{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved. \n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/notebook_runner/training_notebook.png)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"In training_notebook.ipynb\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "parameters" ] }, "outputs": [], "source": [ "# declaring parameters to override\n", "\n", "arg1 = \"Azure\"\n", "processed_data = None\n", "notebook_processed_data = None\n", "my_pipeline_param = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Final parameter values\n", "\n", "print(\"arg1: %s\" % arg1)\n", "print(\"input from previous step: %s\" % processed_data)\n", "print(\"output from notebook: %s\" % notebook_processed_data)\n", "print(\"pipeline_parameter: %s\" % my_pipeline_param)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if not (notebook_processed_data is None):\n", " os.makedirs(notebook_processed_data, exist_ok=True)\n", " print(\"%s created\" % notebook_processed_data)" ] } ], "metadata": { "authors": [ { "name": "sanpil" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 2 }