import io import pickle import argparse import numpy as np from azureml.core.model import Model from sklearn.linear_model import LogisticRegression def init(): global iris_model parser = argparse.ArgumentParser(description="Iris model serving") parser.add_argument('--model_name', dest="model_name", required=True) args, unknown_args = parser.parse_known_args() model_path = Model.get_model_path(args.model_name) with open(model_path, 'rb') as model_file: iris_model = pickle.load(model_file) def run(input_data): # make inference num_rows, num_cols = input_data.shape pred = iris_model.predict(input_data).reshape((num_rows, 1)) # cleanup output result = input_data.drop(input_data.columns[4:], axis=1) result['variety'] = pred return result