from azureml.core import ScriptRunConfig def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset, target_column_name, inference_folder='./forecast'): train_run.download_file('outputs/model.pkl', inference_folder + '/model.pkl') inference_env = train_run.get_environment() config = ScriptRunConfig(source_directory=inference_folder, script='forecasting_script.py', arguments=['--target_column_name', target_column_name, '--test_dataset', test_dataset.as_named_input(test_dataset.name)], compute_target=compute_target, environment=inference_env) run = test_experiment.submit(config, tags={'training_run_id': train_run.id, 'run_algorithm': train_run.properties['run_algorithm'], 'valid_score': train_run.properties['score'], 'primary_metric': train_run.properties['primary_metric']}) run.log("run_algorithm", run.tags['run_algorithm']) return run