-model',\n", " image_name='diabetes-sklearn-image',\n", " synchronous=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Deploy web service\n", "\n", "Let's use Azure Machine Learning SDK to deploy the image as a web service. \n", "\n", "First, specify the deployment configuration. Azure Container Instance is a suitable choice for a quick dev-test deployment, while Azure Kubernetes Service is suitable for scalable production deployments.\n", "\n", "Then, deploy the image using Azure Machine Learning SDK's ```deploy_from_image``` method.\n", "\n", "Note that the deployment can take several minutes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core.webservice import AciWebservice, Webservice\n", "\n", "\n", "aci_config = AciWebservice.deploy_configuration(cpu_cores=1, \n", " memory_gb=1, \n", " tags={\"method\" : \"sklearn\"}, \n", " description='Diabetes model',\n", " location='eastus2')\n", "\n", "\n", "# Deploy the image to Azure Container Instances (ACI) for real-time serving\n", "webservice = Webservice.deploy_from_image(\n", " image=azure_image, workspace=ws, name=\"diabetes-model-1\", deployment_config=aci_config)\n", "\n", "\n", "webservice.wait_for_deployment(show_output=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Make a scoring request\n", "\n", "Let's take the first few rows of test data and score them using the web service" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_rows = [\n", " [0.01991321, 0.05068012, 0.10480869, 0.07007254, -0.03596778,\n", " -0.0266789 , -0.02499266, -0.00259226, 0.00371174, 0.04034337],\n", " [-0.01277963, -0.04464164, 0.06061839, 0.05285819, 0.04796534,\n", " 0.02937467, -0.01762938, 0.03430886, 0.0702113 , 0.00720652],\n", " [ 0.03807591, 0.05068012, 0.00888341, 0.04252958, -0.04284755,\n", " -0.02104223, -0.03971921, -0.00259226, -0.01811827, 0.00720652]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "MLflow-based web service for scikit-learn model requires the data to be converted to Pandas DataFrame, and then serialized as JSON. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "import pandas as pd\n", "\n", "test_rows_as_json = pd.DataFrame(test_rows).to_json(orient=\"split\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's pass the conveted and serialized data to web service to get the predictions." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predictions = webservice.run(test_rows_as_json)\n", "\n", "print(predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can use the web service's scoring URI to make a raw HTTP request" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "webservice.scoring_uri" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can diagnose the web service using ```get_logs``` method." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "webservice.get_logs()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Next Steps\n", "\n", "Learn about [model management and inference in Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-model-management-and-deployment)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "authors": [ { "name": "rastala" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }